Top Banner
1 Stereochemistry and stereocontrolled synthesis (OC 8) A lecture from Prof. Paul Knochel, Ludwig-Maximilians-Universität München WS 2016-17
199

A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

Apr 19, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

1

Stereochemistry and

stereocontrolled synthesis (OC 8)

A lecture from Prof. Paul Knochel,

Ludwig-Maximilians-Universität München

WS 2016-17

Page 2: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

2

Wichtig!

• Prüfung Stereochemistry

07. Februar 2017

8:00 – 10:00

Willstätter-HS

• Nachholklausur Stereochemistry

4. April 2017

9:00 – 11:00

Wieland-HS

Page 3: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

3

Problem set part I

Page 4: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

4

Problem set part II

Page 5: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

5

Problem set part III

Page 6: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

6

Recommended Literature

• E. Juaristi, Stereochemistry and Conformational Analysis, Wiley, 1991.

• E. Eliel, Stereochemistry of Organic Compounds, Wiley, 1994.

• A. Koskinen, Asymmetric Synthesis of Natural Products, Wiley, 1993.

• R. Noyori, Asymmetric Catalysis, Wiley, 1994.

• F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, 5th Edition, Springer,

2007.

• A. N. Collins, G. N. Sheldrake, J. Crosby, Chirality in Industrie, Vol. I and II, Wiley,

1995 and 1997.

• G.Q. Lin, Y.-M. Li, A.S.C. Chan, Asymmetric Synthesis, 2001, ISBN 0-471-40027-0.

• P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon, 1983.

• M. Nogradi, Stereoselective Synthesis, VCH, 1995.

• E. Winterfeldt, Stereoselective Synthese, Vieweg, 1988.

• R. Mahrwald (Ed.), Modern Aldol Reactions, Vol. I and II, Wiley, 2004.

• C. Wolf, Dynamic Stereochemistry of Chiral Compounds, RSC Publishing, 2008.

• A. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH, 2005.

• J. Christoffers, A. Baro (Eds.), Quaternary Stereocenters, Wiley-VCH, 2005.

• Catalytic Asymmetric Synthesis, I. Oshima (Ed.), Wiley, 2010.

Page 7: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

7

Recent advances of asymmetric catalysis

Page 8: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

8

Asymmetric Hydrogenation of Heterocyclic Compounds

R. Kuwano, N. Kameyama, R. Ikeda, J. Am. Chem. Soc. 2011, 133, 7312-7315.

Page 9: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

9

Camphor-Derived Organocatalytic Synthesis of Chromanones

Z.-Q. Rong, Y. Li, G.-Q. Yang, S.-L. You, Synlett 2011, 1033-1037.

Page 10: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

10

Stereochemical principles - introduction and definitions

- Isomers are molecules having the same composition

- Structural isomers have different connectivities:

Page 11: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

11

Classification of stereoisomers

Enantiomers are two stereoisomers which are mirror images

Diastereomers are stereoisomers which are not enantiomers

The energy barrier has to be over 25 kcal/mol in order to speak of configurational isomers.

Configuration isomers:

Conformation isomers:

Page 12: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

12

Introduction: classification of stereoisomers

- Conformation isomers:

Page 13: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

13

Introduction: classification of stereoisomers

Lactic acid as example

1874 suggestion by Van’t Hoff; LeBel

The tetrahedral arrangement of substituents at Csp3 carbon centers.

Page 14: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

14

Definitions

Chirality: A molecule is chiral if it is not identical with its mirror image.

A chiral carbon-center bears 4 different substituents.

An organic molecule with n chiral centers has 2n stereoisomers,

if no additional symmetry element is present in this molecule.

A molecule is achiral if it contains a plane of symmetry or a center of inversion

or a Sn symmetry element.

A chiral molecule may contain only Cn symmetry element and identity (E)

Tartaric acid exists only as 3 different stereoisomers:

Page 15: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

15

Properties of enantiomers

Two enantiomers have identical physical properties but show the opposite rotation

of polarized light in a polarimeter.

Importantly, the biological properties of enantiomers are different!

95% of all drugs are chiral, therefore the enantioselective synthesis of organic molecules is of key importance.

Page 16: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

16

Chiral molecules not centered at carbon

Page 17: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

17

Nomenclature of stereoisomers

The Cahn-Ingold-Prelog rules (CIP rules)

Page 18: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

18

Nomenclature of stereoisomers

3. The case of multiple bonds

1. Highest atomic number: I > Br > Cl; D > H

2. CH2Br > CH2Cl > CH2OH > CH2CH3 > CH3 CH2Br > CCl3 !

Page 19: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

19

Nomenclature of stereoisomers

Ascending Order of Priority of Some Common Groups, According to the Sequency Rules

Page 20: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

20

Nomenclature of stereoisomers

4. R,S-nomenclature for compounds with an axial chirality

Page 21: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

21

Prochirality: homotopicity, enantiotopicity, diastereotopicity

Relevance of symmetry:

Page 22: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

22

Pseudo-asymmetric and chirotopic centers

Page 23: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

23

Molecules with a chirotopic center or a chirotopic center

Page 24: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

24

Symmetry and stereochemistry

1. Cn: n-fold rotation axes: rotation by an angle 360°/n

Symmetric operations:

Page 25: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

25

Symmetry and stereochemistry

2. σh: mirror plane

Page 26: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

26

Symmetry and stereochemistry

3. Rotating mirror axis

Page 27: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

27

Symmetry and stereochemistry

Rotating mirror axis

Page 28: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

28

Symmetry and stereochemistry

Page 29: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

29

Heterotopic groups and faces

(Prochirality)

Definition: The groups are homotopic if there can be transformed into each other by a symmetry operation Cn

The reactivity of homotopic groups is the same towards all reagents. It is not possible to make a chemical

distinction between homotopic groups.

Two identical groups in one molecule can be either

homotopic, enantiotopic or diastereotopic and show the corresponding properties.

Page 30: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

30

Homotopic groups and faces

Substitution test: The susbtitution of an homotopic group by another group leads

to the same molecule

Feature: Homotopic groups and faces cannot be distinguished by any reagent.

The same chemical behaviour towards all reagents is observed.

Page 31: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

31

Homotopic faces of a molecule

Homotopic faces: two faces are homotopic, if the plane defined by the two faces contains a

C2 axis.

Page 32: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

32

Enantiotopic groups and faces

Definition: The two groups in a molecule are enantiotopic, if they can be converted into one another by a

Sn-or σh-operation.

Enantiotopic groups are always found in achiral molecules.

Substitution test: The substitution of one group of two enantiotopic groups gives two

enantiomeric compounds.

Page 33: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

33

Enantiotopic groups and faces

Enantiotopic faces are 2 faces that are defined by a plane of symmetry.

Features: Only chiral reagents can distinguish between enantiotopic groups.

Achiral reagents can not differentiate between enantiotopic groups and faces.

Page 34: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

34

Diastereotopic groups and faces

Diastereomeric groups can be transformed into one another only by the identity symmetry operation.

Features: 2 diastereotopic groups and faces are distinguished by any reagent.

Diastereotopic faces are defined by a plane which is not a symmetry plane.

Substitution test:

provides two diastereoisomers.

Page 35: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

35

Additions to homotopic and enantiotopic faces

Topicity Groups Faces Reactivity

Homotopic

groups and facesCn C2

no differenciation

possible

Enantiotopic

groups and facesσh or Sn σh

differenciation by chiral

reagents (or

catalysts)

Diastereotopic

groups and facesnone ≠ σh

differenciation by any

reagent

Page 36: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

36

Enantiomers and racemates

Racemization: Processes which convert a pure enantiomer into a 1:1 mixture of enantiomers

Page 37: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

37

Racemization

Process which convert a pure enantiomer into the racemate

A racemization – process implies an achiral intermediate

Page 38: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

38

Racemization

Page 39: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

39

Epimerization of diastereoisomers

Epimerization: racemization of only one from several chiral centers.

Page 40: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

40

Selective inversion of the configuration at Csp3-centers

Page 41: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

41

Inversion of alcohols: Mitsunobu reaction

Mitsunobu reaction: D. L. Hughes, Org. React. 1992, 42, 335-656.

Page 42: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

42

SNi-reaction

Page 43: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

43

Substitution with retention of configuration

J. J. Almena Perea, T. Ireland, P. Knochel, Tetrahedron Lett. 1997, 38, 5961-5964.

Page 44: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

44

Methods for Racemate Resolution

Separation of enantiomers

1) Separation based on the crystal shape. Pasteur (1845): crystal picking. Triage

2) Selective crystallization using a seed crystal

Example: (+)-tartaric acid is easily crystallized by the addition of (-)-asparagine

Page 45: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

45

Resolution via separation of diastereomers

(±)-acids can be separated using chiral bases such as alkaloids: quinine, brucine, morphine.

J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. Hong, X. Nie, C. M. Zepp, J. Org. Chem. 1994, 59, 1939.

Page 46: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

46

Resolution of 3-methyl-2-phenylbutanoic acid

C. Aaron, D. Dull, J. L. Schmiegel, D. Jaeger, Y. Ohahi,

H. S. Mosher, J. Org. Chem. 1967, 32, 2797.

Page 47: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

47

Resolution via separation of diastereomers

For acids For bases

α-Methylbenzylamine

α-Methyl-p-nitrobenzylamine

α-Methyl-p-bromobenzylamine

2-Aminobutane

N-Methylglucamine

Dehydroabietylamine

α-(1-Naphthyl)ethylamine

threo-2-amino-1-(p-nitrophenyl)-propane-1,3-diol

Cinchonine

Cinchonidine

Quinine

Ephedrine

1-Camphor-10-sulphonic acid

Malic acid

Mandelic acid

α-Methoxyphenylacetic acid

α-Methoxy-α-trifluoromethylphenylacetic acid

2-Pyrrolidone-5-carboxylic acid

Tartaric acid

Commonly used resolving agents

Page 48: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

48

Separation of enantiomers

The resolution of enantiomers by preferential crystallization

is the most common method used in industry:

Resolution of Naproxen using Quinidine

C. G. M. Villa and S. Panossian, Chirality in industry, 1992, Vol. 1, 303.

Page 49: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

49

Preparation of acidic resolution agents

Page 50: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

50

Extension to the resolution of alcohols

Page 51: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

51

Resolution of ketones by the formation of diastereoisomers

Page 52: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

52

Improved resolution procedure: the method of Wynberg

Racemate resolution through the formation of two diastereoisomers (salts).

T. Vries, H. Wynberg, E. van Echten, J. Koek, W. ten Hoeve, R. M. Kellogg, Q. B. Broxterman, A. Minnaard,

B. Kaptein, S. van der Sluis, L. Hulshof, J. Kooistra Angew. Chem. 1998, 110, 2491; Angew. Chem. Int. Ed.

1998, 37, 2349.

Page 53: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

53

Resolution with in situ racemization

Page 54: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

54

Separation using a chiral chromatographic columns

polysaccharides (α-Cyclodextrin)

• Gas chromatography: the solvent is a gas

• HPLC (High Presssure Liquid Chromatography): the solvent is a

mixture of liquids

Page 55: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

55

Enzymatic resolution: an example of kinetic resolution

Page 56: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

56

Kinetic resolution

Page 57: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

57

Dependence of enantiomeric excess on relative rate of reaction

V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda, K. B. Sharpless, J. Am. Chem. Soc. 1981, 103, 6237.

Page 58: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

58

Kinetic resolution

M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobsen, Science 1997, 277, 936.

B. E. Rossiter, T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1981, 103, 464.

P. R. Carlier, W. S. Mungall, G. Schroder, K. B. Sharpless, J. Am. Chem. Soc. 1988, 110, 2978.

Page 59: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

59

Examples of kinetic resolution

P. Stead, H. Marley, M. Mahmoudoan, G. Webb, D. Noble, Y. T. Ip, E. Piga, S. Roberts,

M. J. Dawson, Tetrahedron: Asymmetry 1996, 7, 2247.

M. Kimura, I. Kasahara, K. Manabe, R. Noyori, H. Takaya, J. Org. Chem. 1988, 53, 708.

U. Salz, C. Rüchardt, Chem. Ber. 1984, 117, 3457.

Page 60: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

60

Determination of the enantiomeric purity by NMR methods

A. Alexakis, J. C. Frutos, S. Mutti, P. Mangeney, J. Org. Chem. 1994, 59, 3326.

Determination of ee% by NMR Methods: review article D. Parker Chem. Rev. 1991, 91, 1441

Use of chiral shifts reagents:

C. C. Hinckley, J. Am. Chem. Soc. 1969, 91, 5160.

Page 61: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

61

Determination of the absolute configuration

Classical X-ray analysis does not allow to distinguish between two enantiomeric structures.

The method of Bijvoet (1951) uses heavy metal salts and allows the determination

of the absolute configuration of molecules.

J. M. Bijvoet, A. F. Peerdeman, A. J. van Bommel, Nature, 1951, 168, 271.

Page 62: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

62

Chemical correlation (1)

Page 63: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

63

Chemical correlation (2)

Page 64: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

64

Determination of the relative stereochemistry by NMR methods

In general - 1H and 13C NMR analysis allows to differenciate diastereoisomers

Karplus Rules

Diastereisomers have different properties: compare with

Page 65: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

65

Determination of the relative stereochemistry by NMR methods

Page 66: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

66

Determination of the configuration of the anomeric center of sugar

Page 67: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

67

Conformational analysis

1943: X-Ray analysis shows a chair conformation for cyclohexane derivatives

1950: Barton shows the difference between axial and equatorial positions in cyclohexane derivatives

Page 68: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

68

Conformational analysis

percent of more stable isomer K DG°25°C (Kcal/mol)

50

55

60

70

75

85

90

95

99

99.9

1.0

1.22

1.50

2.33

3.0

5.67

9.0

19.0

99.0

999.0

0.0

0.12

0.24

0.50

0.65

1.03

1.30

1.75

2.72

4.09

Isomeric ratios at equilibrium (T = 25 °C)

Page 69: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

69

Conformational analysis

Page 70: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

70

Conformational analysis of butane

Page 71: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

71

Conformational analysis

Alkanes Barrier (kcal/mol)Heteroatom

compoundsBarrier (kcal/mol)

CH3-CH3 2.9 CH3-NH2 2.0

CH3-CH2CH3 3.4 CH3-NHCH3 3.0

CH3-CH(CH3)2 3.9 CH3-N(CH3)2 4.4

CH3-C(CH3)3 4.7 CH3-OH 1.1

(CH3)3C-C(CH3)3 8.4 CH3-OCH3 4.6

Rotational barriers of compounds of type CH3-X

J. P. Lowe, Prog. Phys. Org. Chem. 1968, 6, 1.

Page 72: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

72

Conformational analysis of bonding between Csp2 and Csp3

Page 73: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

73

1,3-Diaxial strain

R. W. Hoffmann, Chem. Rev. 1989, 89, 1841

A. Bienvenue, J. Am. Chem. Soc. 1973, 95, 7345

Page 74: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

74

1,3-Diaxial strain

Page 75: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

75

Conformational analysis of cyclic systems: Bayer strain

Page 76: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

76

Classification of cyclic organic molecules

ring size strain energy

per methylene group

small rings 3 9

4 6.8

5 1.4

normal rings 6 0.2

7 1.1

Cyclic molecules can be classified in 4 categories:

8 1.4

9 1.6

medium-sized rings 10 1. transannular interaction

11 1.3

12 0.5

small rings: 3-4;

normal rings: 5-7;

medium-sized rings: 8 -12;

large rings: 13-membered rings and larger

large rings behave like a per-chain systems

Page 77: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

77

The cyclopropane ring

planar ring system: Pitzer strain 6 Kcal/mol

J. Wemple, Tetrahedron Lett., 1975, 38, 3255.

Page 78: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

78

Conformation of the cyclopropylmethyl cation

Page 79: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

79

Synthesis of cyclopropanes

H.-D. Beckhaus, C. Rüchardt, S. I. Kozhushkov, V. N. Belov, S. P. Verevkin, A. de Meijere,

J. Am. Chem. Soc. 1995, 117, 11854.

C. Mazal, O. Skarka, J. Kaleta, J. Michl, Org. Lett. 2006, 8, 749.

Page 80: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

80

Synthesis of cyclopropanes

J. E. Argüello, A. B. Peñéñory, R. A. Rossi, J. Org. Chem. 1999, 64, 6115.

H.-C. Militzer, S. Schömenauer, C. Otte, C. Puls, J. Hain, S. Bräse, A. de Meijere, Synthesis 1993, 998.

Page 81: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

81

The cyclobutane and cyclopentane systems

Page 82: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

82

The conformations of cyclohexane

Page 83: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

83

Energy diagram for ring inversion of cyclohexane

N. Leventis, S. B. Hanna, C. Sotiriou-Leventis, J. Chem. Educ. 1997, 74, 813.

Page 84: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

84

The conformation of substituted cyclohexane

Page 85: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

85

Inversion of cyclohexane

Half-life for conformation inversion of cyclohexane at various temperatures

T (°C) Half-life

25 1.3 x 10-5 s

-60 0.03 s

-120 23 min

-160 22 years !

F. R. Jensen, J. Am. Chem. Soc. 1969, 91, 3223.

A crystallization of the equatorial isomer at -150 °C is possible

60-MHz 1H-NMR spectrum for the C(1)H in chlorocyclohexane. a) axial-equatorial equilibrium at -115 °C,

b) axial enriched mixture at -150 °C, c) pure equatorial conformer at -150 °C

Page 86: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

86

Cyclohexyl iodide

100 MHz 1H-NMR spectrum of iodocyclohexane at -80 °C. Only the low field C(1)H signal is shown.

F. R. Jensen, J. Am. Chem. Soc. 1969, 91, 344.

Page 87: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

87

Temperature depending NMR-spectra / exchange rate of protons

Page 88: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

88

Conformational free energies (-DG) for some substituents

Substituent -DGc Substituent -DGc

F 0.26 C6H5 2.9

Cl 0.53 CN 0.2

I 0.47 CH3CO2 0.71

CH3 1.8 HO2C 1.35

CH3CH2 1.8 C2H5O2C 1.1-1.2

(CH3)2CH 2.1 HO (aprotic solvent) 0.52

(CH3)3C >4.7 HO (protic solvent) 0.87

CH2=CH 1.7 CH3O 0.60

HC≡C 0.5 O2N 1.16

Page 89: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

89

F. Johnson, Chem. Rev. 1968, 68, 375

S. Seel, T. Thaler, K. Takatsu, C. Zhang, H. Zipse, B. F. Straub, P. Mayer, P. Knochel, J. Am. Chem. Soc., 2011, 133, 4774.

Page 90: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

90

Stereoselective effects: Curtin-Hammett principle

According to the Curtin-Hammett principle, the position of the equilibrium between two molecules

A and B cannot be used to predict the ratio between the products PA and PB, only the difference

between the activation energies DGB* - DGA* is relevant

Page 91: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

91

The Curtin-Hammett principle

Stereoselective E2-elimination

Page 92: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

92

Example of the Curtin-Hammett principle

Page 93: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

93

The Curtin-Hammett principle

W. C. Still, Tetrahedron 1981, 23, 3981

According to the Curtin-Hammett principle, the position of the equilibrium between two molecules A and B

cannot be used to predict the ratio between the products.

Exception: when the activation energy are very similar

Page 94: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

94

The anomeric effect

E. Juaristi, Tetrahedron, 1992, 48, 5019

The tendency to prefer a substituent in an axial position increases with the

electronegativity of the substituents. X = OAc, Cl, F,…

Anomeric effect: 0.9 kcal/mol

Page 95: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

95

Origin of the anomeric effect

Most probable origin: hyperconjugation effect between electron lone pair of oxygen and the s* (C-X) bond

Page 96: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

96

The anomeric effect

H. Paulsen, P. Luger, F. P. Heiker, Anomeric Effect: Origin and Consequences, ACS Symposium

Series No. 87, ACS, 1975, Chap. 5

Page 97: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

97

The anomeric effect

Application: Determination of the conformation of a ketal

Page 98: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

98

The anomeric effect

Preferred conformation of esters :

Preferred conformation for

The anomeric effect allows to predict the preferred conformation of organic molecules:

Page 99: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

99

The kinetic anomeric effect

Kinetic effects:

Page 100: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

100

Effects on spectra and structure

Antiperiplanar lone pairs weaken C-H bonds and reduce their IR wavenumber

Page 101: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

101

Stereoelectronic effects and the Baldwin rules

Stereochemical requirements for the SN2-substitution: linear arrangement between the leading group

and the entering nucleophile

J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734-736.

Page 102: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

102

Epoxide-opening

G. Stork, L. D. Cama, D. R. Coulson, J. Am. Chem. Soc. 1974, 96, 5268.

Page 103: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

103

Epoxide-opening

Page 104: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

104

Baldwin rules

Page 105: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

105

Stereoselective reactions

Page 106: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

106

SN2‘-substitutions

Page 107: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

107

SN2‘-substitutions with organocopper

D. Soorukram, P. Knochel Org. Lett. 2004, 6 , 2409

Page 108: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

108

Anti-SN2‘-substitutions with organocopper

Page 109: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

109

Anti-substitutions at propargylic systems

Page 110: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

110

Stereoselective palladium-catalyzed allylic substitutions

B. M. Trost, Acc. Chem. Res. 1980, 13, 385.

Page 111: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

111

Electrophilic substitutions

SE2

Page 112: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

112

First synthesis of an optically active zinc reagent

Page 113: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

113

Preparation of chiral zinc reagents

Page 114: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

114

Stereoselective rearrangements

Only the bond in anti-arrangement to the leading group undregoes the migration

M. Chérest, H. Felkin, J. Chem. Soc. 1965, 2513.

Page 115: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

115

Nucleophilic addition to ketones and aldehydes

Page 116: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

116

Diastereoselective reactions

Page 117: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

117

The aldol reaction: the acidity of various C-H bonds

Bordwell acidity scala in DMSO: Acc. Chem. Res. 1988, 21, 456.

pKDMSO

MeCH2-NO2 16.7

PhCOCH3 24.7

EtCOCH2Me 27.1

PhSO2CH3 29.0

(Me3Si)2NH 30.0

CH3CN 31.0

i-Pr2NH 35.0

PhCH3 43.0

CH4 56.0

Page 118: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

118

The aldol reaction

Page 119: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

119

The aldol reaction

Page 120: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

120

Stereoselectivity in the aldol reaction

Page 121: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

121

Enantioselective aldol synthesis

C. Heathcock, J. Am. Chem. Soc. 1977, 99, 2337;

J. Org. Chem. 1981, 46, 191;

J. Org. Chem. 1985, 50, 2095.

Page 122: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

122

The aldol reaction

Page 123: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

123

The aldol reaction

Page 124: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

124

The aldol reaction

General synthesis of Z-enolates

Boron enolates are usually more selective than Li-enolates

Page 125: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

125

Enantioselective aldol reaction

Page 126: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

126

Enantioselective aldol reaction via Ti-enolates

Page 127: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

127

Enantioselective enolate synthesis

Page 128: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

128

Enantioselective enolate synthesis

Organocatalysis

Page 129: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

129

The aldol reaction via ester enolates – the Ireland-Claisen reaction

Page 130: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

130

The aldol reaction via ester enolates – the Ireland-Claisen reaction

Page 131: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

131

The aldol reaction via ester enolates – the Ireland-Claisen reaction

Page 132: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

132

Alternative synthesis of aldol products

Page 133: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

133

Asymmetric catalysis – Asymmetric oxidations

The Sharpless oxidation

Page 134: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

134

Kinetic resolution of secondary alcohols

Page 135: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

135

Matched and mismatched cases

Page 136: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

136

Mechanism of Ti-catalyzed Sharpless epoxidation

M. G. Finn, K. B. Sharpless, J. Am. Chem. Soc. 1991, 113, 113.

Page 137: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

137

Synthetic applications of the Sharpless epoxidation

Page 138: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

138

Ring opening with cuprates

Page 139: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

139

Desymmetrization of meso-epoxides

Page 140: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

140

Desymmetrization of meso-epoxides

Page 141: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

141

Asymmetric dihydroxylation

Page 142: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

142

Asymmetric dihydroxylation leading to (2S)-propanolol

Page 143: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

143

Asymmetric aminohydroxylation

Page 144: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

144

Epoxidation of non-functionalized epoxides

Substrate Yield (%) ee(%) config.

73 >95 R, R

81 88 R, R

61 93 2S, 3R

73 92 R, R

69 91 R, R

Page 145: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

145

Epoxidation of non-functionalized epoxides

Page 146: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

146

Ligands for asymmetric hydrogenation

Page 147: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

147

Catalytic hydrogenation of enamides

Page 148: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

148

Ru-catalyzed hydrogenations

Page 149: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

149

Rh-catalyzed hydrogenations

Page 150: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

150

Asymmetric hydrogenation of carbonyl compounds

Page 151: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

151

The oxazaborolidine catalyst system

Page 152: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

152

The oxazaborolidine catalyst system

Page 153: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

153

CBS-Reduction

Page 154: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

154

CBS-Reduction

Page 155: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

155

Asymmetric transfer hydrogenation

Meerwein-Ponndorf-Verley reaction

Page 156: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

156

Enantioselective imine hydrogenation

Page 157: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

157

Asymmetric Diels-Alder reaction

Page 158: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

158

Asymmetric Diels-Alder reaction

Page 159: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

159

Hetero Diels-Alder reaction

Page 160: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

160

Hetero Diels-Alder reaction

Page 161: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

161

Asymmetric synthesis in Natural Product Chemistry

Prof. E. J. Corey

Page 162: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

162

Corey‘s rethrosynthetic analysis of aspidophytine

Page 163: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

163

Corey‘s rethrosynthetic analysis of aspidophytine

Page 164: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

164

Corey‘s total synthesis of aspidophytine

Page 165: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

165

Corey‘s total synthesis of aspidophytine

Page 166: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

166

Corey‘s total synthesis of aspidophytine

Page 167: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

167

Corey‘s total synthesis of aspidophytine

The final cascade sequence

Page 168: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

168

Corey‘s total synthesis of aspidophytine

Final stages and completion

Page 169: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

169

A domino olefin metathesis strategy for the synthesis of (-)halosalin

Page 170: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

170

Conjugated addition-alkylation route to prostaglandins

Page 171: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

171

Conjugated addition-alkylation route to prostaglandins

Synthesis of fragment A

Page 172: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

172

Conjugated addition-alkylation route to prostaglandins

Alternative synthesis of fragment A starting from diethyl (S,S)-tartrate

Page 173: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

173

Conjugated addition-alkylation route to prostaglandins

Synthesis of fragment B

Page 174: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

174

Conjugated addition-alkylation route to prostaglandins

Synthesis of fragment C

Page 175: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

175

Conjugated addition-alkylation route to prostaglandins

Final assembly of the PGE1

Page 176: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

176

Additional asymmetric syntheses

Page 177: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

177

Enantioselective alkylation by chiral phase-transfer catalysis

Page 178: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

178

Enantioselective fluorination reactions

N

N

F

CHClN

HOH

N

H

O

Cl

OMe

N

HO

OO

O

RR

RR

TiL2

Cl

Cl

OTMS

Bn

p-Tol CO2Me

CN

Et OChPh 2

O O

Me

2 BHF4

O

F

Bn

p-Tol CO2Me

F CN

N

OMe

HAcO

Et OCHPh2

O O

Me F

1: Selectfluor

23

4: R = 1-Naph

L2 = (CH3CN)2

1 / 2

CH3CN

-20 °C

1 / 3

CH2Cl2, -60 °C

1 (116 mol%)

4 (5 mol%)

CH3CN, rt

20 min

Munoz, K. Angew. Chem. Int. Ed. 2001, 40, 1653

99 %; 89 % ee

80 %; 87 % ee

81 % ee

Page 179: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

179

Asymmetric reduction of C=C-bonds

NHAc

OMOM

Ph

H

Ph NHAc

OMOM

P P

Rh(COD)2OTf (1 mol%)

1 (1 mol%)

H2 (10 atm)

PhCH3, rt, 12 h

95 %, 98 %ee 1: R,R-Me-DuPhos

Synthesis of amino-alcohol derivatives

Zhang, X. J. Org. Chem. 1998, 63, 8100.

Page 180: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

180

Chiral monophosphines for the enantioselective hydrogenation of functionalized

olefins

Review: Börner, A. Angew. Chem. Int. Ed. 2001, 40, 1197

High enantioselectivities are reached with BINAP-derived phosphines and

phosphoramidates for asymmetric hydrogenations.

O

OP R R = t-Bu, Et, NMe2, (R)-O-CH(Me)Ph

Page 181: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

181

Asymmetric reduction of C=O bonds

O

Ru H*L

Ru H

OH

N

*L

R

Cl

Ru

Cl

P*

P*

N*

N*

Rapid, catalytic and stereoselective hydrogenation of ketones

Noyori, R. Pure Appl. Chem. 1999, 71, 1493.

difficult easy

chiral Ru-complex

Page 182: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

182

Noyori-catalyst system

P2ligand

N2ligand

P2N2

ligandligand

PAr2

PAr2

NH2

NH2

MeO

OMe

NH2

NH2

NH2Ph

Ph NH2

RuCl2 + +

Ar = C6H5: (R)-BINAP

Ar = 4-Me-C6H4: (R)-TolBINAP

Ar = 3,5-Me2C6H3: (R)-XylBINAP

(R)-DAIPEN

(R,R)-cyclohexanediamine

(R,R)-DPEN

Page 183: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

183

Asymmetric reduction of ketones

Ph

O

R

O

Pent

OH

Ph iPr

OH

iPr

OH OHOH

R

OH

Ph

OH

+ H2

Ru-complex

KOtBu, iPrOH

26 - 30 °C> 97 %, 99 %ee

R = Me, Et, iPr

R = cyclopropyl: 96 %eeRu : ketone = 1 : 500 to 1 : 5000

(1 - 10 atm)

+ H2

Ru-complex

K2CO3, iPrOH

30 °C(80 atm)100 %, 97 %ee

97 %ee 86 %ee 90 %ee 100 %ee 99 %ee

ketone : Ru : K2CO3 = 100 000 : 1 : 10 000

Ru-complex: RuCl2-(S)-XylBINAP-(S)-DAIPEN

Page 184: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

184

Asymmetric transfer hydrogenation

NH2

RuCp*(Cl)

TosN

Ph

O

Ph

OH

1

1 (0.5 mol%)

KOtBu (0.6 mol%)

iPrOH, rt, 12 h 85 %, 96 %ee

Noyori, R. J. Org. Chem. 1999, 64, 2186.

Page 185: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

185

Asymmetric reduction of C=N-bonds

P P tBu Me

O

tBu Me

NHAc

1: R,R-Me-DuPhos

1. NH2OH, NaOAc

MeOH, rt, 8h

2. Ac2O, AcOH, Fe

70 °C, 4 h

3. 1·Ru(COD)BF4 (0.2 mol%)

H2 (200 psi), MeOH), rt, 20 h

Burk, M.J. J. Org. Chem. 1998, 63, 6084.

Page 186: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

186

Catalytic asymmetric reductive amination

Page 187: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

187

Asymmetric C-C-bond formation

O

N

SO2

HN c-Hex

MeOH

Cl

Cl

N PPh2

t-Bu O

PPh2

NH

O

O

O

P N

Ph

Ph

N

Me

O

Zhang (3 mol %)

up to 98 % ee

Gennari (3 mol %)Tomioka (4.5 equiv.)

Et2Zn

-20 °C, Cu(OTf)2

1,4-Addition using Zn-reagents

Zhang, X. Angew. Chem. 1999, 111, 3720.

Tomioka, K. Tetrahedron 1999, 55, 3831.

Gennari, C. Angew. Chem. Int. Ed. Engl. 2000, 39, 916.

Feringa, B.L. Angew. Chem. Int. Ed. Engl. 1997, 36, 916.

Review: Feringa, B. L. Acc. Chem. Res. 2000, 33, 346 and Krause, N. Synthesis, 2001, 171

Feringa

Page 188: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

188

Catalytic enantioselective synthesis of prostaglandin E1 methyl ester

ZnCO2Me

O

OP N

Ph

Ph

Et2Zn

2

: Cat*1

(6 mol%)

CuBr.Me2S (1 mol%)

diglyme

-40 °C, 18 h

Cat*1: 2 mol%

O O

O

PhPh

H

O SiMe2Ph

Ph BrPh

Et

O O

PhPh

Pent

HHO

H

CO2Me

HO

PhMe2Si

O

HO Pent

CO2MeH

H

HO

Feringa, B. L. J. Am. Chem. Soc. 2001, 123, 5841

Feringa, B. L. Org. Lett. 2001, 3, 1169

+

toluene, -40 °C, 18 h

1) Cu(OTf)2 (3 mol%)

2) Zn(BH4)2, ether, -30 °C

ca. 40 %; 94 % ee

54 %; 77 % ee

Page 189: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

189

Asymmetric conjugated additions

Page 190: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

190

Hayashi-Michael-addition

Page 191: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

191

Rh-catalyzed asymmetric conjugate addition of organoboronic acids to

nitroalkenes

NO2 PhB(OH)2

Ph

NO2

CO2Me

Ph

O

Ph

NH

O

Hayashi, T. J. Am. Chem. Soc., 2000, 122, 10716

Rh(acac)(C2H4)2 (3 mol %)

dioxane / H2O (10 : 1)

100 °C, 3 h79 %, 98 % ee

1) NaOMe, MeOH

2) H2SO4 conc.

-40 °C

PhCH2NMe3+ OH

-

dioxane / H2O

2) H2; Ni/Ra

1)

98 %ee

76 %; 90 %ee

Page 192: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

192

Zinc(II) mediated enantioselective synthesis of propargylic alcohols

Page 193: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

193

Lanthanide trifluoromethanesulfonate - catalyzed asymmetric aldol

reaction

in water

Ph H

O

Ph

OSiMe3

N

O O

O O

NH

Ph Ph

OOH

Kobayashi, S. Org. Lett. 2001, 3, 165

cat.

H2O - EtOH (1 : 9)

Ce(OTf)3 cat.

86 %de; 82 %ee

Page 194: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

194

Asymmetric aldol reaction via a dinuclear zinc catalyst

Page 195: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

195

Catalytic synthesis of 1,2-diols mediated by (L)–proline

Page 196: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

196

Enantioselective cross-aldol reaction of aldehydes

Page 197: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

197

Catalytic asymmetric Mannich reaction mediated by (L)-proline

Page 198: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

198

Organocatalytic Diels - Alder reaction

Page 199: A lecture from Prof. Paul Knochel, Ludwig-Maximilians ...

199

Organocatalytic alkylation of methyl 4-oxobutenoate