Top Banner
A Four Rod Compact Crab Cavity for LHC Dr G Burt Lancaster University / Cockcroft Institute
21

A Four Rod Compact Crab Cavity for LHC

Feb 24, 2016

Download

Documents

hestia

A Four Rod Compact Crab Cavity for LHC. Dr G Burt Lancaster University / Cockcroft Institute. Cavity Design Team. G Burt (CI-Lancs) B Hall (CI-Lancs) C. Lingwood (CI-Lancs) D. Doherty (CI-Lancs) A. Dexter (CI-Lancs) Clive Hill (STFC) P McIntosh (STFC) H Wang (JLab) B Rimmer (JLab) - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Four Rod Compact Crab Cavity for LHC

A Four Rod Compact Crab Cavity for LHC

Dr G BurtLancaster University / Cockcroft

Institute

Page 2: A Four Rod Compact Crab Cavity for LHC

Cavity Design Team• G Burt (CI-Lancs)• B Hall (CI-Lancs)• C. Lingwood (CI-Lancs)• D. Doherty (CI-Lancs)• A. Dexter (CI-Lancs)

• Clive Hill (STFC)• P McIntosh (STFC)

• H Wang (JLab)• B Rimmer (JLab)• L Turlington (Jlab)

+ CERN (Jochim Tuckmantel, Erk Jensen and Ed Ciapala) on cavity integration

Page 3: A Four Rod Compact Crab Cavity for LHC

Initial Studies for a Compact CC• CEBAF separator cavity is:

– 499 MHz,– 2-cell, 8 rods – ~λ long- 0.3 m diameter,– can produce 600kV deflecting

voltage (on crest) with 1.5kW input RF power.

• Qcu is only ~5000 (structure wise), the stainless steel cylinder only takes less than 5% of total loss.

• The maximum surface magnetic field at the rod ends is ~8.2 mT.

• Water cooling needed on the rods.• If Nb used for this type of cavity,

the V is KEKB CC.• Microphonics and fabrication

issues to be resolved.

Page 4: A Four Rod Compact Crab Cavity for LHC

4-Rod Design (2009)

• At 400 MHz, and V = 3 MV: – single cell (length = 30 cm)– R/Q = 700 Ohms– Emax = 90 MV/m– Bmax = 120 mT B fields E fields

• Modification of existing CEBAF 2-rod separator cavity (collaboration with H Wang at JLab): – Has a 10 cm diameter beam-pipe,– Has 40 cm diameter for both

frequencies.

Page 5: A Four Rod Compact Crab Cavity for LHC

Bmax vs. Elliptical Base• Further decreases in surface

magnetic field can be made by using an elliptical base.

• Oval breadth allows increase in rod base size without disproportionate increasing interaction with outer can

• Small breadth leads to field enhancement down the side of the rods

40 60 80 100 120 140 160 18070

80

90

100

110

120

B ma

x@Vt

=3MV

, [mT]

Rod base Breadth [mm]

Page 6: A Four Rod Compact Crab Cavity for LHC

Rod cross-section shape

• If the rod is shaped around the beam-pipe a lower peak B field can be obtained as the current is spread over a larger area.

• The peak magnetic field also moves to the side of the rods away from the beampipe

Page 7: A Four Rod Compact Crab Cavity for LHC

Final(ish) Cavity Shape

Emax @3MV 39.2 MV/mBmax @3MV 59.1 mTTransverse R/Q 953 Ohms

The cavity design includes a 280mm / 230 mm diameter squashing to increase coupling to the LOM when a coupler is included.

Cavity fits in all LHC scenarios (84 mm aperture) and meets design gradient.

RT/Q=(V(a)2/wU)*(c/wa)2

Page 8: A Four Rod Compact Crab Cavity for LHC

Final(ish) Cavity Design236 m

m

286 mm

408 mm

Page 9: A Four Rod Compact Crab Cavity for LHC

Variation in Transverse Voltage

00.5

11.5

22.5

33.5

0 10 20 30 40 50 60

Vertical offset (mm)

Tran

sver

se V

olta

ge (M

V)

2.95

3

3.05

3.1

3.15

3.2

0 5 10 15 20 25

Horizontal Offset (mm)

Tran

sver

se V

olta

ge (M

V)

There is some change in transverse voltage when there are horizontal and vertical offsets.

Page 10: A Four Rod Compact Crab Cavity for LHC

Four TEM modes+ + +

+

+

+

- -

-

-

-

-

+

+ +

+

There are two parallel bar TEM modes, only one interacts with the beam and this is our operating mode

There are also two co-axial like TEM modes (potential difference between rods and outer can), only one of these interacts with the beam, this is our wrong or lower order mode (W/LOM)

Page 11: A Four Rod Compact Crab Cavity for LHC

LOM Frequency 374.95 MHzR/Q 121 Ohms

Lower Order mode• For the 4 rod cavity the LOM has an R/Q of 120

(which is low considering the R/Q of the crabbing mode. This is because the fields are concentrated close to the walls.

LOM coupler reduces the frequency of this mode by up to 20 MHz.

+

+

-

-

• This mode has an azimuthal magnetic field flowing around the outer can which is ideal for loop coupling.

Page 12: A Four Rod Compact Crab Cavity for LHC

0.000010.0001

0.0010.01

0.11

10100

1000

0 0.5 1 1.5 2

frequency (GHz)R

/Q (O

hms)

HorizontalVerticalMonopole

Higher Order ModesWe also have some TEM HOMs. As the cavity is compact in the vertical plane most of the TM modes are at higher frequencies, and the TE modes have low shunt impedances.

Monopole 3p/4 resonator

Dipole 3p/4 resonator

Page 13: A Four Rod Compact Crab Cavity for LHC

Racetrack Cross section

• The fields are weaker far from the rods so a squashed can shape enhances coupling.

• A high magnetic field can occur in the gap between the outer can and the rod if the gap is too small.

• A racetrack cross section has been shown to be superior to an elliptical shape as it causes less magnetic field enhancement as the gap can be made constant.

Page 14: A Four Rod Compact Crab Cavity for LHC

Demountable Coaxial coupler• Demountable HOM style coupler based of

the LEP design. • Pull-out for coupler provides additional

access to cavity for cleaning.• External-Q’s down to 67 have been

achieved for 2 couplers, depending on the penetration of the hook into the cavity.

• To ensure symmetric fields the couplers can be placed on opposing sides of the can.

Page 15: A Four Rod Compact Crab Cavity for LHC

Cavity Cleaning• Beam-pipe is large

and can be used as access for cleaning.

HPR nozzle

• Large demountable LOM couplers can also be used for cavity cleaning and/or draining acid.

Page 16: A Four Rod Compact Crab Cavity for LHC

Input coupler• Coupler consists of a cut-off waveguide located on beam

pipe with a waveguide-to-coax transition to minimise heat leak to room temperature.

• This design allows the coupler to avoid the opposing beamline.

• Position of coupler constrained by space available from rounding on beam-pipe to cavity transition, and space for e-beam welding.

Page 17: A Four Rod Compact Crab Cavity for LHC

Multipacting• Some multipacting has been found at low E field. Vt ~ 150 kV

located on the outer can along the flat surface. • Multipacting was also seen at the beam-pipe at 1.5-2.2 MV on

limited simulations, similar to results on elliptical cavities. This needs further investigation. Modifications to the beam-pipe may remove this (See Zenghai’s talk last year).

Page 18: A Four Rod Compact Crab Cavity for LHC

Microphonics studies

• FEM studies have begun looking at thermal issues and microphonics.

• The first two modes in the rods are at 1.45 kHz and 2.05 kHz.

• The outer can fundamental vibration mode is at 674 Hz.

Page 19: A Four Rod Compact Crab Cavity for LHC

Cavity Prototype• UK have some funding for a cavity

prototype in Niobium.• UK and Jlab have significant

expertise in cavity measurements and verification.

• Beadpull and wire tests could be performed, as well as coupler verification on a preliminary copper cavity.

• Vertical cryostat tests will be critical in verifying the cavity concept.

• Larry Turlington at Jlab is currently working on the cavity manufacturing methods and dies.

Page 20: A Four Rod Compact Crab Cavity for LHC

Cavity construction (without couplers)

Rods x 4 (pressed or hydroformed)Tips may need to be pressed and welded on to taped tubes

Beam-pipe (rolled)

End caps would be pressed (or machined?)

Shell (rolled)

Some components could possible be machined from solid Nb instead

Page 21: A Four Rod Compact Crab Cavity for LHC

Conclusion• A new cavity shape is proposed for the

LHC.• The crabbing TEM mode allows a very

transversely compact design.• The compact size does not impact of the

cavity fields greatly.• Coupler designs are under investigation.• A prototype is expected to be constructed

in 2011/12.