Top Banner
A Complete Characterization of Unitary Quantum Space Bill Fefferman (QuICS, University of Maryland) Joint with Cedric Lin (QuICS) Based on arXiv:1604.01384 QIP 2017, Seattle, Washington
18

A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Aug 26, 2018

Download

Documents

vanmien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

ACompleteCharacterizationofUnitaryQuantumSpaceBillFefferman (QuICS,UniversityofMaryland)

JointwithCedricLin(QuICS)

BasedonarXiv:1604.01384

QIP2017,Seattle,Washington

Page 2: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

• Ourresults:Givetwonaturalproblemscharacterizethepowerofquantumcomputationwithany boundonthenumberofqubits1. PreciseSuccinctHamiltonianproblem2. Well-conditionedMatrixInversionproblem

• Thesecharacterizationshavemanyapplications• QMA proofsystemsandHamiltoniancomplexity• ThepowerofpreparingPEPS statesvsgroundstatesofLocalHamiltonians• ClassicalLogspace complexity

QIP2017,Seattle,Washington

Ourmotivation:Howpowerfularequantumcomputerswithasmallnumberofqubits?

Page 3: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Quantumspacecomplexity• BQSPACE[k(n)]istheclassofpromiseproblemsL=(Lyes,Lno)thatcanbedecidedbyaboundederrorquantumalgorithmactingonk(n) qubits.• i.e.,Existsuniformlygeneratedfamilyofquantumcircuits{Qx}xϵ{0,1}* eachactingonO(k(|x|)) qubits:• “Ifanswerisyes,thecircuitQx acceptswithhighprobability”

• “Ifanswerisno,thecircuitQx acceptswithlowprobability”

• OurresultsshowtwonaturalcompleteproblemsforBQSPACE[k(n)]• Foranyk(n) sothatlog(n)≤k(n)≤poly(n)• Ourreductionsuseclassicalk(n)spaceandpoly(n)time

• Subtlety:Thisis“unitaryquantumspace”• Nointermediatemeasurements• Notknownif“deferring”intermediatemeasurementscanbedonespaceefficiently

QIP2017,Seattle,Washington

x 2 L

yes

) h0k|Q†x

|1ih1|out

Q

x

|0ki � 2/3

x 2 L

no

) h0k|Q†x

|1ih1|out

Q

x

|0ki 1/3

Page 4: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

|ψ⟩

QuantumMerlin-Arthur• Problemswhosesolutionscanbeverifiedquantumly givenaquantumstateaswitness• QMA(c,s)istheclassofpromiseproblemsL=(Lyes,Lno)sothat:

• QMA=QMA(2/3,1/3)= ⋃c>0QMA(c,c-1/poly)• k-LocalHamiltonianproblemisQMA-complete (whenk≥2)[Kitaev ’00]

• Input:𝐻 = ∑ 𝐻&'&() ,eachterm𝐻& isk-local

• Promiseeither:• Minimumeigenvalue𝜆min(H)>bor𝜆min(H)<a• Whereb-a≥1/poly(n)

• Whichisthecase?• GeneralizationsofQMA:

1. PreciseQMA=⋃c>0QMA(c,c-1/exp)2. k-boundedQMAm(c,s)

• Arthur’sverificationcircuitactsonk qubits• Merlinsendsan m qubitwitness

x 2 Lyes ) 9| i Pr[V (x, | i) = 1] � c

x 2 L

no

) 8| i Pr[V (x, | i) = 1] s

QIP2017,Seattle,Washington

Page 5: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Characterization1:PreciseSuccinctHamiltonianproblem

QIP2017,Seattle,Washington

Page 6: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

ThePreciseSuccinctHamiltonianProblem• Definition:“SuccinctEncoding”

• WesayaclassicalTuringmachineMisaSuccinctEncodingfor2k(n) x2k(n) matrixAif:• Oninput i∈{0,1}k(n),M outputsnon-zeroelementsini-th rowofA• Usingatmostpoly(n) timeandk(n) space

• k(n)-PreciseSuccinctHamiltonian problem• Input:Sizen SuccinctEncodingof2k(n) x2k(n) HermitianPSDmatrixA• Promisedeither:

• Minimumeigenvalue𝜆min(A)>bor𝜆min(A)<a• Whereb-a>2-O(k(n))

• Whichisthecase?• ComparedtotheLocalHamiltonianproblem…

• InputisSuccinctlyEncodedinsteadofLocal• Precisionneededtodeterminethepromiseis1/2kinsteadof1/poly(n)

• OurResult:k(n)-P.SHamiltonian problemiscomplete forBQSPACE[k(n)]QIP2017,Seattle,Washington

Page 7: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Upperbound(1/2):k(n)-P.SHam.∈k(n)-bounded QMAk(n)(c,c-2-k(n))• Recall:k(n)-PreciseSuccinctHamiltonian problem

• GivenSuccinctEncodingof2k(n) x2k(n) HermitianPSDmatrixA,isλmin(A)≤aor λmin(A)≥b whereb-a≥2-O(k(n))?• Merlinsendeigenstatewithminimumeigenvalue

• Arthurrunsphaseestimationwithoneancilla qubitone-iA and

• Measureancilla andacceptiff “0”• Easytoseethatweget“0”outcomewithprobabilitythat’sslightly(2-O(k))higherifλmin(A)<a thanifλmin(A)>b• Butthisisexactlywhat’sneededtoestablishtheclaimedbound!

• Remainingquestion:howdoweimplemente-iA ?• Weneedtoimplementthisoperatorwithprecision2-k,sinceotherwisetheerrorinsimulationoverwhelmsthegap!• Luckily,wecaninvokerecent“preciseHamiltoniansimulation”resultsof[Childset.al’14]

• Implemente-iA towithinprecisionε inspacethatscaleswithlog(1/ε)andtimepolylog(1/ε)• SeealsoGuang Hao Low’stalkonThursday!

• Usingtheseresults,canimplementArthur’scircuitinpoly(n) timeandO(k(n)) space

H H|0i

| i e-iAt | i

1 + e�i�t

2|0i+ 1� e�i�t

2|1i

| i| i

QIP2017,Seattle,Washington

Page 8: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Upperbound(2/2):k(n)-bounded QMAk(n)(c,c-2-k(n))⊆BQSPACE[k(n)]1. ErroramplifythePreciseQMA protocol

• Goal:Obtainaprotocolwitherrorinverseexponentialinthewitnesslength,k(n)• WewanttodothiswhilesimultaneouslypreservingverifierspaceO(k(n))• Wedevelopnew“space-preserving”QMA amplificationprocedures

• Bycombiningideasfrom“in-place”amplification[Marriott&Watrous ‘04]withphaseestimation

2. “Guessthewitness”!• Considerthisamplifiedverificationprotocolrunonamaximallymixedstateonk(n)qubits• Nothardtoseethatthisnew“nowitness”protocolhasa“precise”gapofO(2-k(n))!

3. Amplifyagain!• Useour“space-efficient”QMA erroramplificationtechniqueagain!• Obtainboundederror,atacostofexponentialtime• ButthespaceremainsO(k(n)),establishingtheBQSPACE[k(n)]upperbound

• Space-efficientamplificationalsousedtoprovehardness!• k(n)-P.SHamiltonianisBQSPACE[k(n)]-hard• Followsfromfirstusingourspace-boundedamplification,andthenKitaev’s clock-constructiontobuildsparseHamiltonianfromtheamplifiedcircuit

QIP2017,Seattle,Washington

Page 9: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Application: PreciseQMA=PSPACE• Question:HowdoesthepowerofQMAscalewiththecompleteness-soundnessgap?• Recall: PreciseQMA=Uc>0QMA(c,c-2-poly(n))• Bothupperandlowerboundsfollowfromourcompletenessresult,togetherwithBQPSPACE=PSPACE[Watrous’03]• Corollary:“precisek-LocalHamiltonianproblem”isPSPACE-complete• Extension:“PerfectCompletenesscase”: QMA(1,1-2-poly(n))=PSPACE• Corollary:checkingifalocalHamiltonianhaszerogroundstateenergyisPSPACE-complete

QIP2017,Seattle,Washington

Page 10: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Whereisthispowercomingfrom?

• CouldQMA=PreciseQMA=PSPACE?• Unlikelysince QMA=PreciseQMA⇒ PSPACE=PP

• UsingQMA⊆PP

• HowpowerfulisPreciseMA,theclassicalanalogueofPreciseQMA?• Crudeupperbound: PreciseMA⊆NPPP⊆PSPACE• Andbelievedtobestrictlylesspowerful,unlessthe“CountingHiearchy”collapses

• SothepowerofPreciseQMA seemstocomefromboththequantumwitnessandthesmallgap,together!

QIP2017,Seattle,Washington

Page 11: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Understanding“Precise”complexityclasses

• Wecananswerquestionsinthe“precise”regimethatwehavenoideahowtoanswerinthe“bounded-error”regime• Example1:HowpowerfulisQMA(2)?• PreciseQMA=PSPACE(ourresult)• PreciseQMA(2)=NEXP [Blier &Tapp‘07,Pereszlényi‘12]• So,PreciseQMA(2)≠PreciseQMA,unlessNEXP=PSPACE

• Example2:Howpowerfularequantumvsclassicalwitnesses?• PreciseQCMA⊆NPPP• So,PreciseQMA ≠PreciseQCMA,unlessPSPACE⊆NPPP

• Example3:HowpowerfulisQMA withperfectcompleteness?• PreciseQMA=PreciseQMA1=PSPACE

QIP2017,Seattle,Washington

Page 12: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Characterization2:Well-ConditionedMatrixInversion

QIP2017,Seattle,Washington

Page 13: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

TheClassicalComplexityofMatrixInversion

• TheMatrixInversionproblem• Input:nonsingularn xn matrixAwithintegerentries,promisedeither:

• A-1[0,0]>2/3or• A-1[0,0]<1/3

• Whichisthecase?

• ThisproblemcanbesolvedinclassicalO(log2(n)) space[Csanky’76]• NotbelievedtobesolvableclassicallyinO(log(n)) space• Ifitis,thenL=NL (Logspace equivalentofP=NP)

a0,0 a0,1…

an,0 an,1…A=

?... ?

?... ?A-1 =… …

QIP2017,Seattle,Washington

Page 14: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Canwedobetterquantumly?

• “Well-ConditionedMatrixInversion”can besolvedinnon-unitaryBQSPACE[log(n)]![Ta-Shma’12]buildingon[HHL’08]• i.e.,sameproblemwithpoly(n)upperboundontheconditionnumber,κ,sothatκ-1I≺A≺I• Appears toattainquadraticspeedupinspaceusageoverclassicalalgorithms

• Begsthequestion:howimportantisthis“well-conditioned”restriction?• CanwealsosolvethegeneralMatrixInversionprobleminquantumspaceO(log(n))?

QIP2017,Seattle,Washington

Page 15: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

OurresultsonMatrixInversion

• Well-conditionedMatrixInversioniscompleteforunitaryBQSPACE[log(n)]!1. WegiveanewquantumalgorithmforWell-conditionedMatrixInversion

avoidingintermediatemeasurements• Combinestechniquesfrom[HHL’08]withamplitudeamplification

2. WealsoproveBQSPACE[log(n)]hardness– suggestingthat“well-conditioned”constraintisnecessary forquantumLogspace algorithms

QIP2017,Seattle,Washington

Page 16: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Cangeneralizefromlog(n)tok(n)qubits…

• Result3:k(n)-Well-conditionedMatrixInversion iscompleteforBQSPACE[k(n)]• Input:SuccinctEncodingof2k x2k PSDmatrixA

• Upperboundκ<2O(k(n)) ontheconditionnumbersothatκ-1I≺A≺I• Promisedeither|A-1[0,0]|≥2/3 or≤1/3• Decidewhichisthecase?

• Additionally,byvaryingthedimensionandtheboundontheconditionnumber,canuseMatrixInversionproblem tocharacterizethepowerofquantumcomputationwithsimultaneouslyboundedtimeand space!

QIP2017,Seattle,Washington

Page 17: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Openquestions

• CanweuseourPreciseQMA=PSPACE characterizationtogiveaPSPACE upperboundforothercomplexityclasses?• Forexample,QMA(2)?

• HowpowerfulisPreciseQIP?• Naturalcompleteproblemsfornon-unitaryquantumspace?

QIP2017,Seattle,Washington

Page 18: A Complete Characterization of Unitary Quantum Space · 17.01.2017 · A Complete Characterization of Unitary Quantum Space Bill Fefferman(QuICS, University of Maryland) Joint with

Thanks!

QIP2017,Seattle,Washington