Top Banner
A Case Study: Solar Panels at Boston College Annie Meyer April 1, 2014 Farhin Zaman Elizabeth Norton GE 580 Environmental Studies Senior Seminar Boston College Chestnut Hill, MA
22

A Case Study: Solar Panels at Boston College

Jan 01, 2017

Download

Documents

LêHạnh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Case Study: Solar Panels at Boston College

A  Case  Study:  Solar  Panels  at  Boston  College

Annie  Meyer                        April  1,  2014 Farhin  Zaman Elizabeth  Norton

GE  580  Environmental  Studies  Senior  Seminar

Boston  College

Chestnut  Hill,  MA  

 

 

 

Page 2: A Case Study: Solar Panels at Boston College

Introduction

Solar  Photovoltaic:  Background

Solar  cells  and  photovoltaics  were  first  invented  in  1954  after  a  lot  of  

research  around  photoelectric  technologies  and  beginning  to  use  the  sun’s  energy  

for  other  purposes  (“Timeline…”).  Now,  solar  has  been  around  for  many  decades,  

and  has  been  proved  to  consistently  work  well.  Like  most  other  technology,  solar  

has  improved  immensely  over  time,  gaining  more  efficiency  and  becoming  a  more  

viable  option  for  homes  and  businesses.  When  it  was  first  invented,  each  cell  had  a  

6%  efficiency  rate  (“Timeline…”).  Currently  most  cells  have  an  efficiency  rate  of  

approximately  25%  though  there  are  cells  being  developed  with  over  40%  efficiency  

(“Stacking  the  Deck”  2014).  That  is  truly  an  amazing  transformation,  and  a  

testament  to  technology.  

Solar  PV  can  be  difficult  to  understand,  especially  when  you  are  thinking  

about  using  it  for  your  home  or  business.  There  is  a  long  list  of  things  to  consider,  

but  the  first  step  is  to  understand  the  basic  technology  behind  the  panels.  Solar  

panels  contain  solar  cells  (mentioned  above)  that  collect  heat  energy  from  the  sun.  

Once  this  energy  is  trapped,  an  inverter  is  used  to  convert  the  energy  so  that  it  is  

usable  within  your  home  to  power  things  with  electricity  (EnergySage).  Though  you  

may  not  be  able  to  produce  enough  energy  to  meet  100%  of  the  needs  for  your  

home,  solar  PV  can  still  help  you  save  a  lot  of  money.  

Solar  PV  is  considered  ‘clean’  energy  because  it  harnesses  energy  from  a  

renewable  resource:  the  sun.  Our  planet  is  constantly  receiving  energy  from  the  sun,  

so  why  not  utilize  it?  Overall  solar  is  a  very  environmentally  friendly  solution  in  a  

society  that  uses  colossal  amounts  of  energy.    

Solar  at  other  Colleges/Universities:  Brandeis, Harvard, and Stonehill

Page 3: A Case Study: Solar Panels at Boston College

By looking at the solar installations at other colleges and universities, we were

able to get solid and successful examples of solar working in different ways at places

similar to BC.

Harvard has solar panel systems on eight of its buildings, the largest of which

produces 590,000 kWh/year. The university also purchases renewable energy from offsite

sources and has a wind turbine mounted on one of its buildings. Combined, 17% of their

electricity comes from renewable sources, while saving them money on the use of fuel

and utilities (“Sustainability…” 2013). Harvard is clearly making a statement about being

green and moving towards cleaner technologies. While we understand that BC hopes to

do the same, the university is also working on a ten year plan to add housing and new

facilities. Taking on one solar project is much more reasonable at the moment.

Stonehill College is currently building one of the nation’s largest college campus

solar fields. It is a 2.7 megawatt field that will contain 9,000 solar panels. The solar field

is expected to save about $185,000 a year on energy costs and account for 20% of the

campus’ electrical usage (“One of Nation’s…” 2014). This array produces such a large

portion of the college’s energy mostly because Stonehill is only a quarter of the size of

BC, making it’s energy use much smaller (“Stonehill College” 2014). In addition, field

arrays have to be built away from the campus, making the use of solar less noticeable.

While we do not propose making solar extremely visible at BC, we think that it is

important that students can physically identify the connection between the panels and

energy use.

Brandeis installed solar on the roofs of two buildings in 2010. At the time, the

project was one of the largest in the state, and these panels currently produce 10% of the

annual energy needed at their sports center (“Campus Sustainability Initiative”).This plan

is what we think should be the closest to our proposed project at Boston College. This

type of system offers energy savings and becomes iconic to the university. This is a good

place to start, and hopefully, if BC falls in love with solar, the administration would then

add more.

Solar  at  Boston  College

Implementing solar panels on Boston College’s campus is an effective and easy

way to introduce clean energy with proven technology. Solar panels offer both an

Page 4: A Case Study: Solar Panels at Boston College

environmental and economic benefit, especially at universities where energy

consumption is high. With an undergraduate population of over 9,000 students, 2 major

stadiums, 3 major dining locations, and over 20 dormitories, Boston College is always

using large amounts of energy. Our report will outline the thorough investigation of four

different buildings on campus, and what a Solar PV system offers in each situation. The

findings will compare third party ownership with private ownership, giving a

comprehensive plan for Boston College moving forward. Solar PV will help reduce BC’s

electricity bills, protect against rising energy costs, and increase sustainability initiatives.

Our primary objective is to create a realistic plan for the first implementation of solar

panels on campus with the hope that the B.C. administration will accept the idea.

Methods

Picking  the  location

Over  the  course  of  this  project  our  team  used  process  of  elimination  to  

determine  the  best  location  for  a  solar  PV  system  on  Boston  College  properties.  

Through  meetings  with  two  of  our  mentors  -­‐  John  MacDonald  the  BC  Energy  

Manager,  and  Bob  Pion  the  BC  Sustainability  Director  -­‐  we  were  given  advice  on  how  

to  decide  which  locations  would  be  feasible  and  most  beneficial  to  the  school.  We  

examined  the  multitude  of  buildings  that  Boston  College  maintains  on  several  

properties  -­‐  Main  campus,  Newton  campus,  Brighton  campus,  and  the  Weston  

Observatory.  From  these  options,  building  choices  were  narrowed  down  based  on  a  

series  of  criteria,  an  overview  of  which  can  be  seen  in  Figure  1.  The  basic  variables  

involved  were  aesthetics,  BC’s  ten  year  plan,  and  annual  energy  use.  

Page 5: A Case Study: Solar Panels at Boston College

Figure  1:  Flow  chart  outlining  the  process  of  elimination  for  solar  system  locations.

The  initial  proposal  of  this  project  was  to  implement    solar  panels  on  the  roof  

of  the  Commonwealth  Ave  Parking  garage.  We  ruled  this  option  out  due  to  

aesthetics.  Its  proximity  to  St.  Mary’s  means  that  the  Jesuit  residents  would  directly  

overlook  the  panels  on  top  of  the  garage.  We  ruled  out  all  of  middle  campus  because  

it  consists  of  buildings  with  gothic  architecture,  which  is  the  aesthetic  that  the  BC  

administration  is  most  dedicated  to  in  regards  to  the  campus’  appearance.  This  

group  includes  buildings  such  as  Devlin,  Lyons,  Gasson,  Fulton,  and  Stokes  Hall.  It  

also  includes  buildings  in  close  proximity  to  gothic  architecture,  like  McGuinn,  as  

well  as  buildings  in  view  of  middle  campus,  such  as  Conte  Forum  (the  roof  of  which  

is  also  taken  up  mostly  by  skylights,  leaving  little  area  left  for  solar  panels).  

Next,  our  team  was  shown  the  10-­‐year  construction  plan  for  Boston  College’s  

campus  which  revealed  several  buildings  and  structures  that  will  be  knocked  down  

in  the  near  future,  including  Edmond’s  Hall  and  Carney.  Our  team  decided  not  to  

propose  installing  solar  panels  on  any  buildings  that  will  be  built  in  the  near  future,  

such  as  the  new  Plex  athletic  building,  because  the  construction  plans  for  them  are  

not  yet  fully  concrete  and  we  want  this  proposal  to  be  applicable  in  real  time.  A  

couple  of  buildings,  like  the  Brighton  Campus  Dance  Studio  building,  were  removed  

from  our  list  because  they  are  simply  too  small  to  hold  a  valuable  number  of  solar  

panels.  

Page 6: A Case Study: Solar Panels at Boston College

The  remaining  buildings  were  reviewed  based  on  their  year-­‐round  energy  

use.  Buildings  that  are  not  used  throughout  the  entire  year  (i.e.  not  used  very  much  

during  the  summer)  were  also  eliminated  since  solar  panels  are  most  efficient  and  

useful  in  places  where  energy  is  used  all  the  time.  This  group  included  all  

dormitories,  including  all  those  on  Newton  Campus,  upper  Main  campus,  and  lower  

Main  campus.

All  of  main  campus  runs  on  one  energy  meter,  which  makes  it  more  difficult  

to  involve  another  type  of  energy  generating  system  on  one  of  the  main  campus  

buildings.  The  energy  offset  from  the  panels  would  come  out  of  the  campus’  total  

energy  use  rather  than  out  of  just  the  energy  use  of  the  building  it  is  installed  on.  

Though  it  would  be  possible  to  have  the  system  in  place  on  a  single  building  while  

having  it  hooked  up  to  the  school’s  net  metering  system,  our  team  agreed  that  since  

we  are  proposing  installing  solar  panels  at  Boston  College  for  the  first  time,  it  would  

be  best  to  make  this  a  contained  system  on  a  single  building.  This  way  the  

administration  can  look  at  the  project  and  decide  how  to  move  forward.      

This  process  of  elimination  narrowed  down  our  choices  to  four  locations  -­‐  

Cadigan  Alumni  Center  (Figure  2a),  129  Lake  Street  (Figure  2b),  the  Beacon  Street  

Garage  (Figure  2c),  and  St.  Clement’s  Hall,  the  campus  data  center  (Figure  2d).  All  

four  of  these  buildings  we  have  flat  roof  tops,  which  means  that  solar  panels  could  

be  set  at  the  proper  angle  and  direction  for  best  possible  production.  The  Beacon  St  

Garage  is  large,  which  would  allow  it  to  accommodate  a  very  large  solar  panel  

system.  Unfortunately,  it  has  parking  spots  on  its  roof,  so  a  canopy  structure  would  

have  to  be  built  to  accommodate  the  panels.  This  is  a  fairly  standard  procedure  but  

it  can  be  costly.  Though  we  did  not  calculate  the  expense  of  building  these  solar  

canopies  on  top  of  the  garage,  it  would  be  an  added  expense  on  top  of  the  cost  of  

buying  and  installing  a  system  at  this  location.  Unlike  the  Beacon  Street  Garage  (and  

all  buildings  on  main  campus  for  that  matter),  the  three  other  buildings,  all  on  

Brighton  Campus,  run  on  their  own  individual  meters.  This  would  make  it  easy  for  

the  solar  panel  system  to  directly  offset  the  energy  use  of  the  building  on  which  it  is  

installed.

Page 7: A Case Study: Solar Panels at Boston College

Figure  2:  Aerial  views  of  the  four  buildings  that  were  considered  as  the  location  for  a  solar  panel  

system,  with  roof  areas  mapped  out  in  blue  (a.  Cadigan  Alumni  center,  b.  129  Lake  Street,  c.  Beacon  

Street  Garage,  and  d.  St.  Clement’s  Hall).

Financial  Analysis

  a.  Building  and  System  Estimates

  At  this  point  in  the  process  we  began  a  financial  analysis  of  a  potential  

system  on  each  of  the  four  buildings.  This  was  made  possible  by  the  information  

provided  to  us  by  John  MacDonald.  The  estimate  involved  finding  the  system  size  (in  

kilowatts  per  hour  -­‐kWh)  that  would  be  able  to  fit  on  the  roof  of  the  building  in  

question,  as  well  as  the  cost  of  purchasing  that  sized  system.  In  order  to  get  the  most  

well-­‐rounded  estimate  possible  our  team  employed  three  different  sources  for  these  

calculations.  After  finding  three  different  values,  we  took  an  average  to  obtain  the  

most  accurate  numbers.    

The  first  source  was  our  team’s  own  calculations.  We  used  the  tools  on  

Google  Earth  to  measure  out  the  roof  area  of  the  four  buildings.  We  then  deduced  

Page 8: A Case Study: Solar Panels at Boston College

how  many  panels  would  be  able  to  fit  on  that  sized  roof  by  dividing  the  area  by  the  

size  of  a  standard  sized  solar  panel,  which  is  19.5  square  ft  (“Timeline…”).  Since  a  

standard  sized  panel  produces  250  watts  per  hour,  we  multiplied  the  number  of  

panels  by  0.25  kilowatts  per  hour  to  calculate  the  system  size  in  kWh  (Aggarwal,  

2014).  These  types  of  systems  generally  cost  $2.50  per  watt,  so  in  order  to  calculate  

the  cost  of  purchasing  the  panels,  we  multiplied  the  system  size  by  the  price  for  kWh  

($2,500).  The  error  involved  in  this  calculation  is  the  fact  that  solar  panels  are  often  

tilted  meaning  that  the  roof  may  fit  more  or  less  than  the  exact  number  that  fit  

inside  the  initial  roof  area.  

The  second  source  was  the  solar  energy  calculator  on  the  PV  Watts  website.  

Using  their  program,  we  again  mapped  out  the  roof  area  of  each  building,  and  were  

provided  with  the  system  size  in  kWh.  We  then  calculated  the  cost  using  the  given  

system  size,  using  the  method  mentioned  previously.  When  using  this  method,  

tracing  the  building  area  was  difficult.  We  could  not  be  sure  that  the  area  we  traced  

was  the  viable  area  on  each  building.  

The  last  source  was  a  website  called  Energysage.  On  their  program  we  

selected  each  building  on  a  map  by  pinning  the  roof  and  were  provided  with  an  

estimate  of  cost  and  savings.  Personnel  at  the  company  were  kind  enough  to  give  us  

the  system  size  they  calculated  using  their  own  tools.  Because  you  pin  the  building  

on  EnergySage,  it  is  hard  to  tell  whether  it  will  calculate  the  right  parts  of  the  roof.  

For  example,  Cadigan  Alumni  Center  has  skylights  that  we  did  not  want  included  as  

part  of  the  panel  area.  

Since  the  three  sources  we  used  had  some  measure  of  error  involved,  we  

took  the  average  of  all  three  in  order  to  provide  the  BC  administration  with  the  best  

estimate  possible.  Additionally,  while  the  two  websites  take  into  consideration  

several  factors  that  we  were  not  able  to  -­‐  such  as  factoring  in  the  amount  of  shading  

on  each  roof    as  well  as  accounting  for  the  tilt  of  the  panels  when  placed  on  the  roof  -­‐  

they  have  their  faults.  These  programs  spat  out  numbers  without  us  being  able  to  

see  their  calculations,  and  as  mentioned  above,  we  had  different  concerns  with  each.  

We  took  an  average  system  size  from  our  three  estimates  to  see  how  much  energy  a  

system  on  each  of  these  roofs  would  produce  and  how  much  of  that  building’s  

Page 9: A Case Study: Solar Panels at Boston College

energy  use  would  be  able  to  be  offset  by  that  particular  system  size.  

  b.  Pro  forma  Calculations

Our  mentors  at  the  green  energy  company  First  Wind  gave  us  a  pro  forma  

model  for  excel.  This  model  provided  us  with  a  basic  outline  of  how  much  energy  a  

solar  system  could  possibly  produce  on  main  campus  and  the  potential  savings  for  

BC.  We  wanted  to  compare  the  costs  and  savings  between  private  (BC)  ownership  

and  3rd  party  ownership  of  the  system  in  order  to  deduce  the  most  financially  

sound  conclusion.  In  order  to  come  to  this  conclusion  we  had  to  tailor  the  pro  forma  

by  creating  four  different  proformas  -­‐  one  for  each  of  the  four  final  buildings.  We  

input  data  we  received  from  the  Boston  College  energy  manager,  John  MacDonald,    

in  order  to  calculate  the  financial  aspects  of  installing  solar  panel  systems  on  each  of  

the  four  buildings.  This  analysis  was  based  on  the  buildings’  annual  energy  uses,  

annual  energy  costs,  and  the  campus  energy  rates  from  NSTAR.  

Results

Building  and  System  Estimates Table  1:  The  annual  electrical  use  and  bill  for  each  building  chosen.  

 

Annual  electrical  

use  (kWh) Annual  Bill

Cadigan  Alumni  Center 528,538 $71,881.17

129  Lake  St. 261,544 $35,569.98

Beacon  St.  Garage 1,576,800                          $214,444.80

St.  Clements  Hall 4,091,784                          $556,482.62

       

 

 

Table  2:    The  number  of  panels,  the  size  of  those  panels  in  kWh,  and  the  net  cost  of  that  system  as  

calculated  from  the  area  by  using  aerial  shots  of  each  building  on  Google  Earth.

Page 10: A Case Study: Solar Panels at Boston College

Our  

Calculations

Our  Area

(sq.  ft)

Sq.  Ft

per  Panel

#  of  

Panels

System  size  

(kWh)

Net  Cost  of  

Panels

($2.50  per  

panel)

Cadigan  Alumni  

Center 12,432 19.25 646 161.5 $403,750.00

129  Lake  St. 20,785 19.25 1080 270 $675,000.00

Beacon  St.  

Garage 39,406 19.25 2047 511.75 $1,279,375.00

St.  Clements  

Hall 17,965 19.25 933 233.25 $583,125.00

Table  3:  The  number  of  panels,  the  size  of  those  panels  in  kWh,  and  the  net  cost  of  that  system  as  

calculated  by  the  PV  Watts  website  energy  system  calculator.  

PV  Watts  

Calculations

#  of  

Panels

System  size  

(kWh) Net  Cost  of  Panels

Cadigan  Alumni  

Center 713 178.2 $445,500.00

129  Lake  St. 1016 254.4 $636,000.00

Beacon  St.  Garage 2680 670 $1,675,000.00

St.  Clements  Hall 800 200 $500,000.00

 

 

 

 

Table  4:  The  number  of  panels,  the  size  of  those  panels  in  kWh,  and  the  net  cost  of  that  system  as  

calculated  by  the  Energy  Sage  website  instant  solar  estimator.  

Page 11: A Case Study: Solar Panels at Boston College

Energy  Sage  

Calculations

#  of  

Panels

System  

size  

(kWh)

Net  cost  of  system

($2.50  per  panel)

       Cadigan  Alumni  

Center 473.6 118.4 $296,000

129  Lake  St. 642.94 160.74 $401,850

Beacon  St.  Garage 3876.2 969.05 $2,422,625

St.  Clements  Hall 666.164 166.54 $416,350

Table  5:  List  of  the  system  sizes  of  each  of  the  four  buildings  in  kWh,  averaged  from  the  results  listed  

in  Tables  2,  3,  and  4,  along  with  the  cost  of  that  averaged  system  size.  

  Average  System  size  (kWh)

Cost  

(private  ownership)

Cadigan  Alumni  

Center 152.7 $381,750.00

129  Lake  St. 228.4 $571,000.00

Beacon  St.  Garage 625.9 $1,564,750.00

St.  Clements  Hall 200 $500,000.00

Pro  forma  Calculations

  The  financial  costs  and  benefits  are  a  major  part  of  whether  an  institution,  

like  BC,  would  consider  implementing  solar  panels  and  the  type  of  system  that  

would  be  used.    An  important  tool  in  our  analysis  was  the  use  of  pro  forma  financial  

statements,  which  present  the  anticipated  results  of  a  certain  project/  transaction.    

In  our  case,  Matt  Marino  from  First  Wind,  provided  a  pro  forma  model  that  outlined  

the  3rd  party  ownership  of  the  solar  system  through  a  Power  Purchase  Agreement  

(PPA).    In  a  PPA,  BC  would  have  to  pay  a  discounted  rate  per  kWh  for  the  energy  

produced  by  the  solar  panels.    In  our  case,    a  solar  company,  like  First  Wind,  would  

Page 12: A Case Study: Solar Panels at Boston College

charge  BC  $0.12  per  kWh  for  the  energy  produced  by  the  solar  system,  which  is  a  

lower  rate  than  $0.136  per  kWh  that  is  currently  charged  by  NSTAR.    First  Wind  

would  charge  BC  for  the  energy  produced  by  the  solar  panels  at  a  reduced  rate  and  

then  BC  would  pay  for  the  rest  of  their  electrical  needs  through  NSTAR.    As  a  result,  

BC’s  annual  energy  bill  would  be  lower  from  their  average  annual  bill  with  NSTAR.      

The  pro  forma  outlines  the  costs  and  savings  in  Tables  6-­‐9  for  the  respective  

buildings  in  our  study.    For  example,  in  Table  6,  the  pro  forma  model  for  Cadigan  

Alumni  Center  uses  the  building’s  annual  electrical  usage  and  utility  bill  that  were  

calculated  in  Table  1.      From  there,  we  used  the  average  system  size,  calculated  in  

Table  5,  to  estimate  the  energy  production  of  the  panels  and  the  amount  BC  would  

save.    We  did  not  calculate  the  costs  of  the  solar  PV  system  under  3rd  party  leasing  

because  BC  would  not  be  responsible  for  the  installation  and  maintenance  costs  

under  this  system.      In  Table  6,  the  estimated  solar  project  size  (1  MW)    and  

percentage  of  energy  production  provided  for  BC  (15%)  was  given  to  us  by  First  

Wind.    To  calculate  the  amount  of  energy  produced  by  the  solar  system  for  Cadigan,  

we  took  15%  of  the  amount  of  energy  produced  annually,  which  would  be  79280.7  

kWh  annual  solar  energy  produced  and  BC  would  pay  a  discounted  rate  for  that  

energy.      The  energy  bill  for  Cadigan  would  save  $10,782.18  on  it’s  usual  bill.      

Cadigan’s  current  bill,  calculated  in  Table  1,  is  $71,881.17  per  year,  but  with  the  

solar  system,  the  new  bill  would  be  $61,098.99.      If  this  value  is  carried  throughout  

the  life  of  the  solar  system,  which  is  around  20  years,  then  BC  would  save  

$25,369.82  in  that  amount  of  time  for  just  one  building.      

  If  BC  decided  to  purchase  the  solar  panels  and  own  the  system  and  reap  

benefits  like  Solar  Renewable  Energy  Credits  (SRECS),  then  the  financial  projections  

are  a  bit  different.    Unlike  the  3rd  party  leasing  system,  BC  would  have  to  pay  

significant  upfront  costs  for  the  installation  of  the  panels.    In  the  same  example  from  

Table  6  of  Cadigan  Center,  we  used  our  estimate  of  the  solar  system  size  (152.7  

kWh)  that  BC  could  install  on  the  roof  of  the  building.    From  there,  we  calculated  the  

potential  annual  production  that  a  152.7  kWh  solar  system  could  produce  

throughout  the  year,  which  is  1,231,372.8  kWH  of  energy.    However,  based  

estimates  from  EnergySage,  a  solar  system  on  top  of  Cadigan  could  only  produce  

Page 13: A Case Study: Solar Panels at Boston College

10%  of  the  potential  energy.    Using  that  information,  we  predicted  that  Cadigan  

Center  would  only  be  able  to  use  123137.82  kWh  of  energy  from  the  panels,  but  

would  still  save  $16,746.  67  on  their  current  utility  bill.    Over  the  course  of  20  years,  

this  would  amount  to  $334,933.40  in  savings.      However,  this  number  is  not  entirely  

accurate  since  BC  would  first  have  to  break  even  on  the  investment  of  the  solar  

system,  which  we  calculated  would  cost  around  $381,750.00,  as  shown  in  Table  5.    

The  time  for  BC  to  break  even  on  the  investment  could  take  several  years  and  is  

based  on  calculations  that  we  did  not  have  time  to  explore  in  the  scope  of  this  

project.      

  Despite  the  initial  costs  of  installing  a  solar  system,  there  are  a  few  benefits  

that  BC  should  consider  such  as  the  use  of  SRECS.    In  Table  6,  we  had  predicted  that  

the  solar  system  would  only  be  able  to  produce  about  10%  of  what  the  system  can  

potentially  produce.    However,  if  the  system  was  able  to  produce  excess  energy,  

outside  of  Cadigan’s  utility  needs,  then  BC  could  lower  the  bill  even  more  by  using  

net  metering.  In  addition,  all  energy  produced  by  solar  is  eligible  for  SRECs  (solar  

renewable  energy  credits),  We  estimated  that  if  the  solar  system  worked  to  it’s  full  

potential,  and  SRECS  were  bought  for  $0.30  per  kWh  produced,  then  BC  could  

possibly  earn  $332,470.66  in  one  year.    

  This  process  of  estimations  and  calculations  were  repeated  for  129  Lake  St.,  

Beacon  St.  Garage,  and  St.  Clements  Hall.      In  Table  7,  we  analyzed  the  financial  

projections  of  129  Lake  St  and  see  that  the  3rd  party  system  could  save  BC  around  

$627.71  a  year  from  the  current  utility  bills.    Over  the  20  year  life  of  the  solar  

system,  BC  could  possibly  save  $12,554.71  in  total.      For  private  ownership,  BC  

would  be  able  to  save  $35,569.98  annually  and  $711,399.68  over  the  life  of  the  

system.    However,  the  initial  cost  of  the  system  would  be  around  $571,000.00  that  

would  see  a  return  on  investment  of  around  five  to  seven  years.    There  is  also  the  

possibility  of    earning  around  $474,082.08  in  SRECs.  

   In  Table  8,  we  observe  the  costs  and  savings  of  Beacon  Street  Garage.      

Under  the  3rd  party  lease,  the  garage  has  the  potential  to  save  BC  around  $3,784.32  

a  year  and  $75,686.40  over  the  life  of  the  system.      With  private  ownership,  both  the  

Beacon  Street  Garage  and  129  Lake  St.  are  unique  because  EnergySage  had  

Page 14: A Case Study: Solar Panels at Boston College

predicted  that  both  solar  systems  would  be  capable  of  producing  100%  of  the  

energy  needed  by  both  buildings.      Therefore,  the  annual  savings  would  be  the  value  

of  the  current  energy  bill  itself,  which,  for  the  Beacon  St.  Garage,  is  $214,444.80  a  

year  and  around  $4,288,896.00  over  the  life  of  the  system.      The  initial  cost  of  the  

system  is  predicted  to  be  around  $1,564,750.00  with  the  possibility  of  earning  

$1,041,137.28  in  SRECs.

Our  final  analysis  was  on  St.  Clements  Hall,  also  known  as  the  data  center  on  

Brighton  Campus.      In  Table  9,  we  predicted  that  3rd  party  ownership  would  save  BC  

around  $9,820.28  annually  and  around  $196,405.63  for  the  life  of  the  system.      For  

private  ownership,  EnergySage  had  predicted  that  the  solar  system  would  be  able  to  

produce  around  5%  of  the  energy  used  by  St.  Clements  Hall.    Even  with  this  small  

percentage  of  energy  production,  the  system  would  be  able  to  save  BC  around  

$10,967.04  a  year  and  $219,340.80  over  the  life  of  the  system.        The  initial  cost  to  

the  system  is  around  $500,000  with  the  possibility  of  earning  $1,203,343.20  in  

SRECs  if  the  system  was  able  to  produce  energy  at  full  capacity.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 15: A Case Study: Solar Panels at Boston College

 

 

 

 

 

Table  6:  The  estimated  pro  forma  model  for  Cadigan  Alumni  Center.

                                     

 

 

 

Page 16: A Case Study: Solar Panels at Boston College

 

 

 

 

 

 

 

     Table  7:  The  estimated  pro  forma  model  for  129  Lake  St.

                               

Page 17: A Case Study: Solar Panels at Boston College

                                                               Table  8.  The  estimated  pro  forma  model  for  Beacon  St.  Garage

                         

Page 18: A Case Study: Solar Panels at Boston College

                             

                                                                     

 

 

 

       Table  9.    The  estimate  pro  forma  model  for  St.  Clements  Hall

 

Page 19: A Case Study: Solar Panels at Boston College

Discussion/Analysis

Mention  some  errors  in  analysis  to  be  rectified  in  the  future

  There  are  some  imperfections  in  the  pro  forma  financial  estimates  that  need  

to  be  addressed  for  future  analysis  on  such  a  case  study.      Many  of  the  values  used  

on  the  pro  forma  were  based  on  generalizations  of  data  that  we  had  been  given  or  

research  done  online  and  may  not  be  specific  to  the  buildings  we  studied.    For  

example,  we  used  two  different  system  sizes  to  compare  3rd  party  ownership  and  

private  ownership.    The  system  size  used  in  the  pro  forma  for  3rd  party  ownership  

(1  MWh)  was  provided  to  us  by  First  Wind  and  based  on  the  net  metering  cap  for  

non  municipal  and  public  customers.    We  also  assumed  that  the  solar  energy  

company  would  only  provide  15%  of  the  energy  produced  by  each  building,  but  this  

value  could  change  between  solar  companies  and  the  different  sizes  of  the  system.    

We  also  estimated  that  the  solar  energy  company  would  provide  BC  energy  at  a  

discounted  rate  of  $0.12  per  kWh,  but  this  could  also  vary  amongst  different  energy  

companies.    These  factors  could  alter  the  value  of  the  savings  calculated  for  3rd  

party  ownership  per  year  and  over  the  life  of  the  system.    

  The  pro  forma  also  analyzes  private  ownership  but  only  provides  basic  costs  

and  savings  associated  with  owning  a  system.    We  stated  the  cost  of  the  overall  

system  for  BC  and  the  annual  savings  on  utility  bills  and  over  the  20  year  life  span  of  

the  system.    These  basic  statistics,  however,  are  oversimplified.    The  annual  savings  

under  private  ownership  would  only  be  experienced  by  BC  once  the  entire  system  

had  been  paid  off,  which  usually  varies  between  five  to  seven  years  depending  on  

Page 20: A Case Study: Solar Panels at Boston College

the  size  and  capacity  of  the  system.    Therefore,  the  gross  savings  presented  in  the  

current  pro  formas  could  vary  for  each  building.    Further  analysis  of  private  

ownership  could  be  done  through  an  economic  cost  benefit  analysis  to  produce  

more  accurate  values  on  the  net  present  value  of  each  project.      Such  an  analysis  

would  provide  a  clearer  picture  on  the  investment  in  private  ownership.  

Conclusions

  Based  on  our  findings,  the  most  optimal  location  for  solar  panels  at  Boston  

College  is  St.  Clement’s  Hall.    Even  though  these  panels  will  only  produce  5%  of  the  

building’s  annual  energy,  this  significantly  lowers  the  energy  bill,  and  means  more  

savings  over  time.  In  addition,  the  carbon  offset  is  ~521,702lbs  per  year.  This  is  the  

equivalent  to  the  amount  of  carbon  10,869  trees  can  absorb  in  a  year  or  is  the  same  

as  taking  46  cars  off  the  road  for  the  year  (Tree  Facts,  2014;  Greenhouse  Gas,  2011).

Third  party  ownership  makes  the  most  sense  for  Boston  College  because  it  

means  immediate  savings  rather  than  an  initial  deficit.    The  annual  savings  for  

private  ownership  are  much  higher  but  because  a  system  is  expensive  to  own,  it  

would  take  years  to  pay  off  the  initial  deficit.  By  putting  a  solar  PV  system  on  St.  

Clement’s,  BC  will  save  almost  10,000  dollars  on  energy  each  year.  Because  BC  

would  not  own  the  panels,  it  would  not  be  responsible  for  maintenance  or  other  

costs  the  panels  might  require.  

Solar  is  the  perfect  way  for  BC  to  improve  sustainability  while  saving  quite  a  

bit  of  money!    

Acknowledgements

We   would   like   to   thank   our   many   mentors   who   have   supported   us  

throughout   our   project’s   duration:   Vikram   Aggarwal   for   aiding   us   with   solar  

statistics  and  mathematical  configurations,  Peter  Sullivan  and  Matt  Marino  for  a  pro  

forma  that  assisted  us  in  calculating  the  cost  of  solar  at  different  locations,  and  John  

MacDonald  and  Bob  Pion   for   their  advice  on  BC’s  energy  use  and  policy.  We  must  

also  thank  Professor  David  who  gave  valuable  feedback  and  guided  us  through  the  

process.  

Page 21: A Case Study: Solar Panels at Boston College

References

Aggarwal,  Vikram.  “Solar  Panel  Statistics.”  E-­‐mail  Interview.  26  April.  2014.   "Campus  Sustainability  Initiative."  Solar  Electricity.  N.p.,  n.d.  Web.  01  May  2014.  

<http://www.brandeis.edu/campussustainability/energy/solar.html>. Digital  image.  Perth  Solar  Panels.  Solar  Panels  Perth  |  Affordable  &  High  Quality  Solar  

Power  Systems,  2014.  Web.  27  Apr.  2014.

"Greenhouse  Gas  Emissions  from  a  Typical  Passenger  Vehicle."Environmental  Protection  

Agency.  Dec.  2011.  Web.  27  Apr.  2014.   <http://www.epa.gov/otaq/climate/documents/420f11041.pdf>.

"Instant  Estimate."  EnergySage.  Web.  27  Apr.  2014.  <http://www.energysage.com/>. MacDonald,  John.  "BC  Energy  Use  Discussion."  Personal  interview.  10  Mar.  2014. Marino,  Matt,  and  Peter  Sullivan.  "Pro  Forma  Specifics."  E-­‐mail  interview.  14  Mar.  2014. "One  of  Nation's  Largest  College  Campus  Solar  Fields  Being  Built  at  Stonehill."      ·    

News  &  Media    ·    Stonehill  College.  N.p.,  6  Jan.  2014.  Web.  01  May  2014.  <http://www.stonehill.edu/news-­‐media/news/details/one-­‐of-­‐nations-­‐largest-­‐college-­‐campus-­‐solar-­‐fields-­‐being-­‐built-­‐at-­‐stonehill/>.  

Shahan,  Zachary.  "Which  Solar  Panels  Are  Most  Efficient?"CleanTechnica.  N.p.,  n.d.  

Web.  01  May  2014.  <http://cleantechnica.com/2014/02/02/which-­‐solar-­‐panels-­‐most-­‐efficient/>.

"Solar  Panel  Array."  N.p.,  n.d.  Web.  26  Apr.  2014.  <"St.  Clement's  Hall."  N.p.,  n.d.  Web.  

26  Apr.  2014.  .>.

Page 22: A Case Study: Solar Panels at Boston College

"SOLAR  RESOURCE  DATA."  PVWatts  Calculator.  Web.  01  May  2014.  

<http://pvwatts.nrel.gov/pvwatts.php>. "Stacking  the  Deck."  The  Economist.  The  Economist  Newspaper,  22  Feb.  2014.  Web.  

01  May  2014.  <http://www.economist.com/news/science-­‐and-­‐technology/21596924-­‐way-­‐double-­‐efficiency-­‐solar-­‐cells-­‐about-­‐go-­‐mainstream-­‐stacking>.

"St.  Clement's  Hall."  Web.  26  Apr.  2014.  

<http://eypaedesign.com/resources/img/projects/boston-­‐college-­‐st-­‐clements-­‐hall-­‐4.jpg>.

"Stonehill  College."  U.S.  News  &  World  Report.  N.p.,  n.d.  Web.  01  May  2014.  

<http://colleges.usnews.rankingsandreviews.com/best-­‐colleges/stonehill-­‐college-­‐2217>.

"Sustainability;  Energy  and  Emissions."  Harvard  University.  The  President  and  Fellows  of  

Harvard  College,  2013.  Web.

"The EnergySage Marketplace." EnergySage. EnergySage, Inc., 2014. Web. "Timeline  of  Solar  Cells."  Wikipedia.  Wikimedia  Foundation,  30  Apr.  2014.  Web.  01  

May  2014.   "Tree  Facts."  American  Forests.  Web.  27  Apr.  2014.  

<https://www.americanforests.org/discover-­‐forests/tree-­‐facts/>.