Top Banner
Symposia on VLSI Technology and Circuits A 45nm SOI Monolithic Photonics Chip-to- Chip Link with Bit-Statistics-Based Resonant Microring Thermal Tuning Chen Sun 1,2 , Mark Wade 3 , Michael Georgas 2 , Sen Lin 1 , Luca Alloatti 2 , Benjamin Moss 2 Rajesh Kumar 2 , Amir Atabaki 2 , Fabio Pavanello 3 , Rajeev Ram 2 , Milos Popovic 3 , Vladimir Stojanovic 1 1 University of California, Berkeley 2 Massachusetts Institute of Technology 3 University of Colorado, Boulder
62

A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Oct 05, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Symposia on VLSI Technology and Circuits

A 45nm SOI Monolithic Photonics Chip-to-Chip Link with Bit-Statistics-Based Resonant Microring Thermal Tuning

Chen Sun1,2, Mark Wade3, Michael Georgas2, Sen Lin1, Luca Alloatti2, Benjamin Moss2

Rajesh Kumar2, Amir Atabaki2, Fabio Pavanello3, Rajeev Ram2, Milos Popovic3, Vladimir Stojanovic1

1 University of California, Berkeley 2 Massachusetts Institute of Technology

3 University of Colorado, Boulder

Page 2: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Electrical Link Scaling

•  Efficiency vs. reach vs. data-rate tradeoffs limits data-rate

•  Bandwidth density hard to scale –  High-performance chips are I/O bandwidth starved

Electrical Wire 1 x 10 Gb/s

Page 3: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Silicon Photonic Links

•  Dense wavelength division multiplexing (DWDM) provides a way to scale bandwidth density

•  Distance insensitive loss, low distortion optical signaling

Optical Fiber

16 x 10 Gb/s … …

Page 4: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Ring Resonators

•  Enabler of DWDM •  Very high-Q resonant

notch filter

λ0

In Thru

DropThru

Drop

T

λ0λ

1

Slide 4

Page 5: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Ring Modulators

•  Modulation: –  On-off key the laser by electrically shifting notch

wavelength –  Modulator ring is a PN diode –  carrier dispersion ( free carriers => index of refraction)

Slide 5

λ0Tx Out

0101101... T λ0

λ

λ0

T1

T0

1

Page 6: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

λ0Tx Out

0101101... T λ0

λ

λ0

T1

T0

1

Ring Modulators

•  Modulation: –  On-off key the laser by electrically shifting notch

wavelength –  Modulator ring is a PN diode –  Carrier dispersion ( free carriers => index of refraction)

Δ

0V -1V

Slide 6

Page 7: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Critical Gating Issue

Slide 7

•  Drop-port spectra of 55 nominally identical rings (process variations) –  [Selvaraja IEEE LEOS 2009]

•  Thermal variations cause drift of 0.05nm/K, can use to tune •  Resonance alignment a critical gating issue

Page 8: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Outline

•  Active Wavelength Locking •  Bit-Statistical Thermal Tuner Concept

–  Level-tracking –  Optimal auto-locking –  Self-heating

•  45nm SOI monolithic photonic platform •  Chip-to-link link demonstration

Slide 8

Page 9: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Active Wavelength Locking

•  Amount of light resonating in the ring changes based on alignment of resonance (λ0) to laser wavelength (λ)

Slide 9

Laser Laser λ

PR

PR

λ0

Page 10: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Active Wavelength Locking

•  Weakly couple photodetector to ring (drop port), PD photocurrent (IPD) is proportional to PR –  IPD electrically-measurable indicator of alignment

Slide 10

Laser Laser λ

IPD

PR

PD PDPD

IPD

λ0

Page 11: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Active Wavelength Locking

•  Tracker circuit which track value of (IPD) •  Embed resistive heater in the ring and driver to control ring

temperature

Slide 11

Laser

PD

R Laser

Tracker

RR

PDPDPDPPDPDPDP Heater Driver

Ring Waveguide

Resistive Heater

Page 12: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Active Wavelength Locking

•  Controller uses information from tracker, controls heater to maintain alignment of λ0 to laser λ

Slide 12

Laser

PD

R Laser

Tracker Controller

RR

C

PDPDPDPPDPDPDP Heater Driver

Page 13: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD Laser

IREF

Lock IPD to IREF

Heat up Heat upcool down cool down

Page 14: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD

IREF

Lock IPD to IREF

•  If IPD > IREF, heat more •  If IPD < IREF, heat less

IPD

Laser

cooled cooled

Page 15: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD

IREF

Lock IPD to IREF

Heat More HMIPD

Laser

•  If IPD > IREF, heat more •  If IPD < IREF, heat less

Page 16: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD Laser

IREF

Lock IPD to IREF

•  If IPD > IREF, heat more •  If IPD < IREF, heat less

IPD Heated up Heated up

Page 17: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD Laser

IREF

Lock IPD to IREF

•  If IPD > IREF, heat more •  If IPD < IREF, heat less

Heat Less

at s

IPD

Page 18: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #1: Data-Dependent IPD

Slide 18

• Data is amplitude-modulated –  IPD changes based on data 0 and data 1

•  If balance of 1s to 0s is changing –  Controller can think ring is drifting away when it is not

•  Level-track Bit 1s and Bit 0s separately

λ

IPD Laser IPD

0 1 I0

I1

Page 19: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Integrating Frontend

•  Goal: find i0 and i1 (0 level and 1 level) •  Integrate drop-port photocurrent over N bits •  Final voltage dependent on number of 0s and 1s

Slide 19

Page 20: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Integrating Frontend

•  Integrate bits over two intervals close in time:

Slide 20

Page 21: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Integrating Frontend

•  Integrate bits over two intervals close in time:

•  Thermals are slow (10 , so I0 and I1 stay the same:

Slide 21

Page 22: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Integrating Frontend

•  Solve 2 equations with 2 unknowns digitally –  Implemented with 2 Multipliers, 4 adders, at low speed

•  Integrate bits over two intervals close in time:

•  Thermals are slow (10 , so I0 and I1 stay the same:

Slide 22

Page 23: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #2: Picking IREF

•  Want to pick a lock point that maximizes eye opening (P1 - P0)

•  If both 1-level and 0-levels are both known –  Search to find IREF where I1 – I0 is maximized during lock

Slide 23

λ

IPD Laser IPD

0 1 IREF?

Page 24: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Lock-On Procedure

init search

PH-initRsweep

Rsweep

L0-opt

Ldiff-opt

•  Initialize heater to a high value (PH-init), then stride heater value down until there is drop-port photocurrent > Rsweep

Slide 24

Page 25: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

init search sweep

PH-init

L0-opt

Rsweep

PH-opt

L0-opt

Ldiff-opt

Ldiff-opt

Lock-On Procedure

•  Step heater value down and remember where I1 – I0 (Idiff) is maximized (I0-opt) –  corresponds to the lock point with maximum eye-height

Slide 25

Page 26: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Lock-On Procedure

init search sweep lockreset return

PH-init

L0-opt

Rsweep

PH-opt

Rsweep

L0-opt

Ldiff-opt

Ldiff-opt

•  Once photocurrent < Rsweep again, return to I0-opt and lock onto it

Slide 26

Page 27: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #3: Self-Heating

λ

PR Laser

•  Significant fraction (>50%) of PR is absorbed by the ring (usually free-carrier absorption) heating it up

0 PR0 500

Slide 27

Page 28: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #3: Self-Heating

λ

PR Laser

Mod

•  When modulating 1s or 0s, laser power resonating in ring (PR) changes

•  Here, ΔPR= 400 ring wants to cool down by 10K –  Enough to blue-shift by 0.5nm (Modulator shift is ~0.05nm)

1 PR0

PR1

500

100

Self-Heat

Slide 28

Page 29: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #3: Self-Heating

λ

PR Laser PR

•  Average PR dependent on ratio of 1s to 0s

•  Very large amplitude effect –  Transient eye-closure when ratio of 1s to 0s changes

0 1

Self-Heat

PR0

PR1

500

100 Mod

Slide 29

Page 30: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Self-Heating Cancellation

•  Difference in self-heating power between 0s and 1s is proportional to I0, I1

•  Since I0 and I1 are known, then exact amount of cancellation power to apply can be calculated

Slide 30

PC = K (I1 – I0)

Page 31: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Self-Heating Cancellation

•  Difference in self-heating power between 0s and 1s is proportional to I0, I1

•  Since I0 and I1 are known, then exact amount of cancellation power to apply can be calculated

Slide 31

PC = K (I1 – I0)

•  Can apply cancellation in N-bit intervals –  where tbit x N << thermal time constant:

PC = K (N1/N) (I1 – I0)

Page 32: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

8:1

CLK

Bit-Statistics Based Thermal Tuner

•  Integrating frontend ADC integrates drop-port photocurrent

Slide 32

Page 33: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

8:1

CLK

Bit-Statistics Based Thermal Tuner

•  Tap from the transmit datapath and count the number of 1s and 0s

Slide 33

Page 34: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

L1 L0Ldiff

8:1

CLK

Bit-Statistics Based Thermal Tuner

•  Solver performs algebra to find optical power level (I1, I0)

Slide 34

Page 35: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

L1 L0Ldiff

8:1

CLK

PH

Bit-Statistics Based Thermal Tuner

•  Controller FSM controls the strength of a heater DAC

Slide 35

Page 36: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

L1 L0Ldiff

8:1

CLK

PH

Bit-Statistics Based Thermal Tuner

•  Self-heating canceller cancels fast transients from laser self-heating effects

Slide 36

Page 37: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

IBM 12SOI (45nm) CMOS

IBM Cell IBM Power7

•  300mm wafer, commercial process •  Fast process used in microprocessors

•  N-FET transistor fT = 485 GHz [Lee, IEDM 2007]

IBM Espresso

Page 38: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Photonics in IBM 45nm SOI

•  Thin BOX SOI process –  Enable photonics through partial substrate release

•  Demonstrated monolithic optical transceivers –  [Georgas VLSI 2014]

Slide 38

Page 39: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Auto-Locked Transmitter

•  Integrate the tuning circuitry with the transmitter

In

PRBS31

8:1

Tuning Backend

VBIAS

VPD

Outen

rst

Slide 39

Page 40: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Resonator Tuning Efficiency

Slide 40

•  Substrate release process provides good tuning efficiency •  0.75mW/nm (3.8μW/GHz), 2.2mW maximum heater output •  3nm (600GHz, ~60K) total tuning range

Page 41: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

PRBS31

8:1

Thermal Tuner

Tx

Auto-locked Transmitter Demo

•  Ring resonance at 1187.2nm, laser at 1189nm

•  Tuning circuits auto-locked to maximize I1 – I0

Slide 41

Lock

Laser λ

Page 42: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Auto-locked Transmitter Demo

•  Open eyes demonstrated with PRBS31 random number sequence –  5-8 Gb/s modulation at a 1.2V swing –  Modulator driver is 30 fJ/b

Slide 42

Page 43: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

1/0 Level Tracking

•  1/0 Level tracking allows controller to track 1/0 levels separately, and the controller can maintain the lock to the correct levels

•  Uncompensated self-heating causes transient eye-closures

5Gb/s DC-Balanced Data (PRBS31) 5Gb/s non-DC balanced data

Slide 43

Page 44: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

1/0 Level Tracking + Heating Cancellation

•  Self-heating cancellation cancels the sudden change in laser self-heating power

•  Open eye is maintained

1/0 tracking only 1/0 tracking + heating cancellation

Slide 44

Page 45: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

45nm SOI Receiver

•  Photodetector leverages SiGe available for PMOS strain –  0.02 A/W and 0.1 A/W variants

•  Single-Stage TIA with 5kΩ feedback resistance –  Two-way time-interleaved slicers –  Optimized version of [Georgas VLSI 2014]

Slide 45

Page 46: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Receiver Measurements

•  10 Gb/s operation at less than 10-12 Bit-error rate

–  16.5uApp sensitivity at 10Gb/s (-21dBm normalized) –  6uApp sensitivity at 5Gb/s (-26dBm normalized)

•  290 fJ/bit at 10Gb/s, 374 fJ/bit at 5Gb/s

Slide 46

statistical eye shape 10 Gb/s BER eye measurement

Page 47: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Time [ps]

Dec

isio

n T

hres

hold

[uA

]

0 50 100 150 200

-2

0

2

1e-0011e-0021e-0031e-0041e-0051e-0061e-0071e-0081e-0091e-010<1e-010

Chip-to-Chip Link Demonstration

•  Open eye at <10-10 BER •  Optical amplifier provides 8dB optical gain

–  4dB loss per grating coupler, 1.2 dB loss couplers available [Wade, OI 2015] –  0.02 A/W photodetector in link test site

•  0.1-0.2 A/W photodetectors available

Slide 47

2.5 mW 1 mW 0.25 mW

0.1 mW

0.6 mW

0.25 mW

Page 48: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Link Energy Breakdown (5 Gb/s)

•  Backend synthesized for 3.125 GHz as opposed to 625 MHz, so still room for improvement on energy/bit

*1.8nm is the tuned range in the demo shown, corresponding to 1.4 mW Slide 48

Page 49: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Conclusion

•  Ring resonator thermal tuning is a gating issue for DWDM optical links

•  Modulator level-tracking using bit statistics •  Level-tracking enables optimal lock and self-

heating cancellation, crucial to unencoded links •  Demonstrated tuning subsystem and chip-to-chip

optical link in 45nm SOI monolithic platform

Slide 49

Acknowledgements -  POEM Team at MIT, CU Boulder, and UC Berkeley -  This work was supported in part by DARPA, NSF, MIT CICS, Trusted

Foundry, NSERC Thank you!

Page 50: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Backup

Slide 50

Page 51: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Chip-to-Chip DWDM Links

•  Vertical grating couplers couple light from a fiber into or out of a chip

•  A pair of resonators aligned to the same wavelength form a wavelength channel

•  High selectivity (Q ~10000) enables many channels on the same waveguide

Page 52: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Receiver Measurements

•  10 Gb/s operation at less than 10-12 Bit-error rate

–  8.3uA sensitivity at 10Gb/s (-21dBm normalized sensitivity) –  4.3uA sensitivity at 8Gb/s (-24dBm normalized sensitivity)

•  These are connected to a 0.02A/W photodetector –  -4dBm @ 10Gb/s, -7dBm @ 8Gb/s –  Have a 0.1A/W detector, but not connected to these circuits

•  290 fJ/bit at 10Gb/s, 310 fJ/bit at 8Gb/s

Slide 52

statistical eye shape Bit-error rate eye measurement

Page 53: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Modulators and Receivers

•  Receive: –  Ring captures light of a specific wavelength, drops light

onto a wideband photodetector

λ0Tx Out

0101101... T λ0

λ λ0Rx In

0101101...

λ0

T1

T0

1

Slide 53

Page 54: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Optical Bistability

Slide 54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11280

1280.1

1280.2

1280.3

1280.4

1280.5

1280.6

1280.7

1280.8

1280.9

1281

0 [nm

]

Heater Power [mW]

≈H

≈H

λ ≈

Page 55: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Thermal Tuning: Drop-Port Sensing

•  Average drop port IPD also dependent on ratio of 1/0s in data (on-off keyed data) –  OK for link demonstrations (PRBS data is 1/0 balanced) –  Will break in real system, unless data encoded to

maintain constant 1/0 ratios

Laser

Low BW TIA >

PD

DAC

Reference IPD

IPD

R Laser

[Li, ISSCC 2013] [Padmaraju, Opt Exp 2012] [Amberg, ASSCC 2012] [Timurdogan, CLEO 2012]

(more/less heat) +1/-1

Page 56: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Partial Substrate Removal Die Photo

Slide 56

Page 57: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

New Photodetector Test Data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Resp

onsi

vity

[A

/W]

Input Power [mW]

1283nm (-1.5V) 1283nm (-0.8V) 1283nm (-0.5V) 1185nm (-1.5V) 1185nm (-0.8V) 1185nm (-0.5V) 1172nm (-1.5V) 1172nm (-0.8V) 1172nm (-0.5V)

Page 58: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Gratings

Slide 58

Page 59: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Average Drop Power (Large vs. Small Shift)

•  Drop-port average is different dependent on large vs. small shift modulators

Slide 59

Page 60: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Self-Heating Eye Closure (Random Data)

•  Plotted for different ratios tbit/thermal time constant •  Different self-heating loop gains

Slide 60

−10 −8 −6 −4 −2 00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

σ/Δ

α

GL(0)

tbit

/τT = 1e−5

tbit

/τT = 1e−4

tbit

/τT = 1e−3

Page 61: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

- 0 [nm]

Val

ue (

arb.

uni

ts)

Real L0

Real L1

Real Ld

Calc L0

Calc L1

Calc Ld

Updates to LD = L0 – L1

•  If LD cannot update, controller still returns ring to the correct point

Slide 61

Ld = N [LN(ta) − LN(tb)]N0(tb) − N0(ta)

L1 = LN + N0

N· Ld

L0 = L1 − Ld

Page 62: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Averaged Power Tracking

•  Experiment with random, non-DC balanced data with ratios of 1s-to-0s changing every 200ms

•  Averaged power tracking completely fails –  Controller unable to discern loss of power due to

resonance change from a change in ratio of 1s to 0s

5Gb/s DC-Balanced Data (PRBS31) 5Gb/s non-DC balanced data

Slide 62