Top Banner

of 8

A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Materials

Apr 05, 2018

Download

Documents

ozielco
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/2/2019 A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Mate

    1/8

    A C O M P A R I S O N O F T H E E L E C T R O P H O R E T I C V E L O C I T I E SO F C E L L O P H A N E A N D C O L L O D I O N S U S P E N S I O N S

    W I T H E L E C T R O O S M O T I C V E L O C I T I E S T H R O U G HM E M B R A N E S O F T H E S A M E M A T E R I A L S

    BY BETTY MONAGHAN, H. L. WHITE , AND FRAN K URBA N(From the Department of Physiology and the Department of Biologica l Chemistry,Washington U niversity School of Medicine, St. Louis)

    (Accepte d for publicat ion, Jun e 29, 1934)Th is pape r is a repo rt of the electropho ret ic veloci ties of cel lophane

    and collodion suspensions in ThC14 solut ions of various concen trat ions,and of the e lec t roosmot ic ve loci t ies of the same solut ions throu ghcel lophane and col lodion membranes .

    EXPER rM'F.NTALCdlaphane.--For the dect rophores i s de te rm inat ions a col lo ida l suspens ion of

    ce l lophane was prepa red by soaking ce l lophane (previous ly washed f ree of g lycer inand dr ied) in a mixture of about equal par t s of ace tone and e ther for severa l days ,put t ing a few cubic cent imeters of th i s mixture in to 100 cc . of water and aera t ingto remove the ace tone and e ther . On two occas ions out of severa l t r i a l s sa t i s -fac tory suspens ions were obta ined; they remained s table for severa l weeks. Weregre t tha t we are unable to spec i fy the fac tors respons ib le for the success orfa i lure of th is procedure . This suspens ion was examined in a Nor thr op-K uni tzce l l of prede termined cross -sec t ion and the cur rent measured . I t var ied f rom1 10 -6 amp. in wa ter to 5 X 10 -8 in 4 X 10 -2 M ThCI4. Th e specific resista nceof each so lu t ion was de termined in the usua l way and the vol t s per cent imeteracross the ce l l ca lcula ted as IR , as sugges ted by Abram son (1929) . Ze ta was

    14 micra/sec.calculate d in m~ll~volts as, zeta = The resul ts are shown inv o l t s / c m .Fig. 1, where zeta in m il l~volts is plot ted aga inst the negat iv e logari th m of themolar concent ra t ion of ThCI , . The i sodec t r i c poin t is be tween 3 and 4 10 -6 K.

    The e lec t roosmot ic i soe lec t r ic poin t was then de termined on in tac t ce l lophanemembran es. A side arm w as sealed to a tube of 2.5 cm. bore and 6 cm. lengthand a c apil lary of 1 ram. bore f i t ted to the side arm. A cel lophane sheet was t iedover one end of the l a rge tube and sea led t ight wi th collodion . The upper endof the tube was f i t t ed wi th a rub ber s topper and sea led wi th beeswax- ros in cement.This s topper was per fora ted by a t ight ly f i t t ing tube forming an agar -KC1 br idge .

    523

    The Journal of General Physiology

    Published March 20, 1935

  • 8/2/2019 A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Mate

    2/8

    524 C O ~ I P A R I S O N O F ELECTROP HOP ~ETIC V E L O C I T I E ST h e b r i d g e p a s s e d t o a l a r g e c a l o m e l - s a t u r a t e d K C I e l e c tr o d e ; i ts l o w e r e n d j u s ta b o v e t h e m e m b r a n e w a s t u r n e d u p . T h e c e l l w a s f il l e d w i t h t h e s o l u t i o n u n d e ri n v e s t i g a t io n a n d d i p p e d i n t o a b e a k e r c o n t a i n i n g t h e s a m e s o l u t i o n , t h e c i r c u itb e i n g c o m p l e t e d b y a n a g a r b r i d g e i n t h e b e a k e r a n d a n o t h e r c a l o m e l e le c t ro d e .

    I V ,

    - I C _

    o

    -IC _

    ~ + 2 G -i. iN

    ~ + 3 G _

    8~ + 5 C _

    + 8 C _

    - 2 0

    ) -I - , \ o - i

    I I I I I IH 2 0 7 0 . 5 4 , 3 2; - LO G M O L A R C O N C E N T R A T I O N T hC I 4

    p.

    F I G . 1. E l e c t r o p h o r e t i c z e t a p o t e n t i a l s i n m i l U v o l t s o f a c e l l o p h a n e s u s p e n s i o ne , a n d e l e c tr o o s m o t i c v e l o c i t y i n a r b i t r a r y u n i t s o f t h r e e c e ll o p h a n e m e m b r a n e sO , a s a f u n c t i o n o f t h e T h C 1 4 c o n c e n t r a t io n .T h e m o v e m e n t o f t h e m e n i s c u s i n t h e n e a r l y h o r i z o n t a l c a p i ll a r y s i d e a r m w a so b s e r v e d w i t h a m i c r o s c o p e . 1 0 0 v o l t s w e r e a p p l i e d a t t h e e l e c t r o d e s . T h ec u r r e n t t h r o u g h t h e c e l l w a s a l w a y s m e a s u r e d . P l a t i n u m e l e c t ro d e s w e r e u s e da t f i r s t b u t w i t h t h e s e t h e c u r r e n t w a s n o t t h e s a m e o n r e v e r s a l o f p o l a r i t y ; w i t h

    Published March 20, 1935

  • 8/2/2019 A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Mate

    3/8

    B. M ONAGHAN~ H. L . WHITE~ AND ]? . URBAN 5 2 5c a l o m e l e l e c t r o d e s i t w a s u n c h a n g e d a l t h o u g h i t r o s e s l o w l y w i t h t i m e , d u e , p r e -s u m a b l y , t o t h e d i f fu s i o n o f K C 1 f r o m t h e a g a r b r i d g e s . H i g h e r c o n c e n t r a t i o n st h a n 4 1 0 3 T h C 1 4 c o u l d n o t b e i n v e s t i g a t e d b e c a u s e o f t h e h e a t i n g e f f e c to f t h e l a r g e r c u r r e n ts . T h e a v e r a g e o f s e v e ra l r e a d i n g s w i t h e a c h d i r e c t i o n o fc u r r e n t w a s t a k e n . T h e r e s u l t s o n t h r e e m e m b r a n e s , w i t h r a t e o f e l e c t r o o sm o t i ct r a n s p o r t e x p r e s se d i n a r b i t r a r y u n i t s , a r e g i v e n i n F i g . 1 .

    A b s o l u t e v a l u e s o f z e t a b y t h e e l e c t r o o s m o t i c m e t h o d c a n b e g i v e n o n l y i f t h eE . ~ . F . a c r o s s t h e m e m b r a n e i s k n o w n . T h i s m u s t b e o n l y a s m a l l f r a c t i o n , ino u r e x p e r i m e n t s , o f th e 1 0 0 v o l t s a t t h e e le c t ro d e s . W e h a v e a t t e m p t e d t o d e t e r -m i n e t h i s b y d e t e r m i n i n g t h e r e s i s ta n c e o f c el l o p h an e m e m b r a n e s i n a n a p p a r a t u so f t h e t y p e d e s c r i b ed b y G r e e n , W e e c h , a n d M i c h a e ll s (1 92 9) a n d m u l t i p l y i n g b yt h e c u r r e n t . W e h a v e n o t y e t s u c c ee d e d , h o w e v e r , i n m e a s u r i n g t h e s e r e s is t a n c esw i t h c o n s i s t e n t e n o u g h r e s u l t s t o j u s t i f y a s t a t e m e n t a s t o t h e E . ~ . F . a c r o s s t h em e m b r a n e s . I t a p p e a r s p r o b a b l e t h a t t h e m e m b r a n e r e s i s ta n c e s a r e s o l o w a sn o t t o b e m e a s u r a b l e w i t h m u c h a c c u r a c y . I t i s im p r o b a b l e t h a t t h e E . ~ .~ .a c r o s s t h e m e m b r a n e r e m a i n s a c o n s t a n t f r a c t i o n o f t h e a p p l i e d E .M . ~ . i n t h ev a r i o u s s o l u ti o n s , s i n ce t h e r a t i o o f s u r f a c e t o b u l k c o n d u c t i v i t y m u s t b e h i g ha n d s i n c e t h e d i f fu s i o n o f K C 1 i n t r o d u c e s a n i n c o n s t a n t e r r o r . T h e r e f o r e , t h ez e t a - c o n c e n t r a t i o n c u r v e m a y n o t b e o f t h e s a m e s h a p e a s t h e d e c t r o o s m o t i ct r a n s p o r t - c o n c e n t r a t i o n c u r v e. N e v e r t h e l es s , s in c e t h e p e r c e n t i l e c h a n g e s u n d e r -g o n e b y z e t a a r e b e y o n d q u e s t i o n m u c h g r e a t e r t h a n t h o s e o f ~ . ~ . ~ . a c r o s s t h em e m b r a n e , t h e t r a n s p o r t - c o n c e n t r a t i o n c u r v e p r o b a b l y d o e s n o t g r e a t l y d i f f e rq u a l i t a t i v e l y f r o m t h e z e t a - c o n c e n t r a t i o n c u r v e . I n a n y e v e n t , t h e i s o e le c t r i ep o i n t t o d e c t r o o s m o s i s i s a c c u r a t e l y l o c a t e d a t 4 1 0 ~ ~ T h C h , a c o n c e n t r a t i o na b o u t 1 0 t i m e s a s g r e a t a s th e i s o d e c t r i c p o i n t t o e l e c tr o p h o re s i s. T h e a d v a n -t a g e o f c o m p a r i n g t w o p r o c e s s e s , a s e l e c t r o o s m o s i s a n d e l e c t r o p h o r e s i s , b y a c o m -p a r i s o n o f t h e i r is o e l ec t r ic p o i n t s r a t h e r t h a n b y a n e v a l u a t i o n o f z e t a a t v a l u e so t h e r t h a n z e ro , is t h a t c o m m o n t o a l l n u n p o i n t m e t h o d s .

    I t w a s t h o u g h t t h a t t h i s d i f fe r en c e i n t h e e l e c t r o p h o re t i c a n d e l e c t ro o s m o t i ci s o e le c t r ic p o i n t s o n c e l l o p h a n e m i g h t b e d u e t o i n a b i l i t y o f t h e t h o r i u m i o n t op e n e t r a t e i n t o t h e s m a l l p o re s o f t h e c e l lo p h a n e m e m b r a n e s i n a r e a s o n a b l e ti m e .T h a t t h i s i s n o t t h e e x p l a n a t i o n w a s s h ow n b y t h e e x p e r i m e n t a l fi n d in g s t h a t ( 1)m e m b r a n e s a l l o w e d t o s o a k f o r m a n y d a y s i n a c o n c e n t r a t i o n o f 1 X 1 0 - 5 ~ T h C 1 4w e r e s t i l l c h a r g e d a s i n w a t e r , ( 2 ) a c t i v e l y f i l t e r in g t h i s s o l u t i o n t h r o u g h a m e m -b r a n e f o r s e v e r a l h o u r s u n d e r p r e s s u r e d i d n o t r e v e r s e t h e s i g n o f c h a r g e o n t h em e m b r a n e , a n d ( 3 ) e v e n m o r e s t r i k i n g , t h r e e m e m b r a n e s w h o s e s i g n o f c h a r g eh a d b e e n r e v e r s e d w i t h a s t r o n g t h o r i u m s o l u t i o n (1 1 0 3 M ) a n d w h o s e p o r e sm u s t t h e r e f o r e h a v e c o n t a i n e d s u f f i c i e n t t h o r i u m t o b r i n g a b o u t r e v e r s a l , v e r yq u i c k l y s h o w e d a n e g a t i v e z e t a p o t e n t i a l w h e n p l a c e d i n 1 X 1 0 5 ~ T h C 14 .

    T h e p o s s i b i l i ty w a s t h e n c o n s i d e re d t h a t t h e c e l l o p h a n e s us p e n s io n u s e d i n t h ee l e c tr o p h o r e si s s t u d y w a s s i m p l y a m o r e s o l u b le f r a c t io n o f t h e c e l l op h a n e m e m -b r a n e , w i t h s o m e w h a t d i f f er e n t ch e m i c a l p r o p e r t i e s f r o m t h o s e o f t h e u n t r e a t e dm e m b r a n e . T h e e x p e r i m e n t s w e r e t h e re f o r e r e p e a t e d o n c o ll o d i o n s i n ce w i t h t h i s

    Published March 20, 1935

  • 8/2/2019 A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Mate

    4/8

    526 COMPARISON 0~' ELECTROPHOKETIC VELOCITIESmaterial suspensions could be obtained which were certainly of the same corn-position as the membrane.

    Nv .-60 , -

    - . 5 0

    - 4 0

    - 3 0

    -2O

    - IC, . i

    nD 0I 1 . 1N 1 0

    + 2 0

    + 3 0

    "+40

    7

    A ~ B

    I6- L O G

    o

    o

    | . i I5 4 3

    M O L A R CONCENTRATION ThCl4Fro. 2. Electrophoretic zeta poten tials in miUivolts of a collodion suspension

    as a function of ThCh concentration. A-B represents the isoelectric zone forelectroosmosis in five collodion membranes.Collodion.--Collodion membranes of varying pore size were prepared by the

    metho d described by Bjerr um and Manegold (1927). The electroosmotic experi-ments on the collodion membranes were carried out exactly as with cellophane.

    Published March 20, 1935

  • 8/2/2019 A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Mate

    5/8

    B . M O N A G H A N , H . L . W H I T E , A N D F . U R B A N 5 2 7Since the mem branes d i ffered in permea bi l i ty (es t imated average po re d iame terof most permeable membrane between 2 and 3 t imes tha t o f leas t permeable) theelectroosmotic velocit ies varie d greatly at conce ntrations other than isoelectric,but the curves for all five membranes crossed the isoelectric point at concentra-t ions between 4 and 6 X 10 5 M ThC h.Microscopic collodion suspensions for electrophoretic measurements were pre-pared f rom the same s tock col lod ion so lu t ion used for the p reparat ion of the mem -branes. One pa rt of this solution was diluted with ten parts of the solvent (alco-hol and ethe r). Distil led w ater was then added slowly, with shaking, until ami lky suspension was ob tained . Th e ether and mo st o f the alcohol were thenrem oved by ae ration. 1 cc. of this stock suspension was adde d to 250 cc. of thevarious thorium solutions unde~ investigation. It should be me ntioned that th isproced ure is not alway s successful in producing suspensions of the desired pa rticles ize (1 to 5#) ; o f ten the par tic les c lumped rather rap id ly . Bu t in about a dozentrials, two suitable suspensions were obtained; these were kept in the ice boxand used as a stock suspension for all futur e electrop horetic determ inations.Th e electrophore tic zeta-pote ntial curve and the electroosmotic isoelectric zoneare shown in Fig. 2. He re again the isoeleetric conc entration (between 1 and2 X 10 6 ~ ThCh) fo r the par t ic les i s very much less than that found for themembranes (4 to 6 X 10 6 ~ Th Ch) .

    DISCUSSIONT h a t t h e d i f f e r e n c e i n t h e i s o e l e c tr i c p o i n t o f c e l l o p h a n e a n d c o l-

    l o d io n p a rt i c l e s as c o m p a r e d w i t h m e m b r a n e s o f t h e s a m e m a t e r i a li s d u e t o t h e s m a l l s i ze o f t h e m e m b r a n e p o r e s is i n d i c a t e d b y t h ef a c t t h a t i n v e r y la r g e c a p i l l a r ie s ( 3 0 0 / ~ ra d i u s ) o f p y r e x g la s s , o r o n af l a t g l a s s s u r f a c e , t h e s a m e c o n c e n t r a t i o n o f T h C 1 4 ( a s w e l l a s A 1 C l aa n d F e C 13 ) w h i c h i s i s o e l e c t r i c f o r e l e c t r o o s m o s i s is a l s o i s o e l e c t r i cf o r e l e c t r o p ho r e s i s w i t h p y r e x p a r ti c l e s ( M o n a g h a n , W h i t e , a n d U r b a n( 1 9 3 5 ) ) .

    T h e b e h a v i o r of t h e m e m b r a n e s i s p r o b a b l y t o b e a t t r i b u t e d t o t h ei n f lu e n c e o f t h e s m a l l p o r e s i n p r e v e n t i n g c o m p l e t e d e v e l o p m e n t o f t h ee l e c tr i c a l d o u b l e l a y e r s. A c c o r d i n g t o M c B a i n a n d K i s t l e r ( 1 9 28 ) ,t h e l a r g e s t p o r e s in c e l l o p h a n e 60 0 m e m b r a n e s a r e o f t h e o r d e r o f m a g -n i t u d e o f 2 - 3 1 0 - ~ c m . i n r a d i u s . L e t u s n o w c o n s i d e r t h e p r o b -a b l e t h i c k n e s s o f t h e d i f f u s e d o u b l e l a y e r ( f o r a r e c e n t d i s c u s s i o n s e eM t i l l e r, 1 9 33 ) . T h e t h i c k n e s s o f t h e d o u b l e l a y e r d e c r e a s e s w i t h i n -c r e a s in g c o n c e n t r a t i o n , t h e d e c r e a s e b e in g f a s t e r t h e h i g h e r t h e v a l e n c y

    4 . 3 2 1 0 - ~ c m . w h e r eo f t h e i o n s , a c c o r d i n g t o t h e e x p r e s s i o n ~ .=

    Published March 20, 1935

  • 8/2/2019 A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Mate

    6/8

  • 8/2/2019 A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Mate

    7/8

    B . M O N A G H A N , H . L . W H I T E , A N D 1 . U R B A N 529

    o f 5 .6 X 1 0 - 6 c m . a t t h e e l e c t r o p h o r e t i c t h o r i u m i s o e l e c tr i c c o n c e n -t r a t i o n ( 3 X 1 0 - 6 ~ T h C 1 , ) . T h i s f ig u r e m a y b e s e v e r a l h u n d r e dp e r c e n t f r o m t h e t r u e v a l u e ; n e v e r t h e l e s s it s e em s c e r t a i n t h a t t h ed o u b l e l ay e r t h i c k n e s s a t t h i s c o n c e n t r a t i o n i s m u c h g r e a t er t h a n t h er a d i u s of t h e m e m b r a n e p o r e s a n d c o n s e q u e n t l y t h a t t h e d o u b l e la y e rw i l l b e v e r y m u c h c o m p r e s s e d i n t h e m e m b r a n e p o re s . I t f o ll o w s

    4 7r ~ ,f r o m t h e c o n d e n s e r e q u a t i o n ~ - D t h a t , c h a r g e d e n s i t y , ~ ,r e m a i n i n g t h e s a m e , ~ i s d i r e c t ly p r o p o r t i o n a l t o t h e d i s t a n c e b e t w e e nt h e p la t e s . A s c h e m a t i c r e p r e s e n t a t i o n o f t h e p r o b a b l e c o u r s e o f t h ep o t e n t i a l - d is t a n c e c u r v e s a s t h e t h o r i u m c o n c e n t r a t i o n i s i n c re a s e d isg i v e n i n F ig . 3 ( se e a ls o M o n a g h a n , W h i t e , a n d U r b a n ( 1 9 3 5 )) . I n w a t e r( C u r v e 1 ) w h e r e t h e d o u b l e l a y e r i s n o r m a l l y q u i t e d i ff u s e , t h e z e t ap o t e n t i a l i n t h e S m a l l - p o re d m e m b r a n e w i l l b e g r e a t l y r e d u c e d f r o mt h e n o r m a l v a l u e b e c a u s e o f t h e n e c e s s a r i l y c o m p r e s s e d s t a t e o f t h ed i f f u s e l a y e r . I n 3 X 1 0 - 6 x~ T h C 1 4, w h i c h i s i s o e l e c t r i c f o r t h e p a r -t i cl e s , t h e m e m b r a n e ( e le c t ro o s m o t i c) z e t a p o t e n t i a l h a s t h e s a m e s i g na s i n w a t e r ( C u r v e 2 ). I n 4 X 1 0 - s ~ T h C I ~ (C u r v e 3 ) t h e m e m b r a n ei s i s o e le c t ri c , w h i l e t h e s i g n o f e l e c t r o p h o r e t i c z e t a i s r e v e r s e d . I ns t r o n g e r s o l u t io n s , 4 X 1 0 - s ~ T h C1 4, w h e r e t h e d o u b l e l a y e r t h i c k n e s sa p p r o a c h e s t h e p o r e r a d i u s , t h e p o t e n t i a l o f t h e m e m b r a n e w i l l a p -p r o a c h t h a t o f t h e p a r ti c le s , b o t h b e i n g o f r e v e r s ed s i g n ( C u r v e 4 ) .

    S U G A R YI t i s d e m o n s t r a t e d t h a t t h e i s o e le c tr i c c o n c e n t r a t i o n o f T h C I ~ i s

    m u c h g r e a t e r f o r e l e ct r o o s m o s i s i n s m a l l -p o r e d m e m b r a n e s ( ce ll o-p h a n e , c o l l o d i o n ) t h a n f o r e l e c tr o p h o r e s i s o f p a r t i c l e s o f t h e s a m em a t e r i a l . A n e x p l a n a t i o n f o r t h e d i ff e re n c e i s a d v a n c e d , b a s e d o n t h ei n f lu e n c e o f t h e s m a l l p o r e s i n p r e v e n t i n g c o m p l e t e d e v e l o p m e n t o f t h ee l e c t r i c a l d o u b l e l a y e r .

    B I B L I O G R A P H YAbramson, H. A. , 1929,J . Gen. Phys iol. , 12, 469.Bjerrum, N. , an d Manegold , E. , 1927, Kolloid-Z. , 42, 97 .

    t Particularly since this va lue of X designates mea n double layer thickness an dn o t the d is tance f rom the w al l to t h e o u t e r l imi t of the layer .

    Published March 20, 1935

  • 8/2/2019 A Comparison of the Electrophoretic Velocities of Cellophane and Collodion Suspensions With Electroosmotic Velocities Through Membranes of the Same Mate

    8/8

    5 3 0 CO MP A RI SO N O F E L E CT RO P H O RE T I C V E L O CI T IE SGreen, A . A. , W eech, A. A. , and M ichaelis, L. , 192 9, I . Gen. Physiol ., 12, 473.McBain , J . W. , and Kisf le r , S . S . , 1928, J. Gen. Physiol . , 12, 187.Mo n a g h a n , B . R . , Wh i t e , H . L . , a n d U r b a n , F . , 1 9 3 5 , Co l lo i d s y mp o s i u m mo n o -graph, Bal t imore , T he W il liams & Wilk ins Co. , 11 , in press.Mi i l le r , H. , 1933, in Cold Spr ing H arb or sym posia on quan t i ta t ive b io logy, ColdSpr ing H arbo r , Lon g Is land Biologica l Associa tion , 1 , I .

    Published March 20, 1935