Top Banner
A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg , Sami K. Solanki, Michiel van Noort Max Planck Institute for Solar System Research Katlenburg-Lindau * , Germany (*) February 2014: G¨ ottingen Hinode 7, 12-Nov-2013 1 / 20
28

A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Feb 12, 2019

Download

Documents

vuongbao
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

A Granular Light Bridge Observed by Hinode:

Evidence for Naked Granules

Andreas Lagg, Sami K. Solanki, Michiel van Noort

Max Planck Institute for Solar System ResearchKatlenburg-Lindau∗, Germany(*) February 2014: Gottingen

Hinode 7, 12-Nov-2013

1 / 20

Page 2: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Introduction Light Bridges

Light Bridges

Shimizu (2011)

separate umbrae in two magnetically

similar polarity regions

source: convective motions

weak field plasma penetrates from

below photosphere

cusp/canopy configuration at surface

types: FLBs, SLBs, GLBs

→ different origins?

Light Bridge References

Sobotka & Puschmann (2009); Sobotka et al. (1993); Lites et al. (1991); Sobotkaet al. (1993); Rimmele (2008); Rezaei et al. (2012); Vazquez (1973); Lites et al.(1991); Sobotka et al. (1994); Leka (1997); Rouppe van der Voort et al. (2010);Louis et al. (2009); Bharti et al. (2013); Shimizu et al. (2009); Ruedi et al. (1995);Joshi (2013)

0.2

0.4

0.6

0.8

1.0

1.2

GREGOR BBI AR11768 (trailing) 08:15 UT, frame #000

−0 10 20 30 40 50x [arcsec]

0

10

20

30

40

50

y [a

rcse

c]

GREGOR BBI 486 nm, 14-Jun-20133 / 20

Page 3: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Observations Hinode SP: 2006-Nov-30

AR10926, G-band, temporal evolution

500

1000

1500

20002006−11−30T07:40:30.525

−160 −140 −120 −100 −80x [arcsec]

−140

−120

−100

y [a

rcse

c]

4 / 20

Page 4: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Observations Hinode SP: 2006-Nov-30

AR10926,SOT/SP scan

−210 −200 −190 −180 −170

x [arcsec]

−200

−190

−180

−170

−160

−150

y[arcsec]

DC

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

I/I C

AR10926

several granular light bridges:

Nov 26 – Dec 4 2006

µ = cosΘ = 0.96

SP scan (normal mode) on

Nov-30 2006, 2300 UT

Inversions van Noort (2012)

POSTER: S1 - P - 27

spatial coupling using PSF

−→ acts as deconvolution

3 nodes in T, B, γ, φ, vLOS, vmicro

6 / 20

Page 5: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Method 2D-coupled Inversion

AR10926, intensity

−210 −200 −190 −180 −170

x [arcsec]

−200

−190

−180

−170

−160

−150

y[arcsec]

DC

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

I/I C

−210 −200 −190 −180 −170

x [arcsec]

−200

−190

−180

−170

−160

−150

y[arcsec]

DC

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

I/I C

8 / 20

Page 6: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Method 2D-coupled Inversion

AR10926, selected regions

−210 −200 −190 −180 −170

x [arcsec]

−200

−190

−180

−170

−160

−150

y[arcsec]

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

DC

−196 −195 −194

−167

−166

−165

−217 −216 −215

−187

−186

−185

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

I/I C

Broad light bridge

temporal evolution indicates

convective motions

brightness similar to QS

−→ granule

10 / 20

Page 7: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Method 2D-coupled Inversion

AR10926, selected regions

−210 −200 −190 −180 −170

x [arcsec]

−200

−190

−180

−170

−160

−150

y[arcsec]

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

DC

−196 −195 −194

−167

−166

−165

−217 −216 −215

−187

−186

−185

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

I/I C

Broad light bridge

temporal evolution indicates

convective motions

brightness similar to QS

−→ granule

QS Granule

. . . not really “quiet” (too close to spot).

BUT: properties very similar to QS

granule

−→ selected for comparison

10 / 20

Page 8: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Comparison: Granule in LB vs. QS

Comparison: LB Granule vs. QS Granule

−210 −200 −190 −180 −170

x [arcsec]

−200

−190

−180

−170

−160

−150

y[arcsec]

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

DC

−196 −195 −194

−167

−166

−165

−217 −216 −215

−187

−186

−185

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

I/I C

LB granule

33

34

35

logτ=-2.0

5000 6000

T [K]−3 0 4 8

vLOS [km s−1]

0 1000 2000

B [G]30 90 150

γ [◦] (B>70G)

33

34

35

logτ=-0.8

4 5 6

33

34

35

logτ=0.0

4 5 6 4 5 6 4 5 6

x+200 [arcsec]

y+200[arcsec]

QS granule

13

14

15

logτ=-2.0

5000 6000

T [K]−3 0 4 8

vLOS [km s−1]

0 1000 2000

B [G]30 90 150

γ [◦] (B>70G)

13

14

15

logτ=-0.8

−17 −16 −15

13

14

15

logτ=0.0

−17 −16 −15 −17 −16 −15 −17 −16 −15

x+200 [arcsec]

y+200[arcsec]

Atmospheric parameters

Temp., LOS-velocity, magn. field

strength & direction

at three height nodes

11 / 20

Page 9: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Comparison: Granule in LB vs. QS

Comparison LB / QS granule log τ = 0.0

Temp. vLOS B-field B-direction

4 5 6

33

34

35

logτ=0.0

5000 6000

4 5 6

−3 0 4 8

4 5 6

0 1000 2000

4 5 6

30 90 150

x+200 [arcsec]

y+200[arcsec]

−17 −16 −15

13

14

15

logτ=0.0

5000 6000

−17 −16 −15

−3 0 4 8

−17 −16 −15

0 1000 2000

−17 −16 −15

30 90 150

x+200 [arcsec]

y+200[arcsec]

LB

GQ

SG

12 / 20

Page 10: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Comparison: Granule in LB vs. QS

Comparison LB / QS granule log τ = − 0.8

Temp. vLOS B-field B-direction

4 5 6

33

34

35

logτ=-0.8

5000 6000

4 5 6

−3 0 4 8

4 5 6

0 1000 2000

4 5 6

30 90 150

x+200 [arcsec]

y+200[arcsec]

−17 −16 −15

13

14

15

logτ=-0.8

5000 6000

−17 −16 −15

−3 0 4 8

−17 −16 −15

0 1000 2000

−17 −16 −15

30 90 150

x+200 [arcsec]

y+200[arcsec]

LB

GQ

SG

12 / 20

Page 11: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Comparison: Granule in LB vs. QS

Comparison LB / QS granule log τ = − 2.0

Temp. vLOS B-field B-direction

4 5 6

33

34

35

logτ=-2.0

5000 6000

4 5 6

−3 0 4 8

4 5 6

0 1000 2000

4 5 6

30 90 150

x+200 [arcsec]

y+200[arcsec]

−17 −16 −15

13

14

15

logτ=-2.0

5000 6000

−17 −16 −15

−3 0 4 8

−17 −16 −15

0 1000 2000

−17 −16 −15

30 90 150

x+200 [arcsec]

y+200[arcsec]

LB

GQ

SG

12 / 20

Page 12: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Comparison: Granule in LB vs. QS

AR10926, selected cuts

−210 −200 −190 −180 −170

x [arcsec]

−200

−190

−180

−170

−160

−150

y[arcsec]

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd

DC

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

I/I C

Cut through LB

−2

−1

0

500G

500G

5000

6000

T[K

]

−2

−1

0

500G

500G -300

0

300

T-T

QS[K

]

−2

−1

0

500G

500G

-3

0

3

6

9

vLO

S[km

s−1]

−2

−1

0

500G

500G

0

1000

2000

B[G

]

−1.0 −0.5 0.0 0.5 1.0

cut position [arcsec]

−2

−1

0

500G

500G

30

90

150

γ[◦]

(B>

70G

)

Cut through QSG

−2

−1

0

5000

6000

T[K

]

−2

−1

0-300

0

300

T-T

QS[K

]

−2

−1

0 -3

0

3

6

9

vLO

S[km

s−1]

−2

−1

0 0

1000

2000

B[G

]

−1.0 −0.5 0.0 0.5 1.0

cut position [arcsec]

−2

−1

0

30

90

150

γ[◦]

(B>

70G

)

13 / 20

Page 13: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Vertical Cuts

Cut through LB / QS granule LOS-velocity

−1.0 −0.5 0.0 0.5 1.0

cut position [arcsec]

−2

−1

0

logτ

500G

500G

-3

0

3

6

9

vLO

S[km

s−1]

−1.0 −0.5 0.0 0.5 1.0

cut position [arcsec]

−2

−1

0

logτ

-3

0

3

6

9

vLO

S[km

s−1]

LB

GQ

SG

14 / 20

Page 14: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Vertical Cuts

Cut through LB / QS granule magnetic field

−1.0 −0.5 0.0 0.5 1.0

cut position [arcsec]

−2

−1

0

logτ

500G

500G

0

1000

2000

B[G

]

−1.0 −0.5 0.0 0.5 1.0

cut position [arcsec]

−2

−1

0

logτ

0

1000

2000

B[G

]

LB

GQ

SG

14 / 20

Page 15: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Vertical Cuts

Cut through LB / QS granule mag. field inclination

−1.0 −0.5 0.0 0.5 1.0

cut position [arcsec]

−2

−1

0

logτ

500G

500G

30

90

150

γ[◦]

(B>

70G

)

−1.0 −0.5 0.0 0.5 1.0

cut position [arcsec]

−2

−1

0

logτ

30

90

150

γ[◦]

(B>

70G

)

LB

GQ

SG

14 / 20

Page 16: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Vertical Cuts

Comparison: LB Granule vs. QS Granule

Similarities

central upflows (≈2 km s−1) of hot

material

surrounded by cooler downflows

−→ typical pattern for convection

decreasing velocities with height

field free / weak fields in deep layers

field concentrations at boundaries

15 / 20

Page 17: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Results Vertical Cuts

Comparison: LB Granule vs. QS Granule

Similarities

central upflows (≈2 km s−1) of hot

material

surrounded by cooler downflows

−→ typical pattern for convection

decreasing velocities with height

field free / weak fields in deep layers

field concentrations at boundaries

Differences

LB: faster downflows (10 vs. 4 km s−1)

LB: narrowing upflows with height

LB: enhanced temp. at downflows in

middle layers, lower in deepest layer

→ small radial gradient at τ = 1

LB: opposite polarity field at location of

downflows

LB: cusp-like field in highest layer

QS: canopy field in highest layer

15 / 20

Page 18: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook

Downflows: reconnection sites?

High speed downflows (10 km s−1)

Result of Reconnection? (Louis et al. 2009)

+ hints of polarity reversal

+ above downflows: T enhanced

17 / 20

Page 19: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook

Downflows: reconnection sites?

Configuration

U m b r a U m b r a

High speed downflows (10 km s−1)

Result of Reconnection? (Louis et al. 2009)

+ hints of polarity reversal

+ above downflows: T enhanced

17 / 20

Page 20: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook

Downflows: reconnection sites?

Configuration

U m b r a U m b r a

High speed downflows (10 km s−1)

Result of Reconnection? (Louis et al. 2009)

+ hints of polarity reversal

+ above downflows: T enhanced

– height: 200–300 km

– strong downflows by gravity &

reduced density

→ drag field lines and create opposite

polarity field

→ reconnection / current sheets (with

heating) result of downflows

17 / 20

Page 21: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook Exposed (“naked”) granules

“Naked” granules Summary & Outlook

Configuration

U m b r a U m b r a

Exposed granules (Wilson depression)

LBG and QSG similar in deep layer

−→ points to common origin

−→ anchored in deep layers

different from FLBs or umbral dots

(“surface” convection)

probe sub-surface spot structure

Outlook

→ investigate granular light bridges

under different viewing angles

possible to access granular interior

18 / 20

Page 22: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook Takayama - Furukawa

Furukawa Festival (town next to Takayama,every April)

many similarities

interior: turbulent

motions

boundary:

downflow

streamlines

cusp shape

“granule” exposed

to cold environment

“naked”: not quite

(only linecloths)

19 / 20

Page 23: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook Takayama - Furukawa

Furukawa Festival (town next to Takayama,every April)

many similarities

interior: turbulent

motions

boundary:

downflow

streamlines

cusp shape

“granule” exposed

to cold environment

“naked”: not quite

(only linecloths)

19 / 20

Page 24: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook Takayama - Furukawa

Furukawa Festival (town next to Takayama,every April)

many similarities

interior: turbulent

motions

boundary:

downflow

streamlines

cusp shape

“granule” exposed

to cold environment

“naked”: not quite

(only linecloths)

19 / 20

Page 25: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook Takayama - Furukawa

Furukawa Festival (town next to Takayama,every April)

many similarities

interior: turbulent

motions

boundary:

downflow

streamlines

cusp shape

“granule” exposed

to cold environment

“naked”: not quite

(only linecloths)

19 / 20

Page 26: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook Takayama - Furukawa

Furukawa Festival (town next to Takayama,every April)

many similarities

interior: turbulent

motions

boundary:

downflow

streamlines

cusp shape

“granule” exposed

to cold environment

“naked”: not quite

(only linecloths)

19 / 20

Page 27: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook Takayama - Furukawa

Furukawa Festival (town next to Takayama,every April)

many similarities

interior: turbulent

motions

boundary:

downflow

streamlines

cusp shape

“granule” exposed

to cold environment

“naked”: not quite

(only linecloths)

19 / 20

Page 28: A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules · A Granular Light Bridge Observed by Hinode: Evidence for Naked Granules Andreas Lagg, Sami K. Solanki, Michiel

Summary & Outlook Takayama - Furukawa

Bilbiography

Bharti, L., Hirzberger, J., & Solanki, S. K. 2013, A&A, 552, L1

Joshi, J. 2013, PhD thesis, Technische Universitat Carolo-Wilhelmina zuBraunschweig

Leka, K. D. 1997, ApJ, 484, 900

Lites, B. W., Bida, T. A., Johannesson, A., & Scharmer, G. B. 1991, ApJ,373, 683

Lites, B. W., Scharmer, G. B., Berger, T. E., & Title, A. M. 2004, Sol.Phys., 221, 65

Louis, R. E., Bellot Rubio, L. R., Mathew, S. K., & Venkatakrishnan, P.2009, ApJL, 704, L29

Rezaei, R., Bello Gonzalez, N., & Schlichenmaier, R. 2012, A&A, 537,A19

Rimmele, T. 2008, ApJ, 672, 684

Rouppe van der Voort, L., Bellot Rubio, L. R., & Ortiz, A. 2010, ApJL,718, L78

Ruedi, I., Solanki, S. K., & Livingston, W. C. 1995, A&A, 293, 252

Shimizu, T. 2011, ApJ, 738, 83

Shimizu, T., Katsukawa, Y., Kubo, M., et al. 2009, ApJL, 696, L66

Sobotka, M., Bonet, J. A., & Vazquez, M. 1993, ApJ, 415, 832

Sobotka, M., Bonet, J. A., & Vazquez, M. 1994, ApJ, 426, 404

Sobotka, M. & Puschmann, K. G. 2009, A&A, 504, 575

van Noort, M. 2012, A&A, 548, A5

Vazquez, M. 1973, Sol. Phys., 31, 377

20 / 20