Top Banner
84

A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Dec 24, 2015

Download

Documents

Ashley Kennedy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.
Page 2: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

A Frequency Analysis of Light TransportA Frequency Analysis of Light Transport

F. Durand, MIT CSAIL

N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA

E. Chan, MIT CSAIL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA

Page 3: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Illumination effectsIllumination effects

• Blurry reflections:

From [Ramamoorthi and Hanrahan 2001]

Page 4: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Illumination effectsIllumination effects

• Shadow boundaries:

© U. Assarsson 2005.

Point light source Area light source

Page 5: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Illumination effectsIllumination effects

• Indirect lighting is usually blurry:

Complete lighting

Page 6: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Illumination effectsIllumination effects

• Indirect lighting is usually blurry:

Indirect lighting onlyDirect lighting only

Page 7: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Frequency aspects of light transportFrequency aspects of light transport

• Blurriness = frequency content

– Sharp variations: high frequency

– Smooth variations: low frequency

• All effects are expressed as frequency content:

– Diffuse shading: low frequency

– Shadows: introduce high frequencies

– Indirect lighting: tends to be low frequency

Page 8: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Problem statementProblem statement

• How does light interaction in a scene explain the frequency content?

• Theoretical framework:

– Understand the frequency spectrum of the radiance function

– From equations of light transport

Page 9: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Unified framework:Unified framework:

• Spatial frequency (e.g. shadows, textures)

• Angular frequency (e.g. blurry highlight)

Page 10: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Disclaimer: not Fourier opticsDisclaimer: not Fourier optics

• We do not consider wave optics, interference, diffraction

• Only geometrical optics

Fro

m [

Hec

ht]

Page 11: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Case studies:

– Diffuse soft shadows

– Adaptive shading sampling

• Conclusions and future directions

Page 12: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Case studies:

– Diffuse soft shadows

– Adaptive shading sampling

• Conclusions and future directions

Page 13: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Previous workPrevious work

• Vast body of literature:– Light field sampling

– Perceptually-based rendering

– Wavelets for Computer Graphics

– Irradiance caching

– Photon mapping

– …

• We focus on frequency analysis in graphics:– Light field sampling

– Reflection as a convolution

Page 14: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Light field samplingLight field sampling

[Chai et al. 00, Isaksen et al. 00, Stewart et al. 03]

– Light field spectrum as a function of object distance

– No BRDF, occlusion ignored

From [Chai et al. 2000]

Page 15: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Signal processing for reflectionSignal processing for reflection

[Ramamoorthi & Hanrahan 01, Basri & Jacobs 03]

• Reflection on a curved surface is a convolution

• Direction only

From [Ramamoorthi and Hanrahan 2001]

Page 16: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Case studies:

– Diffuse soft shadows

– Adaptive shading sampling

• Conclusions and future directions

Page 17: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Our approachOur approach

• Light sources are input signal

• Interactions are filters/transforms

– Transport

– Visibility

– BRDF

– Etc.

Page 18: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Our approachOur approach

• Light sources are input signal

• Interactions are filters/transforms

– Transport

– Visibility

– BRDF

– Etc.

Light source signal

Page 19: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Our approachOur approach

• Light sources are input signal

• Interactions are filters/transforms

– Transport

– Visibility

– BRDF

– Etc.

Light source signal

Transport

Page 20: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Our approachOur approach

• Light sources are input signal

• Interactions are filters/transforms

– Transport

– Visibility

– BRDF

– Etc.

Light source signal

Signal 1

Transport

Page 21: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Our approachOur approach

• Light sources are input signal

• Interactions are filters/transforms

– Transport

– Visibility

– BRDF

– Etc.

Light source signal

Transport

Occlusion

Signal 2

Page 22: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Our approachOur approach

• Light sources are input signal

• Interactions are filters/transforms

– Transport

– Visibility

– BRDF

– Etc.

Light source signal

Transport

Occlusion

Signal 3

Transport

Page 23: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Our approachOur approach

• Light sources are input signal

• Interactions are filters/transforms

– Transport

– Visibility

– BRDF

– Etc.

Light source signal

Transport

Occlusion

Signal 4

Transport

BRDF

Page 24: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light fieldLocal light field

• 4D light field, around a central ray

Central ray

Page 25: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light fieldLocal light field

• 4D light field, around a central ray

• We study its spectrum during transport

Page 26: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light fieldLocal light field

• 4D light field, around a central ray

• We study its spectrum during transport

Page 27: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light fieldLocal light field

• 4D light field, around a central ray

• We study its spectrum during transport

Page 28: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light fieldLocal light field

• We give explanations in 2D

– Local light field is therefore 2D

• See paper for extension to 3D

Page 29: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light field parameterizationLocal light field parameterization

• Space and angle

space

angle

Central ray

Page 30: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light field representationLocal light field representation

• Density plot:

Area light source

Space

Ang

le

Page 31: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light fieldFourier spectrumLocal light fieldFourier spectrum

• We are interested in the Fourier spectrum of the local light field

• Also represented as a density plot

Page 32: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Local light field Fourier spectrumLocal light field Fourier spectrum

Spatial frequency

Ang

ular

freq

uenc

ySpectrum of an area light source:

Page 33: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Fourier analysis 101Fourier analysis 101

• Spectrum corresponds to blurriness:

– Sharpest feature has size 1/Fmax

• Convolution theorem:– Multiplication convolution

• Classical spectra: – Box sinc– Dirac constant

Page 34: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Case studies:

– Diffuse soft shadows

– Adaptive shading sampling

• Conclusions and future directions

Page 35: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Transport

• Occlusion

• BRDF

• Curvature

• Case studies

• Conclusions and future directions

Page 36: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Example sceneExample scene

Blockers

Light source

Receiver

Page 37: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Transport

• Occlusion

• BRDF

• Curvature

• Case studies

• Conclusions and future directions

Page 38: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Transport in free spaceTransport in free space

Shear

Space Space

Ang

le

Ang

le

Page 39: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Transport in free spaceTransport in free space

Shear

Space Space

Ang

le

Ang

leShear

Spatial frequency

Ang

ular

freq

.

Spatial frequency

Ang

ular

freq

.

Page 40: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.
Page 41: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Transport ShearTransport Shear

• This is consistent with light field spectra[Chai et al. 00, Isaksen et al. 00]

From [Chai et al. 2000]

Page 42: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Transport

• Occlusion

• BRDF

• Curvature

• Case studies

• Conclusions and future directions

Page 43: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Occlusion: multiplicationOcclusion: multiplication

• Occlusion is a multiplication in ray space

– Convolution in Fourier space

• Creates new spatial frequency content

– Related to the spectrum of the blockers

Page 44: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.
Page 45: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Transport

• Occlusion

• BRDF

• Curvature

• Case studies

• Conclusions and future directions

Page 46: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.
Page 47: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Transport

• Occlusion

• BRDF

• Curvature

• Case studies

• Conclusions and future directions

Page 48: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

BRDF integrationBRDF integration

• Outgoing light:

– Integration of incoming light times BRDF

Outgoing lightIncoming light

BRDF

Page 49: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

BRDF integrationBRDF integration

• Ray-space: convolution

– Outgoing light: convolution of incoming light and BRDF

– For rotationally-invariant BRDFs

• Fourier domain: multiplication

– Outgoing spectrum: multiplication of incoming spectrum and BRDF spectrum

Page 50: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

BRDF in Fourier: multiplicationBRDF in Fourier: multiplication

=

• BRDF is bandwidth-limiting in angle

Page 51: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Example: diffuse BRDFExample: diffuse BRDF

• Convolve by constant:

– multiply by Dirac

– Only spatial frequencies remain

=

Page 52: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Transport

• Occlusion

• BRDF

• Curvature

• Case studies

• Conclusions and future directions

Page 53: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Curved receiverCurved receiver

• Reduce to the case of a planar surface:

– “Unroll” the curved receiver

• Equivalent to changing angular content:

– Linear effect on angular dimension

– No effect on spatial dimension

• Shear in the angular dimension

Page 54: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.
Page 55: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Transforms: summaryTransforms: summary

Radiance/Fourier Effect

Transport Shear

Occlusion Multiplication/Convolution Adds spatial frequencies

BRDF Convolution/Multiplication Removes angular frequencies

Curvature Shear

Page 56: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

More effects in paperMore effects in paper

• Cosine term (multiplication/convolution)

• Fresnel term (multiplication/convolution)

• Texture mapping (multiplication/convolution)

• Central incidence angle (scaling)

• Separable BRDF

• Spatially varying BRDF (semi-convolution)

• …and extension to 3D

Page 57: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Case studies:

– Diffuse soft shadows

– Adaptive shading sampling

• Conclusions and future directions

Page 58: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Case studies:

– Diffuse soft shadows

– Adaptive shading sampling

• Conclusions and future directions

Page 59: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Diffuse soft shadowsDiffuse soft shadows

• Decreasing blockers size:

– First high-frequencies increase

– Then only low frequency

– Non-monotonic behavior

Page 60: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Diffuse soft shadows (2) Diffuse soft shadows (2)

• Occlusion : convolution in Fourier

– creates high frequencies

– Blockers scaled down spectrum scaled up

Fourier space

v

(an

gle

)

x (space)

Fourier space

v

(an

gle

)x (space)

blocker spectrum

Page 61: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Diffuse soft shadows (3)Diffuse soft shadows (3)

• Transport after occlusion:

– Spatial frequencies moved to angular dimension

• Diffuse reflector:

– Angular frequencies are cancelled

Page 62: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Diffuse soft shadows (3)Diffuse soft shadows (3)

• Transport after occlusion:

– Spatial frequencies moved to angular dimension

• Diffuse reflector:

– Angular frequencies are cancelled

Page 63: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Case studies:

– Diffuse soft shadows

– Adaptive shading sampling

• Conclusions and future directions

Page 64: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Adaptive shading samplingAdaptive shading sampling

• Monte-Carlo ray tracing

• Blurry regions need fewer shading samples

Page 65: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Adaptive shading samplingAdaptive shading sampling

• Per-pixel prediction of max. frequency (bandwidth)

– Based on curvature, BRDF, distance to occluder, etc.

– No spectrum computed, just estimate max frequency

Per-pixel bandwidth criterion

Page 66: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Adaptive shading samplingAdaptive shading sampling

• Per-pixel prediction of max. frequency (bandwidth)

– Based on curvature, BRDF, distance to occluder, etc.

– No spectrum computed, just estimate max frequency

Shading samples

Page 67: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Adaptive samplingAdaptive sampling

20,000 samplesAdaptive

Page 68: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Uniform samplingUniform sampling

20,000 samples

Page 69: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

OverviewOverview

• Previous work

• Our approach:

– Local light field

– Transformations on local light field

• Case studies:

– Diffuse soft shadows

– Adaptive shading sampling

• Conclusions and future directions

Page 70: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

ConclusionsConclusions

• Unified framework:

– For frequency analysis of radiance

– In both space and angle

– Simple mathematical operators

– Extends previous analyses

• Explains interesting lighting effects:

– Soft shadows, caustics

• Proof-of-concept:

– Adaptive sampling

Page 71: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Future workFuture work

• More experimental validation on synthetic scenes

• Extend the theory:

– Bump mapping, microfacet BRDFs, sub-surface scattering…

– Participating media

• Applications to rendering:

– Photon mapping

– Spatial sampling for PRT

– Revisit traditional techniques

• Applications to vision and shape from shading

Page 72: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

AcknowledgmentsAcknowledgments

• Jaakko Lehtinen

• Reviewers of the MIT and ARTIS graphics groups

• Siggraph reviewers

• This work was supported in part by:– NSF CAREER award 0447561 Transient Signal Processing for Realistic

Imagery

– NSF CISE Research Infrastructure Award (EIA9802220)

– ASEE National Defense Science and Engineering Graduate fellowship

– INRIA Équipe associée

– Realreflect EU IST project

– MIT-France

Page 73: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.
Page 74: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Solar ovenSolar oven

• Curved surface

• In: parallel light rays

• Out: focal point

Page 75: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Other bases?Other bases?

• We’re not using Fourier as a function basis

– Don’t recommend it, actually

– Just used for analysis, understanding, predictions

• Results are useable with any other base:

– Wavelets, Spherical Harmonics, point sampling, etc

– Max. frequency translates in sampling rate

• Analysis relies on Fourier properties:

– Especially the convolution theorem

Page 76: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Why Local Light Field?Why Local Light Field?

• Linearization:

– tan

– Curvature

• Local information is what we need:

– Local frequency content, for local sampling

– Local properties of the scene (occluders, curv.)

Page 77: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Extension to 3DExtension to 3D

• It works. See paper:

Page 78: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Reflection on a surface: Full summaryReflection on a surface: Full summary

• Angle of incidence

• Curvature

• Cosine/Fresnel term

• Mirror re-parameterization

• BRDF

• Curvature

Page 79: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Reflection on a surface: Full summaryReflection on a surface: Full summary

• Angle of incidence: scaling

• Curvature: shear in angle

• Cosine/Fresnel term: multiplication/convolution

• Mirror re-parameterization

• BRDF: convolution/multiplication

• Curvature: shear in angle

Page 80: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Application: 3D sceneApplication: 3D scene

Page 81: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Application: 3D sceneApplication: 3D scene

Page 82: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Application: 3D sceneApplication: 3D scene

Page 83: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Application: 3D sceneApplication: 3D scene

Page 84: A Frequency Analysis of Light Transport F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG.

Application: 3D sceneApplication: 3D scene