Top Banner
Magnetic strings, M5 branes, and N=4 SYM on del Pezzo surfaces: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847
23

A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Dec 18, 2015

Download

Documents

Darcy Norton
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Magnetic strings, M5 branes, and N=4

SYM on del Pezzo surfaces:

A 5d/2d/4d correspondence

Babak Haghighat, Jan Manschot, S.V., to appear;B. Haghighat and S.V., arXiv:1107.2847

Page 2: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

The (0,4) elliptic genus of the magnetic monopole moduli space equals the partition function of

N=4 SYM on the del Pezzo surface .

Conjecture

M r ,N f

U(r)

dPN f

Page 3: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Our conjecture follows from a variant of the 2d/4d correspondence a la AGT:

2d/4d correspondence

                             r  M 5 branes

                            [      Tτ2 ⊗ dPN f

 ]  

U(r) N =4SYM on dPN f(0,4)   CFT on T 2

gaugecoupling τ                         cL =r(4 + N f );  cR =6r

Page 4: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Maldacena, Strominger, Witten (‘97) Minasian, Moore and Tsimpis (‘99) Gaiotto, Strominger and Yin (‘06) Minahan, Nemeschansky, Vafa and Warner

(‘98) Alim, Haghighat, Hecht, Klemm, Rauch,

Wotschke (‘10) De Boer, Cheng, Dijkgraaf, Manschot,

Verlinde (‘06)(Useful for us, but different set-up)

Some important references

Page 5: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

The (0,4) elliptic genus of the magnetic monopole moduli space equals the partition function of

N=4 SYM on the del Pezzo surface .

Conjecture

M r ,N f

U(r)

dPN f

Page 6: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

(0,4) Sigma model

Target space: moduli space of magnetic monopoles (hyperkahler) with addition of adjoint fermionic zero modes and Nf flavor fermionic zero modes;

The (0,4) CFT

S =T d2σ   gmn(∂+Xm∂−X

n + iψ mD+ψn) + iχ AD−χ

A −12

FmnABψmψ nχ Aχ B⎡

⎣⎢⎤⎦⎥T 2

m =1,..., 4r ⇒    cR =4r + 2r =6rA=1,...,2rN f    ⇒   cL =4r + rN f =r(4 + N f )

Page 7: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

This is actually the lift of the quantum mechanics description of magnetic monopoles in SU(2) N=2 D=4 Seiberg-Witten with Nf massless hypermultiplets

[Sethi, Stern & Zaslow ’95; Cederwall, Ferretti, Nilsson & Salomonson ’95; Gauntlett & Harvey ’95] and [Gauntlett, Kim, Lee, Yi, ’00].

The (0,4) CFT

S =

12

dt   gmn( &Xm &Xn + iψ mDtψ

n) + iχ ADtχA −

12

FmnABψmψ nχ Aχ B⎡

⎣⎢⎤⎦⎥∫

Page 8: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Uplifting the dynamics of the magnetic monopole from d=1 to d=2 amounts to embedding the monopole in 5d gauge theory, where it becomes a BPS magnetic string.

For Nf ≤8 massless flavors in 5d SU(2) gauge theory on the coulomb branch, the tension can be computed to be

5d Gauge Theory

T =rφg5

2 + (8 −N f )φ2⎧

⎨⎩

⎫⎬⎭

Page 9: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Study of 5d N=1 susy gauge theories was initiated by Seiberg ‘96.

Nonrenormalizable theories that should be embedded in string theory:

Geometric engineering (Douglas, Katz & Vafa ‘96; Morrison & Seiberg ‘96; Intrilligator, Morrison & Seiberg ’97)

(p,q) branes in IIB (Aharony, Hanany & Kol ‘97)

5d Gauge Theory

Page 10: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

M-theory on local CY3: canonical line bundle over del Pezzo,

In our conventions,

This engineers 5d N=1 SU(2) gauge theory with Nf flavors.

Geometric engineering

O(K )→ CY3

                ↓               dPN f

dP0 =F0 =PB1 ⊗ Pf

1

dPN f=F0  with  N f  blow−ups

Page 11: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Magnetic string is M5 brane wrapping del Pezzo. Its tension precisely matches the volume of the del Pezzo!

Geometric engineering

Page 12: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Using the connection to 5d gauge theory, we know what the (0,4) CFT is:

5d/2d/4d correspondence

                             r  M 5 branes

                            [      T 2 ⊗ dPN f ]  

U(r) N =4SYM on dPN f(0,4)   CFT on T 2

gaugecoupling τ                        with target space Mr,N f

5d gauge theory tells us that Nf ≤8

Page 13: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

The (0,4) elliptic genus of the magnetic monopole moduli space equals the partition function of

N=4 SYM on the del Pezzo surface .

Conjecture

M r ,N f

U(r)

dPN f

Page 14: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

r=1, Nf=0: Free CFT, 3 non-compact and 1 compact scalars + 4 right-moving fermions.

Elliptic genus:

Tests

M1,0 =° 3 ⊗S1

Page 15: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

U(1) N=4 SYM partition function on

Localizes on instantons (Vafa & Witten ’94). Result is (Gottsche ’90)

This matches the 2d CFT side since and

Test 1

dP0 =F0 =P1 ⊗ P1

χ(F0 ) = 4

Page 16: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

r=1, Nf ≠0, massless charged flavors. Flavor group SO(2Nf)

but 2Nf extra left-moving fermions. Moebius bundle; Manton & Schroers ’93)

Quantum mechanics of dyonic monopole must satisfy (Seiberg & Witten ’94, Gauntlett & Harvey ’96)

A more complicated test

M1,0 =° 3 ⊗S1

(−)ne |ψ > =(−)H |ψ >

¢ 2  action

Page 17: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

In the CFT, this is lifted to an orbifold action with

Elliptic genus yields

Test 2: 2d CFT calculation

G ={1,g}      g=(−)ne+F

ZCFT (τ ) =ZMB(τ )η(τ )N f +4

Page 18: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

One can treat the compact boson and flavors separately with twisted and untwisted sectors:

Test 2: 2d CFT calculation

Page 19: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Del Pezzo = P1x P1 with Nf blow-ups. Choose basis in for which the

intersection matrix displays SO(2Nf) symmetry :

Lattice instead of usual unimodular lattice with intersection matrix

Test 2: 4d calculation

H 2 (dPN f ,Z)

(n =N f )

Λ =A⊕D

Page 20: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

Partition function has theta-function decomposition (Manschot ’11,…)

For rank one, r=1,

Test 2: 4d calculation

h1(τ,dPN f) =

1η(τ )b2 +2       b2 =2 + N f

Page 21: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

If one chooses the restriction of the Kahler class to vanish along the D-lattice, one has

with

Test 2: 4d calculation

Page 22: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

The four terms correspond to the four sectors in the orbifold (0,4) CFT.

The theta functions of the DNf lattice correspond to the flavor fermions with current algebra SO(2Nf).

The contributions from the A-lattice correspond to the contribution of the compact scalar with shifted momentum and winding modes.

It is a miracle that (if) this works!

Test 2: the 4d calculation

Page 23: A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847.

We found an interesting new 5d/2d/4d correspondence and provided non-trivial tests for rank r=1.

We have some more results for massive flavors.

For r=2, the monopole moduli space is that of Atiyah-Hitchin. We cannot compute its elliptic genus directly, but we have the answer from the 4d side.

Conclusion