Top Banner
90 0883126 6 Applications of Mass Spectrometry to Organic Geochemistry By Patricia Ann Hang B.S. (Columbia University) I963 DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OP PHILOSOPHY in Chemistry in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in Charge OtC 1 6 1967 Degree conferred Date
310

90 0883126 6 Applications of Mass Spectrometry to Organic ...

Apr 24, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

90 0883126 6

Applications of Mass Spectrometry to Organic Geochemistry

By

Patricia Ann Hang

B.S. (Columbia University) I963

DISSERTATION

Submitted i n p a r t i a l satisfaction of the requirements f o r the degree of

DOCTOR OP PHILOSOPHY

i n

Chemistry

i n the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee i n Charge

OtC 1 6 1967

Degree conferred Date

Page 2: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

c:

68-10,333

HAUG, Patricia Ann, 1941-APPUCATIONS OF MASS SPECTROMETRY TO ORGANIC GEOCHEMISTRY.

University of California, Berkeley, PhJD., 1967 Chemistry, physical

University Microfilms, Inc., Ann Arbor. Michigan

Page 3: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Dedicated t o Professor George Jura

Page 4: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

ACKNOWLEDGEMENT

I wish to thank Professor A. L. Burlingame for providing the d i r e c t i o n and support for t h i s work; Professor George Jura f o r his encouragement and under­standing; Professor Melvin Calvin f o r enthusiasm and v i t a l i t y - i t i s a source of regret that the steranes and triterpanes were not completely separated^ and, therefore, that t h e i r o p t i c a l a c t i v i t y i s s t i l l undefined; and. Professor Heinrich Schnoes for his help with experi­mental d i f f i c u l t i e s , the running of mass spectra, data i n t e r p r e t a t i o n , and sympathy.

F i n a l l y , l e t me thank the National Aeronautics and Space Administration f o r providing the funds f o r t h i s research (NsG 101 and NGR 05-003-134).

i i i

Page 5: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE OF CONTENTS

Introduction Abiological Synthesis Biosynthesis Diagenesis

Part I . Hydrocarbons from Geological Sediments Mass Spectrometric Hydrocarbon Analysis Sediments Analyzed Extraction and I s o l a t i o n Mass Spectrometric Instrumentation Straight Chain Hydrocarbons . ISO and Anteiso Alkanes Isoprenoids Unknowns Data Correlations

Part I I . Steranes and Triterpanes from the Colorado Green River Shale

The Colorado Green River Shale Steranes and Triterpanes Isolated from Colorado

Green River Shale Extraction Alumina Column Chromatography. Molecular Sieving Gas Chromatography Recrystallization

Page 1 2 3 4

1 2 4 11 11 18 21 27 45 51

1 2

3 8

11 20 26 28

i v

Page 6: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

F l u o r o s i l ' Column Chromatography 2 9 Sublimation 2 9 Fraction •• 31 Fraction C^QB ,31 Polycyclic Hydrocarbons from the Soudan 33 The Significance of Steranes, Triterpanes,

and Optical A c t i v i t y 3 9 Part I I I . Acids from the Colorado Green River Shale 1

Acids from Geological Sediments • 2 Acid and Base Extraction of Shale Extracts 4 High Resolution Mass Spectrometric Instrumentation 8 Normal Esters 10 Branched Esters 13 Cyclic Esters . 17 Unsaturated Esters 27 Methyl Benzoates ' 3 0 Phenyl A l k y l Esters 3 9 Methyl Methyl Substituted Napthoate Esters and

Cyclo-Aromatic Esters 4 8 Dica;rboxylic Acid Esters 52 Keto Esters 58 Discussion of Esters 61

Part IV. High Resolution Mass Spectrometry: A Study of Shale Extracts 1

High Resolution Mass Spectrometry 2 Instrumentation 4

Page 7: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Sediments Examined 5 Green River Shale Neutral Fraction 6-Green River Shale Basic Fraction 6 Green River Shale Acidic Fraction 7 Green River Shale Esters 7. 105° Acid 9 ISO" Acid 10

Nonesuch Shale • Soudan Shale 1^" Pierre Shale ^2 Discussion

V I

Page 8: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Introduction Hoxv did l i f e originate? Modern evolutionary theories

postulate a continuum extending from a h i o t i c a l l y formed macro-molecules to those capables of reproducing themselves and mutating i n a manner which can be considered characteristic of the processess of metabolism, growth, reproduction, sensi­t i v i t y , and evolution. I n t h i s sense, l i f e consists of a small segment of possible chemical reactions.• The basic element of these reactions, carbon, i s unique because of i t s a b i l i t y t o form four equivalent sp^ bonds. The strength of the s character i s essential for the formation of stable poly­mers, while the a b i l i t y to form four bonds permits the greatest degree of s t r u c t u r a l complexity and thus maximum possible s p e c i f i c i t y . " ^

One experimental approach to the fundamental question of how l i f e originated has been to attempt to create l i f e from

2—11 the components of a p r i m i t i v e environment. " A second s c i e n t i f i c approach i s to search for the remains of p r i m i t i v e forms of l i f e buried i n ancient sediments, i . e . to investigate the complex o r g a n i c molecules preserved i n inorganic rock matrices of varying ages i n an attempt to extrapolate back­ward to. how l i f e originated. Two assumptions made i n such an approach are that the organic matter extracted from these sedi­ments i s indigenous to the sediment (and has not migrated i n -from another source at a time d i f f e r e n t from the deposition of the sediment) and that hydrocarbon skeletons of b i o l o g i c a l molecules can be distinguished from a b i o l o g i c a l l y formed

Page 9: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

2 molecules. The problem i s complicated by the lack of know­ledge i n the intertwined areas of abiological synthesis, biosynthesis, sind diagenesis.

Abiological Synthesis. D i s t i n c t i o n between biogenetically derived compounds and .abiogenetically created compounds i s rendered complex by the continuum postulated to exist between natur a l l y occurring (abiogenetic) chemical reactions and the biosynthetic reactions of l i v i n g organisms. For example, amino acids which serve as the b u i l d i n g blocks for proteins (essential for a l l metabolic*and growth processes) have been synthesized i n quantity via e l e c t r i c discharges, a possible source of energy, i n a p r i m i t i v e atmosphere of water,

12-22 methane, and ammonia. Further experiments confirm the a b i l i t y of these components under certain conditions to polym­erize, form protective membranes, assimilate organic compounds, and divide."^"^

Porphyrins were u n t i l very recently accepted as b i o l o g i c a l evidence of the photosynthetic processes; " however, current studies have indicated that certain porphyrin skeletal types can be formed via simple chemical reactions.^^"^^ Also un-understood are the roles played by such catalysts and condi- ' 36 37 tions as clay and water-oil interfaces.

Recently i t was postulated that the exposed edges of the graphite l a t t i c e might serve as active sites for c a t a l y t i c hydrogenation producing hydrocarbons such as the isoprenoids,

38 and normal alkanes. Indeed one might even postulate mechan-

Page 10: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

isms f o r the formation of certain t r i t e r p a n e s . Experimental data substantiate the claim that the naively calculated thermo­dynamic equilibrium of saturated hydrocarbons i s not necessarily the. r e s u l t obtained. I n p a r t i c u l a r , s u f f i c i e n t quantities of

39 isobutane are lacking from graphite p y r o l y s i s .

Biosynthesis. As has been pointed out the d i s t i n c t i o n of biogenetic from abiogenetic compounds by r e l y i n g on com­pound types i s d i f f i c u l t . The o p t i c a l a c t i v i t y commonly possessed by b i o l o g i c a l l y synthesized molecules has been taken as an i n d i c a t i o n (although the effects of diagenesis would be d i f f i c u l t t o assess) of l i f e processes (see further discussion • i n Part I I ) .

The i s o t o p i c r a t i o s ^ p a r t i c u l a r l y ^12^^Y"^' ^® ^

of d i s t i n g u i s h i n g a b i o l o g i c a l molecules from b i o l o g i c a l mole­cules since such r a t i o s are extremely sensitive to reaction paths and membrane f r a c t i o n a t i o n . H o w e v e r , they can also be re l a t e d to factors such as temperature.^^"® Unfortunately, there have been no studies of t h i s type on i n d i v i d u a l hydro­carbons .

I n every area of= biochemical i n v e s t i g a t i o n there remain many unsolved problems. I t i s d i f f i c u l t , therefore, to extrap­ola t e backwards and draw conclusions about the chemistry of e x t i n c t organisms; some of the d i f f i c u l t y may simply r e f l e c t our fragmented knowledge of e x i s t i n g systems.

Diagenesis. The f a c t that many reactions occur a f t e r the death of any organism further complicates the already fragmen­ted p i c t u r e . " Sediment conditions can vary from oxid i z i n g to

Page 11: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

4 reducing, may possess high thermal or pressure gradients, as well as varied b a c t e r i a l conditions. An understanding of diagenetic reactions i n sediments i s an important prerequisite for drawing conclusions on the o r i g i n of a class of compounds isolated from i t . Mainy studies have been undertaken i n an attempt to piece together possible diagenetic pathways.^^"^^ Geochemical studies are, by t h e i r nature, closely related to the f i e l d of diagenesis and, therefore, geochemical results can be expected to give r i s e to theories of diagenetic processes. Throughout t h i s thesis, therefore, s t r u c t u r a l s i m i l a r i t i e s between the components of l i v i n g orgajiisms and those i d e n t i f i e d i n ajicient sediments are noted. In the case of the Green River Shale, where past l i f e i s well docu­mented by f o s s i l s and there i s no question of l i f e having existed, a primary purpose of geochemical investigation i s to gain information about the diagenetic processes which have taken place since sediment deposition.

This research i s p r i m a r i l y concerned with the i d e n t i f i ­cation of those compounds which are present i n sediments and covers several areas of geochemical i n t e r e s t : Part I , the analysis of hydrocarbons from ancient sediments; Part I I , the determination of steranes and triterpanes from the Colorado Green River Shale; Part I I I , the characterization of the acids and bases of the Colorado Green River Shale; and Part IV the exploration of high resolution mass spectrometry as a t o o l for the preliminary analysis of geochemical mixtures

Page 12: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

5 I i i a l l of these studies mass spectrometry was used as the p r i n c i p l e physical technique. The research had as i t s goal two main objectives: the exploration of mass spectrometry, i n regard to i t s application to organic geochemistry and the e x p l o i t a t i o n of mass spectrometric data for the character­i z a t i o n of organic compounds, and consequent contribution of meaningful geochemical r e s u l t s .

Page 13: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

REFERENCES

1. J. T. Edsall, J. Wyman. Biophysical Chemistry (Acad. Press Inc., New York) 23-25 (1958).

2. A. I . Oparin. L i f e , I t s Nature, Origin and Development (Oliver and Boyd, Edinburgh and London, 1961).

3. A . I . Oparin. The Chemical Origin of L i f e , i n American Lectures i n Liv i n g Chemistry, S. Kugelmass, ed. (Charles C Thomas Publishing Co., Springfield, I l l i n o i s , 1964).

4. M. Calvin, G. J. Calvin. Atom to Adam, Amer. S c i e n t i s t , 52, 163 (1964).

5. M. Calvin. Chemical Evolution of L i f e and S e n s i b i l i t y , UCRL-17132 (1966).

6. S. L. M i l l e r , H. Urey. Organic Compound Synthesis on the Primitive Earth, Science, 130, 245 (1959).

7. H. C. Urey. On the Early Chemical History of the Earth and the Origin of L i f e , .Proc Nat. Acad. Sci. U.S., 38, 351 (1952).

8. S. W. Fox.- How Did L i f e Begin? Science, 132, 200 (1960). 9. S. VI. Fox (ed.)- The Origins of Prebiological Systems

and of Their Molecular Matrices, Acad. Press, N.Y. (1965). 10. J. Oro. Studies i n Experimental Cosmo-Chemistry, Ann.

N.Y. Acad. Sci., 108, 64 (1963). 11. S. Akabori. The Origin of L i f e on the Earth (Pub. House

Acad. Sci., U.S.S.R.) 117 (1959). 12. W. M. Garrison, D. C.- Morrison, J. G. Hajnilton, A. A.

Benson, M- Calvin. Reduction of Carbon Dioxide i n Aqueous Solutions by Ionizing Radiation, Science, 114, 416 (1951).

Page 14: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

7 15. S. L. M i l l e r . A Production'of Amino Acids under Possible

P r i m i t i v e Earth Conditions, Science, 117, 528 (1953). -14-.- s.—L. M i l l e r . Production of Some Organic Compounds. under

Possible Primitive Earth Conditions, J. Am. Chem. Soc, 77, 2351 (1955).

15. S. L. M i l l e r . The Mechanism of Synthesis of Amino Acids By E l e c t r i c a l Discharges, Biochim. Biophs. Acta, 23, '480 (1957).

16. P. H. Ab.elson. Amino Acids-Formed i n Primitive Atmosphere, Science, 124, 935 (1956).

17. T. E. Pavlovskaya, A. G. Passynskii. The Original Forma­t i o n of Amino Acids under the Action of U l t r a v i o l e t Rays and E l e c t r i c Discharges, The Origin of L i f e on Earth, (Pub. House Acad. Sci., U.S.S.R.) 98 (1959).

18. C. Pcnnamperuma, R. M. Lermnon, R. Mariner, M. Calvin. Formation of Adenine by Electron I r r a d i a t i o n of Methane, Ammonia, and Water, Proceedings of the National Acad, of Sci., 49, 737 (1963).

19. T. Hasselstorm, M. C. Henry, B. Murr. Synthesis of Amino Acids by Beta Radiation, Science, 125, 350 (1957).

20. K. Heyns, K. Pavel. Thermische Unwandlungsprodukt von Aminosauren I . , Z. Naturforsch, 12b. 97 (1957).

21. K. Heyns, W. Walter, E. Meyer. Modelluntersuchungen zur Bildung organischer Verbindungen i n Atmospharen eifacher Gase durch* elektrische Entladungen, Naturwiss, 44, 385 (1957).

Page 15: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

• -8 22. S. W. Fox, K. Harada. Thermal copolymerization of Amino

Acids Common to Protein, J. Am. Chem. Soc, 82, 3745 (1S60).

23. S. W. Fox, M. Middlebrook. Anhydrocopolymerization of Amino Acids under the Influence of Hypothetically Primitive T e r r e s t r i a l Conditions, Federation Proc.,. 13, 211 (1954). ^

24. S. W. Fox. Radiation and the F i r s t Biopolymer, Radiation and the Origin of L i f e , Third International Congress of Radiation Research, Cortina D'Ampezzo, I t a l y (June 1966) I n s t i t u t e of Molecular Evolution, University of Miami, Contribution No. 073.

2'5. S- W. Fox. The Chemical Problem of Spontaneous Gener­at i o n , J. Chem. Educ, 34, 472 (1957).

26. S. W. Fox. Evolution of Protein Molecules and Thermal Synthesis of Biochemical Substances, Am. Sc i e n t i s t , 44, 347 (1956). '

27. S. W. Fox, A. Vegotsky, K. Harada, P. D. Hoagland, Spontaneous Generation of Anabolic Pathways, Protein, and Nucleic Acid, Ann. N.Y. Acad. Scl., 69, 328 (1957).

28. D. A. Skinner. Chemical State of Vanadium i n Santa Maria Valley Crude O i l , ^nd. Eng. Chem., 44, 1159 (1952).

29. M. Blumer.. Fossil Chlorins i n a Triassic Sediment, Nature, 191, 161 (1961).

30. M. Blumer. Organic Pigments: Their Long-Term Fate, Science, 149, 722 (1965).

Page 16: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

9 31. R. V. Eck, M. 0. Dayhoff. Evolution of the Structure of

Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences, Science, 152, 363 (1966).

32. H. N, Dunning, J. W, Moore, M. 0. Denekas. I n t e r f a c i a l A c t i v i t i e s and Porphyrin' Contents of Petroleum Extracts, Ind. Eng. Chem., 45, 1759 (1953).

33. A. Szutka, J. F. Hazel, W. M. McNabb, Synthesis of Porphine-Like Substances induced by Gamma-Irradiation, Rad. Res., 10, 597 (1959).

34. A. Szutka.. Porphine-Like' Substances: .Probable Synthesis during Chemical Evolution, Nature, 201, 1231 (1964),

35. H. Ramsden, J. Engelhart, W. Naegele. Conjugated Dienes React v/ith Magnesium, Chem. and Eng., i>5 , US (1967).

36. D. H. Kenyon. Adsorption of Organic Molecules by Clay Minerals and Abiogenic Molecular Evolution (Manuscript, 1963).

37. H. N. Dunning, J. W. Moore, M. 0. Denekas. I n t e r f a c i a l A c t i v i t i e s and Porphydrin Contents of Petroleum Extracts, Ind.- Eng. Chem., 45, 1759 (1953).

38. P. C. Marx. General Research, Graphite and the Origin of Petroleum, Aerospace Corporation, C a l i f . , A p r i l 1964.

39. - P. Breisacher,'P. c. Marx. The Hydrogen-Graphite Reac­t i o n between 360° and 800°, J. Am, Chem. Soc., 85, 3518 (1963).

40. R. Park, H. N. Dunning. Stable Carbon Isotope Studies of Crude Oils and Their Porphyrin Aggregatesj Geochim. et Cosmochim. Acta, 22, 99 (1961).

Page 17: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

10 4:1. R. Park, S. E p s t e i n . Carbon Isotope F r a c t i o n a t i o n during

Photosynthesis J Geochim. et Cosmochim. Acta^ 21, 110 (1960).

42. R. Park, S. E p s t e i n . Metabolic F r a c t i o n a t i o n of C" ^ and

C-*- i n P l a n t s , P l a n t Physiology, 36, 133 (1961).

43. P. H. Abelson, T. C. Hoering. Carbon Isotope F r a c t i o n - -

a t i o n i n Formation of Amino Acids by Photosynthetic

Organisms\, Proc • N a t l . Acad. S c i . , 47^ 623 (1961)-.

44. J . B i g e l e i s e n . Chemistry of I s o t o p e s , S c i e n c e , 147^ 463 (1955).

45. A. L o n g i n e l l i . R a t i o s of Oxygen-18: Oxygen-16 i n Phos­

phate ajid Carbonate from L i v i n g and F o s s i l Marine Organ­

isms, Nature, 211, 923 (1966).

46. J . N. Weber, D, M. Raup. F r a c t i o n a t i o n of the S t a b l e

Isotopes of Carbon and Oxygen i n Marine Calcerous

Organisms--The E c h i n o i d e a . P a r t I . . V a r i a t i o n of C" ^ and 18

C Content w i t h i n I n d i v i d u a l s , Geochim. et Cosmochim.

. Acta, 30, 681 (1966).

47. J . N. Weber, D. M. Raup. F r a c t i o n a t i o n of the S t a b l e

Isotopes of Carbon and Oxygen i n Marine Calcereous

Organisms—The E c h i n o i d e a . P a r t I I . Environmental and

Genetic F a c t o r s , Geochim. et Cosmochim./SOj 705 (1966).

48. H. C r a i g . The Geochemistry of the S t a b l e Carbon Isotope,

Geochim. e t Cosmochim. Acta, 3, 53 (1953).

49. E . T. Degens. S t a b i l e Isotope i n i h r e n Beziehungen, zur

Z e i t , Geologi'schen Dund schau, 49, 277 (1960).

Page 18: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

• 11

50. S. R. Silverman. Carbon lisotopic Evidence f o r the Role

of L i p i d s i n Petroleum Formation, Chevron Res. Co.,

• ' J . Am. O i l Chemists' Soc. (1966).

51. C. D..Keeling. A Mechanism for C y c l i c - Enrichment of

Carbon-12 by T e r r e s t r i a l P l a n t s G e o c h i m . e t Cosmochim.

Acta, 24, 299 (1961). ' • '

52. W. M. S a c k e t t , W. R. Eckelmann, M. L. Bender, A. W. H. Be.

Temperature Dependence'of Carbon Isotope Composition i n

Marine Plankton and Sediments, S c i e n c e , .148, 235 (1965).

53. M. L. K e i t h and R. H'. Parker. L o c a l V a r i a t i o n of "'"C and 18

• C o n t e n t of Mollusk S h e l l s and the R e l a t i v e l y Minor

Temperature E f f e c t i n Marginal Marine Environments,

Marine Geol., 3, 115 (1965).

54. E . T. Degens. D i a g e n e s i s of Organic Matter, Ph.D. T h e s i s ,

C a l i f . I n s t , of Tech., Div. of Geologic S c i e n c e s ,

C o n t r i b u t i o n No. 1231.

55. J . Gordon Erdman. Some Chemical Aspects of Petroleum

Genesis as R e l a t e d to the Problem of Source Bed Recognition,

Geochim. e t Cosmochim. Acta, 22, 16 (1961).

56. J . Avigan, c . S t e i n b e r g , A. Gutman, C.. E . Mize, G. W. A.

Milne. Alpha-Decarboxylation, An Important Pathway for

Degradation of Phytanic Acid i n Animals, Biochem. Biophys.

Res. Com., 24, 838- (1966).

57. D. Conway, W. F. Libby. TTie Measurement of Very Slow

R e a c t i o n Rates; Decarboxylation of A l a n i n e , J o u r n a l .

of the American Chemical Society« 80, 1077 (1958).

Page 19: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

12

58. R. R. Thompson, W. B. Creath. LOVJ Molecular V/eight Hydrocarbons i n Recent and F o s s i l S h e l l s , Geochim. et Cosmochim. Acta, 30, 1137 (1986).

59. D. H. Welte, R e l a t i o n between Petroleum and Source Rock.,

B u l l . Am. Assocn. Petroleum Ge o l o g i s t s , 4 9, 2246 (1965).

60. W. G. Meinschein. O r i g i n of Petroleum, B u l l . Am. Assocn

of Petroleum G e o l o g i s t s , 45, 925 (1959).

81. G. T. P h i l i p p i . On the Depth, Time and Mechanism of

Petroleum Generation, Geochim. et Cosmochim. Acta, 29,

1021 (194 9 ) .

62. A. G. Douglas, B. J . Mair. S u l f u r : Role i n Genesis of

Petroleum, Science, 147, 499 (1S65).

63. J . E. Cooper, E. E . Bray. A postulated r o l e of f a t t y

a c i d s i n petroleum formation, Geochim. e f Cosmochim.-

Acta, 27, 1113 (1963).

64. E. T.Degens. A n a l y t i c a l Techniques i n the F i e l d of

Organic Geochemistry, Advances i n Organic Geochemistry M , Colombo, G. D. Hobson, Ed. (Pergamon P r e s s , New

York, 1964), 377.

65. E. T. Degens. Geochemistry of Sediments ( P r e n t i c e H a l l ,

New J e r s e y , 1965).

Page 20: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

P a r t I

Hydrocarbons from Geological Sediments

Page 21: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

2-

Mass Spectrometric A n a l y s i s of Hydrocarbons

Mass spectrometry was the p r i n c i p l e t o o l used f o r i d e n t i ­

f i c a t i o n of i s o l a t e d compounds. V/hereas mass spectrometry

has been explored as an a n a l y t i c a l instrument f o r standard

a n a l y s e s by petroleum chemists ( p a r t i c u l a r l y f o r c h a r a c t e r ­

i z a t i o n s of crude mixtures)"^ L t s great p o t e n t i a l f or d e t a i l e d

s t r u c t u r e a n a l y s i s on i n d i v i d u a l compounds has been e x p l o i t e d

only i n recent years., i n geochemical r e s e a r c h the mass

spectrometer i s an a b s o l u t e l y e s s e n t i a l a n a l y t i c a l method s i n c e

i t i s the only technique which can provide d e t a i l e d and unam­

biguous s t r u c t u r e information on extremely s m a l l samples (micro­

gram-nanogram) . Indeed one* might say t h a t modern geochemistry

would be almost impossible without u t i l i z a t i o n of t h i s i n s t r u ­

ment. Mass s p e c t r a are p a r t i c u l a r l y u s e f u l f or r e c o g n i t i o n

of s t r u c t u r a l types and f o r i d e n t i f y i n g r a p i d l y the members

of a homologous s e r i e s of compounds whose s t r u c t u r a l com­

p l e x i t y i s not g r e a t .

This r e s e a r c h has concentrated on the i s o l a t i o n and

i d e n t i f i c a t i o n of hydrocarbons from carbonaceous s h a l e s and

sediments f or three main reasons. F i r s t , hydrocarbons appear

to be the most abundant end products of d i a g e n e s i s (the b i o ­

l o g i c a l and i n o r g a n i c p r o c e s s e s by. which l i v i n g m a t e r i a l i s

degraded). Secondly, many of the hydrocarbons found possess

a high degree of s t r u c t u r a l s p e c i f i c i t y , i . e . i s o p r e n o i d s and

s t e r a n e s , such t h a t they can be r e l a t e d to b i o l o g i c a l pre­

c u r s o r s . T h i r d l y , hydrocarbons are r e l a t i v e l y e a s i l y a nalyzed.

Often a s i n g l e mass spectruin i s s u f f i c i e n t to i d e n t i f y a

Page 22: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

3 compound even when no standards, are a v a i l a b l e . For such compounds no other p h y s i c a l method can provide c l e a r cut s t r u c t u r a l information as conveniently. The widespread a p p l i c a t i o n of mass spectrometry to organic geochemical problems has i n turn l e d to i n t e n s i v e i n v e s t i g a t i o n s i n t o the fragmentations produced upon e l e c t r o n impact of organic compounds. R e s u l t s from these s t u d i e s have c o n s i d e r a b l y broadened the Icnowledge of the mass spectrometry of or g a n i c molecules, p e r m i t t i n g f a i r l y c o n c l u s i v e s t r u c t u r a l deductions from the mass spectrometric fragmentation p a t t e r n of an unknown compound. Furthermore, i n those cases where • the mass spectrum does not i d e n t i f y a compound completely, i t o f t e n p r o v i d e s d e f i n i t e information on the type of s t r u c ­t u r e . I n g e n e r a l , then, i t can be s a i d t h a t mass spectrom­e t r y p r o v i d e s b a s i c information for any. organic geochemistry problem.

Page 23: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

4 Sediments Analyzed

Of the sediments examined i n t h i s laboratory,^"® the

youngest (3 x 10^ y e a r s ) was the Abbott Source Rock from Lake

County i n Northern C a l i f o r n i a . A t t e n t i o n was f i r s t drawn

to the Abbott Mercury Mine Seep O i l by a paper suggesting

that the mode of deposition i n s i l i c a required an "abiogenic" 9

o r i g i n . A n a l y s i s of t h i s o i l , however, y i e l d e d gas chro-

matograms which have some no t i c e a b l e maxima, thus vaguely

resembling those from known b i o l o g i c a l .sediments r a t h e r than

the smooth curve of the abiogenic o i l examined by E g l i n t o n

et a l . ( F i g . I - I l ) . • The i s o l a t i o n and i d e n t i f i c a t i o n of the

C^g isoprenoid, p r i s t a n e , (2,6,10,14-tetramethyl penta-

decane)^ f u r t h e r strengthened the suggestion that i t was a

normally formed b i o l o g i c a l o i l . A sample of the s i l i c e o u s

source rock was provided by Dr. E. B a i l e y of the U.S. Geolog­

i c a l Survey, Menlo Park, C a l i f o r n i a , and compounds were i s o ­

l a t e d by Dr. R. B. Johns.

A sample of a t y p i c a l San Joaquin V a l l e y O i l was pro­

vided by courtesy of Dr. L. Lindeman of C a l i f o r n i a Research

Corporation, Richmond. Samples were i s o l a t e d from the o i l ,

considered to be about 30 x 10 years old, by E. D. McCarthy

I n an attempt to extend the i n v e s t i g a t i o n of orgajiic com­

ponents of a n c i e n t sediments to another continent, the Moonie

Crude O i l from Queensland, A u s t r a l i a (provided by Mr.. A. S. .

K e l l e r , Resident G e o l i g i s t of the Union O i l Development

Corporation, Toowomba, Queensland, A u s t r a l i a ) was examined.

I t i s b e l i e v e d t h a t the o i l had i t s source i n Permian r o c k s .

Page 24: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

5 .

probably sedimentary, and l a t e r migrated along an unconformity

a t the bottom of the r e s e r v o i r basin i n t o J u r a s s i c and

T r i a s s i c sandstone, dated on the b a s i s of spores."^''""""* Samples

were i s o l a t e d by B i l l Van Hoeven.^

A sample of Antrim Shale from Midland County, Michigan,

was provided by Mr. R. D. Matthews of Dow Chemical Company

i n the form of a core taken from a depth of 2,608 f e e t . T h i s

s h a l e has been dated from spores as Late Devonian i n age,

about 265 X 10^ y e a r s ^ ^ and i s the northern p a r t of a l a r g e

d e p o s i t which extends to the South where i t i s r e f e r r e d to

as the Chattanooga S h a l e . T h e carbonaceous Antrim Shale

i s r i c h both i n t o t a l carbon content and i n e x t r a c t a b l e organic

m a t e r i a l (Table I ) . Samples were i s o l a t e d by Eugene D.

McCarthy.^

The Nonesuch Seep O i l was p r e v i o u s l y analyzed i n d e t a i l

f o r i s o p r e n o i d s , the C-^^, C-j_g, C-^^ and C^Q were found

Samples of some of the minor hydrocarbon components we're pro­

vided by Dr. R. B. Johns f o r i d e n t i f i c a t i o n . ^ The source

rock i s estimated" to be two b i l l i o n y ears of age.

A sample of the Soudan Shale was provided by Professor

P. E . Cloud, J r . , of the U n i v e r s i t y of C a l i f o r n i a a t Los 3 5 2 7

Angeles, and compounds were i s o l a t e d by Ted Belsky. ' '

I t i s .the o l d e s t carbonaceous Precambrian sediment known on

the North American continent and i s l o c a t e d i n northeastern

Minnesota i n the Lake Superior region. T h i s s h a l e has an

age of d e p o s i t i o n approaching 3 b i l l i o n y e a r s , determined by

the age of g r a n i t i c i n t r u s i o n which i s known by i s o t o p i c

Page 25: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

9 methods to be 2.7 + .2 x 10 y e a r s . The g e o l o g i c a l r e l a t i o n -17

s h i p s of the Soudan I r o n Formation are given by Go l d i c h .

The Soudan Shale i s an example of p o s s i b l e migration, des­

p i t e the f a c t t h a t the strange ^iZi^^lZ ^^^^^ have been

extremely v/ell r a t i o n a l i z e d . ^ The sample which has been

analyzed was cut from a s u r f a c e exposure and i s s t r a t o -

g'raphically r e l a t e d to the 21st l e v e l of the Soudan I r o n

Mine, Soudan, Minnesota, a t a depth of 1,800 f e e t below

ground. The s u r f a c e sample has approximately four hundred

times as much hexane s o l u b l e e x t r a c t a b l e organic matter as

the mine sample (Tablb I ) . There i s about two hundred and

f i f t y times as much s u l f u r i n the mine sample as i n the s u r ­

face sample. Water could conceivably have washed away the

s u l f u r of the s u r f a c e sample. Organic matter may have seeped i n

during t h i s p r o c e s s . F i g u r e s I I I and IV compare the gas

chromatograms of the tv/o samples; the su r f a c e sample shows

a more s e l e c t i v e p a t t e r n , the spikes, of p r i s t a n e and phytane

standing out compared to the chromatogram from the mine

which shows some resemblance to the chromatogram o f a methane

discharge (Figure I I ) . The sh a l e i s known to be metamorphosed

and perhaps subjected to a temperature as high as 350° or

400°C which does not argue w e l l f o r the p r e s e r v a t i o n of

o r i g i n a l organic matter. Fi g u r e V and VI compare the chro­

matogram of the t o t a l hydrocarbon f r a c t i o n a f t e r HF d i g e s t i o n

of the s u r f a c e sample w i t h the chromatogram of the organic

m a t e r i a l obtained by s o l v e n t e x t r a c t i o n from the s u r f a c e

sample. I t does not argue a g a i n s t migration of organic

Page 26: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

7

components i n t o the s h a l e . T h i s question does not a r i s e i n other sediments examined which are encompassed by c o m p a r a t i v e l y impermeable rock m a t r i c e s .

Also analyzed was a sample of the a b i o l o g i c a l F i s c h e r -

Tropsch product (the o i l r e s u l t i n g from p a s s i n g hydrogen and

carbon monoxide through a heated r i n g ) , obtained from

Dr. A. G. Sharkey, J r . of the P i t t s b u r g Coal Research Center,

which was separated i n t o f r a c t i o n s and c o l l e c t e d by Ted Belsky.

These sediments, then, are the p o i n t s of r e f e r e n c e upon

which a r e c o n s t r u c t i o n of chemical e v o l u t i o n may be based.

S i n c e these g e o l o g i c a l sources are of c o n s i d e r a b l y v a r i e d

age and l o c a t i o n they.may be thought of as r e f e r e n c e p o i n t s

f o r f u t u r e i n v e s t i g a t i o n s . While the e v o l u t i o n of l i v i n g

organisms from the* Precambrian period to the present can be

t r a c e d on the b a s i s of p l e n t i f u l and convincing f o s s i l

r e c o r d s , such morphological remains from the Precambrian

(re p r e s e n t e d i n t h i s study by the Soudan Formation) a r e

s c a r c e or l a c k i n g and f o r the e a r l y Precambrian (3.5-1.5x10^

y e a r s ) i n p a r t i c u l a r , only two very recent reports of w e l l

p r e s e r v e d micro f o s s i l s .provide evidence for the e x i s t e n c e

of life:-^®'-*-^^ I t i s f e l t , t h e r e f o r e , t h a t a chemical

approach, i . e . t h e ' i s o l a t i o n of organic compounds which

could be r e l a t e d c o n f i d e n t l y to b i o l o g i c a l p r e c u r s o r s might

provide e s s e n t i a l (and independent) information on the

e x i s t e n c e and p o s s i b l y the e v o l u t i o n of l i v i n g organisms i n

t h a t period. Furthermore, the a n a l y s i s of sediments or o i l s

of d i f f e r e n t g e o l o g i c a l h i s t o r y and age may e v e n t u a l l y permit

some deduction concerning the d i a g e n e s i s of organic compounds.

Page 27: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure I . Gas Chromatogram of Abbott O i l

Figure I I . Gas Chromatogram of Methane. Spark-Discharge Products

Page 28: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

8a

25m in. 2 0

ABBOTT O I L . BRANCHED-CYGLIC ALKANES

n.C,7 POSITION

3pm in. 2 5

METHANE SPARK-DISCHARGE PRODUCTS

n-C,4 POSITION

n-C,7 POSITION

n-Cgj P O S I T I O N

• • I I I I I . . - I

MUB-3949

Page 29: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Surface sample PRtSTANE

lOVmin. IX 10

;.S.E. 30 PHASE

PHYTANE

tSeaa.

Sample from 21st level of mine

lOVmln. I X 10

S .E . 30 PHASE

Figure I I I . Gas Chromatogram of Soudan Surface Sample

Figure IV Gas Chromatogram of Soudan Mine Sample

Page 30: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

10

SOUQftN H F DiGESTlON

*TT'N

TOTAL

F i g u r e V. Gas Chromatogram of Soudan Surface Sample HF Di g e s t i o n

F i g u r e V I . Gas Chromatogram of Soudan Surface Sample S o l v e n t E x t r a c t i o n

Page 31: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

• 11

E x t r a c t i o n and I s o l a t i o n

The d e t a i l e d method of e x t r a c t i o n ajid i s o l a t i o n of hydro­

carbons and the method of separation i n t o three major f r a c ­

t i o n s : " T o t a l , " "Normal" arid "Branched-Cyclic" has been 4 5 7

e x t e n s i v e l y reported, ' ' and w i l l be d i s c u s s e d i n more

d e t a i l i n P a r t I I . Relevant data are summarized i n Table I .

I n d i v i d u a l compounds of the "Branched-Cyclic f r a c t i o n " were,

i n general, separated on a Z% SE-30 gas-liquid'chromatography

column (10 f t . x 1 / 4 i n . ) programed a t 4°/min._ and subsequently

i s o t h e r m a l l y p u r i f i e d s u c c e s s i v e l y on 7Tring metapolyphenyl-

ether and on t e t r a c y a n o e t h y l a t e d pentaery.thritol (25 f t . x

1 / 4 i n . ) columns.

Mass Spectrometric Instrumentation

A modified Consolidated Electrodynaunics Corporation Model

21-103C mass spectrometer^^ was used to e l u c i d a t e the s t r u c -

t u r e s of i s o l a t e d compounds. I n F i g u r e s V I I - I X the o r i g i n a l

mass s p e c t r a of the f i r s t three compounds i s o l a t e d from the

Moonie O i l are presented. These are o r i g i n a l mass s p e c t r a

i l l u s t r a t i n g the component p u r i t y a t t a i n e d by the i s o l a t i o n

procedures (described above) and proper mass spectrometric

handling techniques. I n Figures XXXIX (page 3 1 ) , XLVI (page

3 4 ) , and L I I (page 36), the normalized bar graph s p e c t r a drawn

from these o r i g i n a l s are presented. ( R e l a t i v e i n t e n s i t i e s for

a l l peaks which are o f f s c a l e due to the choice of the refer-*

ence peak used for n o r m a l i z a t i o n are given i n Table I I I . )

Mass s p e c t r a were run by Miss S h e r i F i r t h and s p e c t r a were measured by Edward Defranceschi.and C r a i g Weinstein.

Page 32: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

12 Three requirements f o r the determination of geochemical

samples which were not incorporated i n the unmodified 21-103C

ar e f a s t scanning, a d i r e c t i n l e t system, and high s e n s i t i v i t y .

U s u a l l y geochemical samples of components i s o l a t e d u s i n g gas

chromatographic techniques are i n the microgram range. The

unmodified C.E.C. with i t s Faraday cup and DC a m p l i f i e r

(capable of d e t e c t i n g a minimum ion c u r r e n t of only approxi­

mately 3 X 10"^ ampere), slow e l e c t r i c a l scanning and 800 cc

r e s e r v o i r and i n l e t l i n e volume gave a mass spectrum on a

minimum sample of about 25 ug - c l e a r l y q u i t e an u n s a t i s f a c t o r y

arrangement. F i r s t , a d i r e c t i n l e t system (See Figure X) v/as

added which permitted samples to be p l a c e d i n a d i r e c t l i n e

w i t h the e l e c t r o n beam ( w i t h i n s i x i n c h e s ) avoiding the p r e s ­

sure d i f f e r e n t i a l of the gold l e a k . . T h i s not only decreased

the amount of sample needed, but a l s o permitted determination

of the mass s p e c t r a of compounds which e a s i l y decomposed or

p y r o l y z e d . S i n c e many samples ( p a r t i c u l a r l y the C-j_g, C-j g, and

C-j y a l k a n e s ) a r e q u i t e v o l a t i l e a t p r e s s u r e s of 10~^ mm Hg, a

l i q u i d n i t r o g e n cooled probe was constructed (Figure X I ) to

permit t h e i r a n a l y s i s .

The AC i o n source f i l a m e n t has been re p l a c e d by a DC

f i l a m e n t e f f e c t i n g r e d u c t i o n of c y c l e modulation i n the ion

beam. The 60 l i t e r / s e c o n d mercury d i f f u s i o n pump on the

a n a l y z e r has been replaced by two S.S. 115 l i t e r / s e c o n d

5 - r i n g polyphenylether pumps pos i t i o n e d a t the source and

a t the i o n m u l t i p l i e r , r e s p e c t i v e l y . T h i s improved the vacuum

system and decreased the pumpdown time between samples. The

Page 33: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

13 i o n source e x i t s l i t has been reduced from 5 t o 1 m i l and the two c o l l e c t o r s l i t s of 7 and 14 m i l s changed t o one f i x e d s l i t o f 1 1/2 m i l e f f e c t i n g an increase o f the focused r e s o l u t i o n from l / l 2 0 t o 1/400 and the non-focused from 1/350 t o 1/1200.

A 17 stage p i type e l e c t r o n m u l t i p l i e r w i t h a c u r r e n t gain o f 2 X 10^ was inc o r p o r a t e d . This p e r m i t t e d the ampli­f i e r i n p u t impedance t o be reduced r e s u l t i n g i n a higher frequency response, a l l o w i n g r e d u c t i o n i n scan time t o 1 1/2 minutes instead o f the previously, required 15 minutes. These m o d i f i c a t i o n s increase the e f f e c t i v e s e n s i t i v i t y of the instrument by a f a c t o r of 10 both i n e l e c t r o n i c a m p l i f i c a t i o n and i n the sh o r t e r sample residence time r e q u i r e d t o deter­mine a mass spectrum.

Page 34: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

14

Figure V I I . O r i g i n a l Mass Spectrum of Moonie O i l C-j g Isoprenoid

Figure V I I I . O r i g i n a l Mass Spectrum of Moonie O i l C-jQ Isoprenoid

Figure IX. O r i g i n a l Mass Spectrum o f Moonie .Oil C-j_g Isoprenoid

Page 35: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

MOOfMIE C(6 ISOPRENOID

too

226

ISO 200

MOONIE CjQ ISOPRENOID

294

200

MOONIE C,9 ISOPRENOID

200

Page 36: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

15

Figure X. The D i r e c t I n l e t System A To I s a t r o n B Tungsten Heater Wire C I n s i d e Surface S i l v e r e d D A l l Glass Valve E To D i f f u s i o n Pump P Gold Leak G I n l e t System H Kovar Seal I 4 mm C o n s t r i c t i o n J I n Line Valve K Tef l o n Sample Holder and Seal L Stop M To D i f f u s i o n Pump N To Rough Pump 0 Quick Disconnect Nut P Te f l o n Chevron Seal Q sample Handle

Page 37: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

i!

® •---»(g)

®

Jl TU ®

Page 38: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

16

Figure X I . The Cooled Probe

Page 39: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

•16a

C A P I L L A R Y

T E F L O N CUP OF

S I L V E R

STAINLESS S T E E L PROBE TO PUMP

COOLED PROBE MU a 13036

Page 40: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

17 s t r a i g h t Chain Hydrocarbons

From the Fischer-Tropsch product the normal C-j , C^Q, and C-j g alkanes were i s o l a t e d . The normal C y alkane was also i s o l a t e d from the Nostoc. algae. Numerous normal alkanes i n the range o f ^.l^^ZO been found i n the sediments i n v e s t i ­

gated. (See Table V.) The mass spectra are cha r a c t e r i z e d by a smooth envelope of peaks fourteen mass u n i t s apart (m/e 43, 57, 71, 85, e t c . ) which majcimize at C and decrease i n i n t e n ­s i t y w i t h . i n c r e a s i n g mass. The example c i t e d i n S t r u c t u r e I may s u f f i c e t o convey a p i c t u r e of the t y p i c a l mass s p e c t r a l p a t t e r n .

29 57 85 113 141 169 197 225

" 1 J2} •"^^'^! -^^^ ^-^-^

Figures X I I I - X V give the mass spectra o f th r e e d i f f e r e n t n.-C-|g mpno o l e f i n s a l s o i s o l a t e d from the Fisher-Tropsch m i x t u r e . The degree of u n s a t u r a t i o n i s i n d i c a t e d by the parent peak.mass and f u r t h e r confirmed by the even mass peaks formed by hydrogen rearrangement. The mass spectra of these types o f compounds makes i t d i f f i c u l t t o determine the p o s i t i o n s of the double bonds w i t h o u t corresponding standards because the double bond

i s d e l o c a l i z e d by e l e c t r o n bombardment• Isomeric o l e f i n s ^ thus, 21

e x h i b i t very s i m i l a r fragmentation p a t t e r n s . An extensive

Page 41: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

18 review of unique ways of conve r t i n g microgram q u a n t i t i e s of geochemical o l e f i n s t o compounds whose mass spectra unambiguous­l y determine the p o s i t i o n . o f the double bond i s given by Schnoes

22

and Burlingame.

Page 42: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

19

Ml nwta TBOrSCH n-C19 AlKANE

769

U i i 33V 50 100 ISO 200 2S0 300

Figure X I I . Mass Spectrum of Fischer Tropsch n-C.« Alkane •

Page 43: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure X I I I . Mass Spectrum of Fischer Tropsch n-Cj^g Alkene I

Figure XIV. Mass Spectrum of Fischer Tropsch n-C^g Alkene I I

Figure XV. Mass Spectrum of Fischer Tropsch n-C-j g .Alkene I I I

O

Page 44: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Ill

FISCHER-TROPSCH C,9 NORMAL ALKENE I

Mr266)

1 I — J l _ i oL J, i. : L . . I. SO 100 ISO

11L> SO

lUlll

50

200 2 5 0

FISCHER-TROPSCH 0,9 NORMAL ALKENE H

M(266)

ill • I ... XOO 150

1-200

T 1 r

2S0

300

"1 r 300

FISCHER-TROPSCH 0,9 NORMAL ALKENE m

100

1 (266)

150 200 250 300

p.)

Page 45: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

21 I s o and Anteiso Alkanes

Figure XVI gives the mass spectrum of C ^ iso-alkane (2-methyltetradecane) i s o l a t e d from the Moonie O i l ; Figure X V I I I , the mass spectrum of the C-j_g iso-alkane i s o l a t e d from the Antrim Shale; Figure XX,that of the C-^j iso-alkane i s o l a t e d from the Abbott Seep O i l ; Figures XIX, XXI, and X X I I , the C^g, C y and C^g iso-alkanes i s o l a t e d from the Nonesuch O i l . These should be compared w i t h the mass spectriam o f au t h e n t i c C g iso-alkane i n Figure X V I I . The mass spectra o f 2-methyl alkanes are q u i t e c h a r a c t e r i s t i c . Fragmentation proceeds w i t h loss of methyl r a d i c a l and str o n g l o s s of the i s o p r o p y l r a d i c a l .

Figure X X I I I gives mass s p e c t r a l evidence f o r a C-|_g anteiso-alkane i n a mixture ( w i t h a component o f molecular weight 238) obtained from the Antrim; Figures XXIV-XXVI give the mass spectra o f the C- g, C^y and C-|Q anteiso alkanes from the Nonesuch O i l ; and Figure XXVII gives the mass' spectrum o f the C Q anteiso-alkane from the Moonie O i l . These can be com­pared w i t h a u t h e n t i c C ^ anteiso-alkane i n Figure X X V I I I . The anteiso-alkanes can be i d e n t i f i e d mass s p e c t r o m e t r i c a l l y by t h e i r very pronounced loss of e t h y l r a d i c a l .

The branched chain f a t t y acids derived from l i p i d s are a p o s s i b l e source f o r the i s o - and anteiso-alkanes. The C^Q t o C^g branched acids and the Cg t o C - anteiso-branched

23 f a t t y acids are c o n s t i t u e n t s o f h a i r , w h i l e i n b a c t e r i a the 0^5 and C y i s o - a c i d s are the major c o n s t i t u e n t s o f the l i p i d f r a c t i o n i s o l a t e d from B a c i l l u s s u b t i l i s and the C ^ "

Page 46: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

22 a n t e i s o - a c i d i s the major component of Micrococcus l y s o d e i k t i c u s . ^ ^ I s o - p a r a f f i n i c hydrocarbons have been i s o l a t e d from rose p e t a l wax and c e r t a i n p l a n t s . I s o -

and anteiso-alkanes have been i s o l a t e d from a C a l i f o r n i a 27 ?fl ?9—"^1 naphtha,. tobacco l e a f wax,'^ wool wax and Cuban sugar 32

cane wax. An a n t e i s o - p a r a f f i n has also been i s o l a t e d from 33

the American cockroach.

Page 47: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

23

Figure XVI. Mass Spectrum of Moonie C ^ Iso-alkane

Figure X V I I . Mass Spectrum of Authentic ^ Iso-alkane lb

Figure X V I I I . Mass Spectrum o f Antrim C^g Iso-alkane

Figure XIX. Mass Spectrum o f Nonesuch C g Iso-alkane

Figure XX. Mass Spectrum of Abbott C ^ Iso-alkane

Figure XXI. Mass Spectrum of Nonesuch C-j ^ Iso-alkane

Figure XXII - Mass Spectrum of Nonesuch C^g Iso-alkane

Page 48: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

23a

MOONIE OIL C|5 iSO-ALKANE

flUTHENTiC C,g ISO ALKANE

ANTRIM C|6 ISO-ALKANE

NQNESXH C|6 ISO ALKA\£

AB80TT SEEP C|7 ISO ALKA.NE

NONESUCH C|7 ISO ALKA,\£

I S O 200 250 300

NONESUCH C|8

so 1 0 0 Li

ISO ALKANE

200 2 5 0 3 0 0

ZtLf t7»-Mio

Page 49: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

24

Figure X X I I I . Mass Spectral Evidence of Antrim C.g . Anteiso-alkane

Figure XXIV. Mass Spectrum of Nonesuch C g Anteiso-alkane

Figure XXV Mass Spectrum of Nonesuch C ^ Anteiso-alkane

Figure X X V I . Mass Spectrum of Nonesuch C- Q Anteiso-alkane

Figure X X V I I . Mass Spectrum of Moonie C-J_Q Anteiso-alkane

Figure XXVIII. Mass -Spectrum of Authentic C2-j_ Anteiso-alkane

Page 50: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

2ka

i

ANTRIM C,6 ANTEISO-ALXANE

300

NOiNESUCH C 16 ANTEISO ALKANE

100 150 200

NONESUCH C|7

.1,1 J

ANTEISO ALKANE

ZOO 250

NONESUCH C|8 ANTEISO ALKANE

MOONIE OIL C,3 ANTEISO-ALKANE ZZ9

100 2S0 300

AUTHEMTC C a ANTEISO A L K A A E mt

• 1 ! 1 - J 1 J ) 1 1 1 . . , MSMO

. \ so 100 ' ISO zoo 250 300

Page 51: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

25 n-Alkyl-Cyclohexanes

The mass spectra of the C-^ and C g cyclohexanes from the Moonie O i l are given i n Figures XXIX-XXX, those of the *"16~ 19 cyclohexanes from the Nonesuch O i l i n Figures X X X I I -

XXXV, and a C-J Q cyclohexane (impure) from the Antrim Shale i n Figure X X X V I . T h e mass spectrum of authentic C-jg cyclo­hexane i s shown i n Figure X X X I . This series i s character­ized by an extremely abundant ion at m/e 83 r e s u l t i n g from the highly favorable cleavage of the a l k y l chain leaving the cyclohexyl carbonium ion:

I

m/e 83

I t i s i n t e r e s t i n g to note here, that while the compounds can be i d e n t i f i e d as n-alkyl-cycloalkanes quite unambiguously (and are, for instance, easily distinguished from isomeric ol e f i n s - see page 17), the determination of r i n g size i s not as stra i g h t forv/ard. The ion at m/e 83 can be accounted- for both by a cyclohexyl carbonium ion and a methylcyclopentyl ion - a d i s t i n c t i o n would be possible only i f known standards f o r both series were-available. For the methylcyclopentyl n-alkane f i v e s t r u c t u r a l p o s s i b i l i t i e s would s t i l l have to be considered: 1,1; l , 2 ( c l s or tr a n s ^ and l , 3 ( c i s or t r a n s ) .

Page 52: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

26 The cyclohexyl-normal alkanes are of i n t e r e s t because

there i s only one te n t a t i v e i d e n t i f i c a t i o n of t h i s series from contemporary plant s o u r c e s , a l t h o u g h the series has been reported i n the Athabasca petroleum d e p o s i t , a n d i n p a r a f f i n v/ax.* ^ Elsewhere i n nature, they have been reported on the basis of a broad mass spectral analysis, but no spe-

37 c i f i c member has been is o l a t e d . Possibly t h i s homology derives from the unsaturated f a t t y acid components of the o r i g i n a l l i p i d s , becoming saturated by an intramolecular c y c l i z a t i o n . Mono-olefinic f a t t y acids are known i n nature ranging from Cy-C^g i n chain length, and more commonly the double bond i s found i n the Cg to Cj p o s i t i o n , although some are known where i t i s located i n the Cg to Cg p o s i t i o n , Terminal mono-olefinic f a t t y acids are also known, for example, 9-decenoic and 10-undecenoic acids, but t h i s series i s neither w e l l d i s t r i b u t e d nor conveniently converted to the end hydro­carbons by r a t i o n a l processes. A possible sequence, explain­ing the genesis of c y c l i c alkanes from unsaturated acids i s outli n e d on the next page. A much more deta i l e d study of other c y c l i c alkanes would be necessary before any conclusions can be drawn as to the merit of t h i s scheme.

Page 53: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

27

4 ^ CO2

Page 54: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

28

Figure XXIX. Mass Spectrum of Moonie O i l C ^ Cyclohexane

Figure XXX. Mass spectrum of Moonie O i l C-g Cyclohexane

Figure XXXI. Mass Spectrum of Authentic C g Cyclohexane

Figure. X X X I I . Mass Spectrum of Nonesuch C- g Cyclohexane

Figure X X X I I I . Mass Spectrum of Nonesuch C ^ Cyclohexane

Figure XXXIV. Mass Spectrum of Nonesuch C^Q Cyclohexane

Figure XXXV. Mass Spectrum of Nonesuch C-j_g Cyclohexane

Figure X X X V I . Mass Spectrial Evidence f o r Antrim C, Q Cycyohexane

Page 55: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

28a

L 1 P, ,

[53 , MOaNIE OIL CYaOHEXANE

. i ., w o 5° »00 ISO 200 250 300

I k

• MOONIE OIL CYCLOHEXANE

. 4 M . "t22«) SO 100 150 200 ZSO 300

1 1 L\

B3 ^JUO— AU7>€NTC C£ CYaOfrCXAfJE

> 1 1 SO 100 150 200 .250 300

I a NONESUCH Cg CYCLOHEXANE

1.. il;. .IL .LL . l**" ' 50 100 160 . 200 2S0 ' ' ' ' "

i 1

B3

, J. .

JUQ NONESUCH CYCLOHEXANE

50 100 150 200 ' 2S0 " " "

11

as NONESUCH CgCYaOHEXAfe

' L . l l ^ . l k ..Ifc .... u . .P030 SO 100 ISO 200 2S0 " ' ^qq '

83

1 Ju 1 J .,

rJ=° NONESUCH Cg a(aJO^€XANE

A .k J. p-««» 50 100 ISO 200 250 ' " '

^ A N T R I M C | 8 A N D C i q C Y C L D H E X A N E M I X T U R E

2S0 300

Page 56: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

29 Isoprenoids

Isoprenoid alkanes are one of the most i n t e r e s t i n g classes of acyclic branched hydrocarbons occurring i n geological en­vironments since t h e i r structure implies very d e f i n i t e bio­l o g i c a l o r i g i n . Their unambiguous i d e n t i f i c a t i o n i s thus of great importance. The mass spectrum of C^ isoprenoid iso­lated from the Moonie o i l (2j6,10--trimethyldodecane) i s shown i n Figure XXXVII. Fragmentation proceeds by carbon-carbon cleavage^ where the most abundant ions are the preferred, secondary carbonium ions, as i l l u s t r a t e d i n Structure I I .

I I

Although a sample of authentic C^^ isoprenoid was not avai l a b l e , i t was easily i d e n t i f i e d mass spectrometrically by the highly c h a r a c t e r i s t i c predominant fragments i l l u s ­t r a t e d i n Structure I I I .

Page 57: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

30

113- I 183 I

I I I

Examples of t h i s t y p i c a l pattern are shown i n Figures XXXVIII XLI, the mass spectra of the C g isoprenoids isolated from the San Joaquin O i l , the Moonie On^ the Antrim Shale, and the Nonesuch O i l , respectively. A pure sample of the "C g isoprenoid was not obtained from the Soudan but mass spectro.

rr^etric data indicate i t s presence i n a mixture.

Page 58: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

31

Figure XXXVII. Mass Spectrum of Moonie O i l Ctc Isoprenoid

Figure XXXVIII . Mass Spectrum of San Joaquin C-g Isoprenoid

Figure XXXIX. Mass Spectrum of Moonie O i l C- g Isoprenoid

Figure XL. Mass Spectrum of Antrim C g Isoprenoid

Figure XLI. Mass Spectrum of Nonesuch Cj_g Isoprenoid

Page 59: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

31a

\m MOONIE OIL €,5 ISOPRENOID

50 • 100 ISO 200 250

• ____

SAN JOAQUIN Ctg ISOPRENOID

LI \ ,J, 50 100 lEO 200 250 300

to MOONIE OIL C,6 BOPRENOIO

i L j L J 50 100 ISO 200 250 300

AA i ANTRIM C,6 ISOPRENOlO

WZ2S)

J 1 ! so 100 ISO 200 250 300

NONESUCH CiglSOPRENOO

50 100 150 250 300

UL6T&-1I0S

Page 60: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

32 A very careful search for the C ^ isoprenoid (Structure

IV) was made. The only i n d i c a t i o n of t h i s compound was found i n the Antrim Shale; the evidence i s given i n Figure X L I I I together w i t h the mass spectrum of the synthetic 2,6,10-

trimethyltetradecane made by Eugene McCarthy (Figure X L I I ) . 8

IV

I 183i

V

The mass spectra of the C-^q isoprenoid isolated from the Abbott O i l , San Joaquin o i l , Moonie O i l , Antrim Shale, and Soudan shale are given i n Figures XLIV-XLVIII. Here again, although there was no synthetic standard, the compound could be unequivocably identifie"d "by i t s highly characteristic fragment ions indicated in. Structure V.

Page 61: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

33

Figure X L I I . Mass Spectrum of Authentic C-|_ Isoprenoid Figure X L I I I . Mass Spectrum of Antrim C ^ Isoprenoid

Page 62: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

33a

113 155

C|7 ISOPRENOID STANDARD

183

M(240) -H 1 —

1 0 0 1 5 0 200 2 5 0 3 0 0

113 ANTRIM C|7 ISOPRENOID 155

i83

, |l' . • • ^ . . . . 2 0 0 2 5 0 3 0 0

M(240)

• i i i i • I 1 1 i r

5 0 1 0 0 1 5 0

Page 63: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

34

Figure XLIV. Mass Spectrum of Abbott O i l C- Q Isoprenoid

Figure XLV. . Mass Spectrum of San Joaquin C^Q Isoprenoid

Figure XLVI. Mass Spectrum of Moonie O i l C-.Q Isoprenoid

Figure. XLVII. Mass Spectrum of Antrim C- Q Isoprenoid

Figure XLVIII. Mass Spectrum of Soudan C^^ Isoprenoid

Page 64: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

3lia

AaaOTT BOPRENOID

100 ISO y e w 2S0 300

Im

SAN JOAQUIN C|8 ISOPffiNOID

XOO ISO 200 250 300

u

MOONIE OIL qa 60PREN0ID

100 ISO 200 250 300

AffTRM Ce ISOPRENOID

11 ^ T r . r . too 150 200 250 300

SOUOflN qgeOPRENOID

too 160 200 2S0

IBL6T«-Kns

Page 65: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

- 35 Figure XLIX gives the mass spectrum of authentic pristsme,

the regular C^g iso p r e n o i d , (Structure V I ) . Figures L-LIV give the mass spectra of C^g isoprenoids i s o l a t e d from the Abbott O i l , the San Joaquin O i l , the Moonie O i l , the Antrim* Shale, and the Soudan Shale. However, caution must be used i n assigning the s t r u c t u r e of p r i s t a n e t o these compounds, p a r t i c u l a r l y i n the case of the Antrim Shale, where the mass spectrum i s s u f f i c i e n t l y d i f f e r e n t enough from t h a t of p r i s ­tane t h a t 2,6,10-trimethylhexadecane, S t r u c t u r e VII,would seem t o f i t the data a l s o .

VI

183

V I I

I t should be noted t h a t i n the case of a s l i g h t l y impure sample, d i s t i n c t i o n between Structures VI ajid V I I would be p a r t i c u l a r l y d i f f i c u l t because one i s d e a l i n g only w i t h a d i f f e r e n c e of f i v e methyl groups versus s i x , and almost i d e n t i c a l fragmentation p a t t e r n s as the s t r u c t u r e s above i n d i c a t e . A recent synthesis of compound V I I has shown .that the gas chromatographic r e t e n t i o n times are considerably d i f f e r e n t , i t being possible t o i d e n t i f y the i s o l a t e d comipounds c o n c l u s i v e l y .

Page 66: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

36

Figure XLIX. Mass Spectrum of Authentic C-, n Isoprenoid ( P r i s t a n e )

Figure L.

Figure L I .

Figure L I I .

Figure L I U

Figure LIV.

Mass Spectrum of Abbott O i l C- g Isoprenoid

Mass Spectrum of San Joaquin C^g Isoprenoid

Mass Spectrum of Moonie O i l C^g Isoprenoid

Mass Spectrum of Antrim C^g Isoprenoid

Mass Spectrum o f Soudan C^g Isoprenoid

Page 67: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

36a

P i i r. -i I L' u I

LA.

Hrrxxnc ptostanc

r AB80rr C|9 ISOPRENOID

\ , 1 -4 J

eo 100

A J

SAN JOQOUIN Ci9 ISOPRENOID

tn

100 1 J_4. US

ISO 200 100

113 MOONIE 01LC|9 ISOPRENOID

«I0

1 f i ll 300

ANTRIM C|9 ISOPRENOID

1.1 i.r.,pl 11 ri? so 300

SOUDAN C|9 ISOPRENOID

1 1 '«| / l ' .1 ,.l -4 . J 1 ^ . 1 / I J i n . /

100 250 300 IIBLe7ft-l093

Page 68: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

37

Figure LV gives the mass spectrum o f - a u t h e n t i c phytane, the r e g u l a r CgQ iso p r e n o i d ( S t r u c t u r e V I I I ) ; Figures LVI-LX the mass spectra of the C ^ isoprenoids i s o l a t e d from the Abbott O i l , the San Joaquin O i l , the Moonie O i l , the Antrim Shale and the Soudan Shale. The s t r u c t u r e of the compound i s o l a t e d from the Antrim Shale i s ambiguous since 2 , 6 , 1 0 - t r i -methylheptadecane. S t r u c t u r e IX, or 7,11-dimethyloctadecane, S t r u c t u r e X" would also seem t o f i t the mass s p e c t r a l data.

V I I I

253 I

267 197 127

IX

197

The compounds are d i s t i n g u i s h a b l e on the basis of t h e i r gas Q

chromatographic r e t e n t i o n times. Nevertheless, the d i f f i ­c u l t y i n d e r i v i n g d e f i n i t e s t r u c t u r e s from mass s p e c t r a l data alone, i s w e l l i l l u s t r a t e d here.

Page 69: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

38

Figure LV. Mass Spectrum of Authentic C/ I soprenoid (Phytane) 20

Figure LVI. Mass Spectrum o f Abbott C ^ Isoprenoid

Figure L V I I . Mass Spectrum o f San Joaquin C ^ q Isoprenoid

Figure L V I I I . Mass Spectrum o f Moonie O i l C ^ q Isoprenoid

Figure LIX, Mass Spectrum o f Antrim Cg^ Isoprenoid

Figure LX. Mass Spectrum of Soudan C^Q Isoprenoid

Page 70: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

38a

WmCNTIC PMYTANE

282 I

ABBOTT 020 ISOPRENOID

50 ISO 200 2S0

J J

SAN JOAQUIN C20ISOPRENOID

so 200 300

yzT MOONIE OILC20 ISOPRENOID

J I J I J . TT/jTl I I I, 2G0 300

ANTRIM O20 ISOPRENOID

lii J, J J J \h T, \.; r ISO 2S0

SOUQftN Cao ISOPRENOlO

300

XBL 6T6-t09T

Page 71: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

39 The mass spectrum of the regular Cg]^ isoprenoid, 2,6,10,

14:-tetrajnethyl heptadecane, which was synthesized by V/illiam Van Hoevan, i s given in-Figure LXI. Figures LXII-LXV give the mass spectra of the Cg-^ isoprenoid i s o l a t e d from the Abbott O i l , the Antrim Shale, the Nonesuch O i l , and the Soudan Shale. Since-they are obviously impure an unambiguous d e f i n i t i o n of s t r u c t u r e i s d i f f i c u l t . I f the peak at m/e 239 p a r t i c u l a r l y i n the case of the Nohesuch, but also t o some extent i n the Antrim and Soudan, i s considered t o have a c o n t r i b u t i o n from the CgQ iso-alkane or the C-^^ anteiso-alkane, (the C ^ q i s o -alkane has a GLC r e t e n t i o n time s i m i l a r t o t h a t of the Cg^ iso~ • prenoid compound), then the remaining fragmentation p a t t e r n could be i n t e r p r e t e d i n terms of a re g u l a r Cg ^ is o p r e n o i d , . St r u c t u r e X I . .

XI

I n the case of the Soudan; there i s t e n t a t i v e mass spectrometric evidence f o r the presence of C ^ q saturated and unsaturated isoprenoid hydrocarbons. Mass spectra of a f r a c ­t i o n c o l l e c t e d from the squalane region of the vapor phase chromatogram show s i m i l a r i t i e s t o the spectrum of au t h e n t i c squalane. Figure LXVin e x h i b i t s the mass spectrum o f au t h e n t i c squalane;. Figures LXVI and LXVII t h a t o f two successive mass

Page 72: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

40

Figure LXI. Mass Spectrum o f Authentic c^^ Isoprenoid

Figure L X I I . Mass Spectrum o f Abbott Cg-j Isoprenoid

Figure- L X I I I . Mass Spectrum o f Antrim Cg ^ Isoprenoid

Figure LXIV. Mass Spectrum o f Nonesuch Cg^ Isoprenoid

Figure LXV. Mass Spectrum o f Soudan Cg^ Isoprenoid

Page 73: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

J iSOPRENOlO

50 100 leO 20Q 250 300

a ABBOTT C21 eOPRENOO) 41

4 i I x 100 ISO 200 2S0 300

0 ANTRIM Cg ISOPRETKXD HI 1 ^ -

Ij i J - I ,1,1,1 l u . n T . C -so 100 ISO 200 260 300

NONESUCH Ca ISOPRENOID

i i f i , r 2U

50 100 ISO 200 250 300

SOUDAN Cjj ISOPRENOID

so 100 • 150 200 250 300 UL6TSHI00

Page 74: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

• 41 s p e c t r a l scans. Scan 1 (Figure LVI) shows a molecular i o n a t m/e 422 expected f o r squalane but t h i s p a t t e r n i s c l e a r l y t h a t o f a mixture o f compounds. By contrast scan 2 (Figure L V I l ) gives a mass spectrum which shows great s i m i l a r i t y i n i t s frag' mentation p a t t e r n t o t h a t o f authentic squalane, although a molecular i o n i s not observed - probably due t o the r a p i d evap­o r a t i o n and piamp o f f o f the sample i n the mass spectrometer. The expected fragmentdtion o f squalane i s i n d i c a t e d i n Struc­t u r e X I I .

337 I I

X I I The i s o p r e n o i d alkanes are assumed t o be d e f i n i t e i n d i c a ­

t i o n s o f l i f e processes because of t h e i r high degree of s t r u c ­t u r a l s p e c i f i c i t y - This view should be maintained w i t h some c a u t i o n since Anders and Cowork.ers have recently'shown t h a t i s o p r e n o i d alkanes are formed i n small q u a n t i t i e s i n abiogenic s y n t h e s i s . P r i s t a n e i s found i n animal and marine sources although i t i s apparently l a c k i n g i n contemporary p l a n t s .

Recently seve r a l mono-olefins o f p r i s t a n e have- also been i s o -43

l a t e d from zooplankton, the diagenetic hydrogenation of which would y i e l d p r i s t a n e . The CgQ isoprenoid

Page 75: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure LVI, Mass Spectrijm of Soudan Shale Squalane F r a c t i o n Scan 1

Figure L V I I . Mass Spectrum of Soudan Shale Squalane F r a c t i o n Scan 2

Figure L V I I I . Mass Spectrum o f Authentic Squalane

ro

Page 76: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

SOUDAN SHALE MS 2213 R l

[Ulitijj 1.1

407 ^

..1.1 1 ../ J ' M.(422)

100 150 200 250 ? 5 0 400 450 113

h4

SOUDAN SHALE n s 2213 R2

183

1. Jll 1

M l 1,. J . 239 267 281 309 337

100 150 200 250 300 350 400 450

113 AUTHENTIC SQUPLRNE

X 10

183

- I — I — 250

r } —i r 350

1*1(422) 100 150

— I 1 r 200

T 1 r 1 1 \ r 300 400 450

Page 77: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

43 a c i d has been i s o l a t e d from b u t t e r - f a t o x b l o o d , a n d petroleumt^ and could conceivabl undergo diagenetic decar­b o x y l a t i o n t o form p r i s t a n e . There are a few r e p o r t s of the i s o l a t i o n of phytane from l i v i n g organisms but none from marine sources. Phytol could be converted t o phytane by a sequence of a b i a i o g i c a l diagenetic processes, such as s a t u r a t i o n and dehydration r e a c t i o n s . Oxidation, decarboxyl­a t i o n and s a t u r a t i o n o f p h y t o l could also lead t o p r i s t a n e . The diagenetic cleavage of the double bonds o f phytenes could account f o r the f o r m a t i o n of the C^g and C^g isoprenoids I f one assumes t h a t p h y t o l i s the precursor of the isoprenoid alkanes and acids then ( S t r u c t u r e X I I I ) formation o f the. C^r^ i s o p r e n o i d alkane or a c i d would r e q u i r e cleavage of two bonds to the same carbon atom. The absence i n most sediments of the C-^rj isoprenoid i s complimented by the work of Cason and Graham, who have found i n petroleum the C , C- , C-j^^, C^g, and isoprenoid acids*^^*^"^*^^ but no C ^ ^ or C ^ Q a c i d s .

On the basis of t h i s argument ( S t r u c t u r e X I I I ) one would not expect a C ^ ^ or G ^ Q a c i d , but r a t h e r a C^Q ketone. The p o s s i b l e presence of the C-^^ isoprenoid i n the A n t r i m may be r a t i o n a l i z e d i n terms of the c r a c k i n g df squalene.

• x r i i

Page 78: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

- ^4:

Unknowns Figures LXIX-LXXII give the mass spectra of four

C^g unknown branched hydrocarbons i s o l a t e d . Figures L X X I I I -LXXIV the mass spectra of two C-^rj unknown branched hydrocarbons, and Figures LXXV-LXXVII the mass spectra of two C ^ Q unknown branched hydrocarbons. Previously,^ S t r u c t u r e XIV ( 5 , 9 - d i -methyltetradecane) was suggested as a p o s s i b i l i t y f o r the Moonie O i l Branched C^g X^ (Figure LXIX) and Structure XV (4 .9-dimethyltetradecane) f o r the Moonie O i l Branched C-^^ Xg (Figure LXX). I t i s i n t e r e s t i n g t o note t h a t the formation of such compounds might be possible by cracking of squalane. The r e l a t i v e gas chromatographic r e t e n t i o n times of the four com­pounds i s o l a t e d from the Moonie O i l are given i n Table IV and the extreme complexity' of the regions from which they were i s o ­l a t e d i s i l l u s t r a t e d by the gas chromatogram i n Figure LXXXI. High r e s o l u t i o n mass spectra run by Dennis Smith v e r i f y t h a t these are sat u r a t e d branched hydrocarbons. I t i s of p a r t i c u l a r i n t e r e s t t h a t the Branched C-|_g compounds i s o l a t e d from the A n t r i m Shale and the Nonesuch O i l are apparently i d e n t i c a l . The general r e p r o d u c a b i l i t y of the i s o l a t i o n procedure and mass s p e c t r a l a n a l y s i s i s i n d i c a t e d by comparison of Figures LXXV and LXXVI which appear t o be the same compound i s o l a t e d on two d i f f e r e n t occasions. R a t i o n a l i z a t i o n s f o r the mass

XIV . • -XV

Page 79: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

•45

spectra o f these p e c u l i a r compounds are p a r t i c u l a r l y d i f f i ­c u l t i n the absence of adequate standards. Even the C-J_Q

branched alkane i s o l a t e d from the Nostoc blue-green algae does not appear t o be i s o p r e n o i d a l and, i n fa c t , s t r u c t u r e s capable of exp l a i n i n g the mass spectrum such as S t r u c t u r e XVI, would not u s u a l l y be considered p a r t i c u l a r l y , b i o g e n i c .

_113,' 15a 225J

XVI

Therefore/-beypnd i n d i c a t i n g the types o f s t r u c t u r e s which might give r i s e t o such spectra, l i t t l e can be said:

M-R 3

^1_J "iJt ^2 \l ^3 M-R,

M-R^-28 M-Rg

Type I . Type I I

Figures LXXVIII-LXXX give the mass spectrum of a com­ponent i s o l a t e d from the T h u c o l i t e (an o i l which was thought t o be abiogenic, k i n d l y supplied by Professor C l i f o r d Frandel o f Harvard and f r a c t i o n a t e d on a 3^ SE-30 gas chromatographic column by B i l l Van Hoeven), the Soudan, and the Nostoc blue-green algae. The mass spectra a l l bear eajae-'reffiemblanGe

Page 80: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

"46 t o each other (ions a t m/e 284, 256, 149, 129, and 111) but are d i f f i c u l t t o i n t e r p r e t i n the absence of other data. The d i f f i c u l t y experienced here i n i d e n t i f y i n g hydrocarbons from a known l i v i n g organism emphasizes the magnitude of the prob­lem of i n t e r p r e t i n g the r e s u l t s of sediment a n a l y s i s . Other p e c u l i a r l y brajiched compounds reported i n the l i t e r a t u r e are

2-methyl-3-ethyl-heptane from petroleum^"^ and 4- and 5-methyl 5?

alkanes i n p a r a f f i n waa. I t i s t o be hoped t h a t i n the f u t u r e the i d e n t i t i e s of such minor components may be o f value.

Page 81: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

47

Figure LXIX. Moonie O i l Branched C g Alkane (X^^)

Figure LXX. Moonie O i l Branched C^^ Alkane (Xg)

Figure LXXI. Antrim Branched C-^q Alkane

Figure LXXII. Nonesuch Branched C^g Alkane

Figure L X X I I I . Moonie O i l Branched C ^ Alkane (Y^)

Figure LXXIV. Moonie O i l Branched C ^ Alkane (Y^)

Page 82: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

U7a

113 177

J i l

195 169 Mowii. Oil Sraodiad C„()( , l

M(226)

50 100 ISO 200 2S0 300

1155 ,83

169

•uil . . ,1 , J J 1, f ^ L ^ k . L . n

MoMi. Oil Brnch.d C,,(]( , l

Mt226)

SO 100 150 200 250 300

1.1 J..1 J Jl 1 1 i so 100

r ISO 200 2S0 300

Noniivcb lranch«d C,

Wi?i...v MtJ26)

50 100 150 200 250 300

I

i

141 Momi. Oil Brcndiad C„(T, )

I " 211

50 100 150 200 250 300

JU

119 Oi ie r»ch .d C„1T,)

•69 211

SO 100 150 200 250 250 300

XBL 678-6104

Page 83: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

48

Figure LXXV. Nonesuch Branched C^g Alkane

Figure LXXV I . Nonesuch Branched C-, p Alkane (Procedure R e p r o d u c i b i l i t y ) ^°

Figure L X X V I I . Nostoc Branched C-|_q Alkane

Page 84: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Ii8a

126 N e a t i v d i BronEhid C,

UO 13- IW

m • 2U

IW 211 I 139 1 197 211 I Ma 734

50 100 150 200 250 300 Nontwch Bronchtd C,

225

211 I 22? Li SO 100 150 200 250 300

lU

1)2 Netloc ftraachad C,

194 168

739 234

SO 100 ISO 200 250 300

XBL 678-6106

Page 85: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

49

Figure LXXVIII. Mass Spectrum of Unknown F r a c t i o n from T h u c o l i t e

Figure LXXIX. Mass Spectrum of Unknown F r a c t i o n from. Soudan

Figure LXXX. Mass Spectrum o f Unknown F r a c t i o n from Nostoc

Page 86: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

l*9a

133

\39

NOSTOC U N K K O W N

23&

l^^'[il,M.M^^•H^m^lhl^...,.^u.»•^l•

384

50 100 ISO 200 250 300 350

THUCHOIITE U N K N O W N

736 2it I 384

250 100 ISO 200 300 350 000

SOUDAN UNKNOWN

135

. k . i K .lis, ,.1^1, 736

SO 100 ISO 200 250 300 350 400

KeL«T9-6l8i

Page 87: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

50

Figure LXXXI. C a p i l l a r y Column Gas Chromatograph of Moonie O i l "Branched-Cycliq" .Hydrocarbon F r a c t i o n

Page 88: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

50a

C,e I S O P R E N O I D

PRISTANE

MOONIE OIL, BRANCHEO-CYCUC FRACTION

( w i t h baseline)

FARNESANE Cm ANTE I SO-ALKANE

ISOPRENOtO

250»C

I hr / C | 5 C Y C U ) H E X A N E \ 2 hr

C,e CrOJOHEXANE Cis I S O ^ A L K A N E

Page 89: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

51 Data C o r r e l a t i o n s

From the sediments examined, isoprenoid alkeme, iso-allcane, anteiso-alkane, n-alkylcyclohexane, and normal alkane s e r i e s have been i s o l a t e d (See Table V). I t i s becoming evident t h a t among biogenic sediments, v a r i a t i o n s due t o i n d i v i d u a l s e d i ­ment h i s t o r y and ecology are t o be found p r i m a r i l y i n the r e l a t i v e amounts of these compounds, and p o s s i b l y i n the hydro­carbons present only i n small q u a n t i t i e s , r a t h e r than i n the types o f hydrocarbons. I t i s ' u n f o r t u n a t e t h a t only one d e f i n ­i t e l y non-marine sediment was examined since t h i s does not per­mit much e x t r a p o l a t i o n and l i m i t s the conclusions t h a t can be drawn. However, i t i s p o s s i b l e a t t h i s stage t o define, a few "ecology i n d i c e s " which may prove u s e f u l i n e v a l u a t i n g f u t u r e sediment analyses.

Table I shows a remarkable increase i n the percent of hydro­carbons f o r the Soudan shale. This might simply r e f l e c t the greater s t a b i l i t y of these compounds or else a more marked degree of r e d u c t i o n which the compounds of the ol d e r sediments have undergone. A decrease i n the percent of normals w i t h age i s a l s o notable. Robinson et a l . ^ ^ have found i n c r e a s i n g amounts of the lower molecular weight isoprenoids w i t h i n c r e a s ­i n g depth suggesting t h a t cracking i s o c c u r r i n g i n the diagen-e t i c process.

. Normal alkanes i s o l a t e d from contemporary p l a n t sources commonly occur w i t h carbon numbers greater than and show an odd over even carbon number predominance. The extreme odd

Page 90: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

52 over even predominance of normal alkanes i n the Green River Shale may be r e l a t e d t o the non-marine nature of the sediment. Geologists have- f o r a long time p l o t t e d the carbon number of normal alkanes on one axis and t h e i r r e l a t i v e c o n c e n t r a t i o n on the o t h e r . Dotted l i n e s have been drawn through these p o i n t s , the jagged character of odd over even predominance sug­g e s t i n g biogenic o r i g i n . The use of- the odd/even r a t i o defined as'

odd/even r a t i o = cQ"centration o f odd normal alkanes • ' concentration o f even normal alkanes

has also been used and i s t a b u l a t e d i n Table VI f o r a l l s e d i ­ments analyzed.

The normal alkane present i n greatest cono en t r a t i o n i s o f i n t e r e s t p a r t i c u l a r l y since algae, b a c t e r i a , and other b i o l o g ­i c a l organisms e x h i b i t very marked maxima. For example, 98 ^ o f t h e normal p a r a f f i n s of Ascophyllum nodosum emd Fucus algae are n-C-j^^ and 99^ o f apple s k i n wax i s "Cgg. Therefore, the normal alkane maximum of a l l sediments ajialyzed i s also tabu­l a t e d i n Table V I . Non-marine sources o f t e n have two maxima.

The very h i g h degree o f s t r u c t u r a l s p e c i f i c i t y possessed by steranes and t r i t e r p a n e s i n terms o f t h e i r exact stereo­chemistry or p r e c i s e s t r u c t u r e would be expected t o provide considerable i n f o r m a t i o n about the l o c a l ecology. (This con­cept w i l l be f u r t h e r discussed i n Part I I . ) The o p t i c a l a c t i v i t y o f s p e c i f i c compounds would be of i n t e r e s t since c e r t a i n of the acids i s o l a t e d from petroleum have been found t o be devoid of the expected o p t i c a l a c t i v i t y . Isotope r a t i o s of i n d i v i d u a l

Page 91: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

53 compounds could represent another series of ecology i n d i c e s ; a b i o l o g i c a l l y formed molecule has undergone many very s p e c i f i c b i o s y n t h e t i c reactions possessing w e l l defined and d i s t i n c t

54 i s o t o p i c d i s c r i m i n a t i o n s .

j n .conclusion, l e t i t be stated t h a t three new hydro­carbon sediments are reported here: the iso-alkanes, a n t e r i s o -alkanes and n-alkycyrlohexanes. Also presented i s the i s o l a ­t i o n of isoprenoids from a number of g e o l o g i c a l sources This work f i t s i n q u i t e n i c e l y w i t h tha t , o f other i n v e s t i g a -,tors who have found ^i^'^20 ^soprenoids i n various g e o l o g i c a l sources: (^i4,''^21^ heen reported i n a Texas gas o i l , ^ ^ ' ^ ^ p r i s t a n e i n a Midcontinent o i l ; phytane and the C ^ and

58 0^^ isoprenoids i n a l i g h t gas o i l f r a c t i o n ; ^i^~^20 prenoids i n the Colorado Green River Shale; p r i s t a n e and phytane i n the G u n f l i n t Chert^^ and Fig Tree Shale^^ (both Precambrian); normal and isoprenoid alkanes i n the Soudan and

6 1 6 ?

Nonesuch Shales; and a few other isoprenoid alkane i d e n t i ­f i c a t i o n s . ^ ^ " ^ Aside from isoprenoids, petroleum research has y i e l d e d a considerable number of other hydrocarbons which are p a r t i a l l y or completely characterized.^*^ .

Page 92: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I

Percentage Composition Sample Abbott

O i l San

Joaquin Green River

Moonie O i l

A ntrim Shale

Nonesuch Shale

Soudan ( I )

Soudan ( I I )

Carbon Content 87 . 3 3 8 5 . 2 2 0 . 1 8 6 . 3 8 . 8 0 . 4 3 . 2 5 . 2

Hydrogen Content 1 1 . 9 . 1 2 . 9 2 . 3 1 3 . 3

Nitrogen Content 0 . 7 6 0 . 6 9 . 5 7 . 5 7

S u l f u r Content < 0 . 1 1 . 2 . 0 8 < 0 . 1 . < 0 . 1 . • < 0 . 1 < 0 . 1 2 5 . 3

Solvent E x t r a c t a b l e Content o f Sediment

1 2 . 4 1 0 0 1 . 3 1 0 0 ' v O . 4 6 0 . 0 3 - 0 . 1 'vO.OS ' v O . 3 9

Extractables Soluble i n n-Heptane

2 8 1 0 0 ~ 9 0 'x-99 ^0.25

" T o t a l " Hydrocarbon F r a c t i o n i n E x t r a c t ­ables

3 8 3 1 3 8 2 5 86

Normal Alkanes i n " T o t a l " Hydro­carbon F r a c t i o n

5 3 2 5 - 3 3 • - ^ 7 . 5

0 1

Page 93: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I I Gas Chromatogram Conditions

Figure VI

Figures I , I I , V

Figure LXXXI

Figures I I , IV

150 f e e t -x .01 in c h ID Apiezon L column temperature--prograjned a t l°/minute. 10 f e e t X 1/16 in c h Z% SE-30 on 100-120 mesh Gaschrom Z, 20 ml/minute, n i t r o g e n a t 50 p s i ^ temperature programed a t e^/minute detector 250°, i n j e c t o r 300° (Aerograph Model 665-1).

150 f e e t X 0.010 in c h 3jg SE-30 on 100-120 mesh Gaschrom Z temperature-programed a t l°/minute. ,10 f e e t X 1/4 in c h 3jg SE-30 on 80-100 Mesh Chromosorb WCDMCS, 60 ml/minute helium d e t e c t o r 245°, i n j e c t o r 280° (Aerograph Model A-90-P2).

cn

Page 94: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I I I Off Scale Mass S p e c t r a l I n t e n s i t i e s

M/E X I I I XIV XV XVI XVII X V I I I XIX XX XXI 40 1260 121 117 670 41 290 670 1230 2140 483 1210 878 o f f 374 42 1690 156 255 820 176 400 3 98 864 140 43 750 1430 3520 1000 2900 o f f o f f 908 44 160 157 140 430 191 54 150 1200 55 1010 650 590 515 223 580 418 1000 278 56 530 290 1000 393 172 445 377 900 184 57 1020 4 80 17 90 786 2100 1730 o f f 742 58 105 101 • 200 67 130 152 113

• 68 120 140 1 69 520 276 530 179 300 . 189 260 70 380 189 360 150 400 213 436 300 71 400 177 • 365 800 422 1550 878 Off 453 72 140 82 120 83 430 177 175 101 360 90 84 180 174 160 120 211 85 190 173 672 282 950 504 1582 245 86 107 97 270 123 267 143 140 108 236 120 98 107 99 180 358

111 110 113 100 182 127 115

Page 95: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I I I Off Scale Mass Spectral I n t e n s i t i e s

M/E XXII- X X I I I XXIV XXV XXVI XXVII XXVIII XXXII XXXVI 40 210 138 214 . 670 41 1820 1100 817 767 682 1000 122 42 750 260 804 389 191 800 43 440 1650 o f f o f f 1318 6000 184 145 o f f 44 243 150 411 194 218 3300 55 920 570 330 417 355 600

. 56 755 650 513 606 477 260 57 • 348 2000 1366 1683. 1364 500 247 58 307 o f f 783 105 60 400 61 3500 -

62 150 69 419 320 138 183 145 250 70 419 220 125 161 132 110 71 1948 950 563 667 545 250 83 224 200 100 130 64 153 85 •1044 600 379 417 359 113 97 153 240 210 99 224 120 190

113 139

--3

Page 96: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I I I O f f Scale Mass Spectral I n t e n s i t i e s

M/E XXXVII XXXVIII XXXIX XL XLI X L I I X L I I I XLIV XLV 40 1300 41 770 450 420 390 730 o f f 327 42 220 138 134 200 300 650 115 43 o f f o f f 1070 580 1500 610 o f f 144 266 44 880 450 286 53 110 55 335 283 230 • 141 550 220 o f f 234 56 400 217 194 113 450 200 810 110 57 . o f f o f f 950 1920 780 . o f f 193 ,148 58 100 69 120 105 250 110 500 108 70 180 212 147 400 180 720 71 o f f 730 820 400 1500 500 . o f f 72 130 83 195 84 140 140 235 85 320 250 690 700 390 o f f 97 130 99 140 175.

CD

Page 97: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I I I O f f Scale Mass Spectral I n t e n s i t i e s

M/E XLVI XLVI I X L V I I I XLIX L • L I L I I L I I I LIV LV 40 210 41 2000 711 630 163 • o f f 579 250 500 183 700 42 500 447 190 104 162 150 176 43 3300 110 1350 209 Off 865 157 1070 380 1240 44 131 221 286 110 53 o f f 54 119 55 900 342 360 115 240 .309 145 290 144 440 56 660 300 .340 .230 250 251 160 270 144 380 57 3400 1630 1550 . Off 1028 o f f 1300 620 1500 58 170 1350 69 285 194 190 120 192 150 172 70 230 160 . 150 113 109 176 71 1300 810 890 200 . o f f 660 435 760 520 1060 85 408 410 o f f 219 133 330 230 440 98 140 117 109 99 130 123 110

to

Page 98: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I I I .

O ff Scale Mass S p e c t r a l I n t e n s i t i e s

M/E LVI L V I I L V I I I LIX LX LXI L X I I L X I I I LXIV LXV 40 • 180 260 336 41 570 • 462 710 860 1160 609 o f f 650 520 950 42 140 111 170 250 340 182 190 160 140 240 43 1310 o f f 1400 2000 1900 154 5 o f f o f f .off 2300 44 150 590 690 200 - 110 55 410 312 420 500 720 482 4 90 480 430 720 56 340 264 320 360 • 580 364 360 290 390 500 57 1700 o f f 1720 1600 2250 1727 o f f o f f • o f f . 2300 58 240 120 170 69 200 157 . 270 280 290 209 260 " 280 340 70 170 150 280 220 260 •218 240 200 340 71 • 1025 o f f 910 960 1160 1091 o f f 920 o f f X400 83 140 106 102 140 100 • 120-84 110 110 • 120 100 120. 85 520 417 410 550 540 409 600 520 550 590 97 125 o f f 110 105 99 100 115 130 130 120 120

o

Page 99: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

61

TABLE IV Relative Retention Times

Compound 10» X 1/4", SE-30 25» x lA", 2-1/2^ Program Rate PPE Isothermal

4Vniin. 136°C. •

C-j g Isoprenoid

^18 Isoprenoid

22.7 min 23.5 " 24.2 " 26.7 " 28.2 " . 28.6 "

10.8 min 11.9 " 12.8 " 19.0 " 20.8 " 23.1 "

Page 100: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE V Approximate R e l a t i v e Abundance of Alkanes*

Sample Normal Alkanes

^9 ^10 . 11 ^12 ^13 ^14 *^15 . ^16 ^17 ^18 ^19 ^20 ^21 Soudan Shale 0.01 0.07 0.5 1 0.9 0.5 0.9 Nonesuch O i l 0.01 0.05 0.3 0.7 .0.95 . 1 0.9. 0.75 0.55 0.4 Nonesuch C a l c i t e • Vein

0.2 0.1 0.3 0.4 0.6 0.8 1 1.2 1.35 1.35 1.30 Antrim Shale 0.005 3.0 5.0 5.0 4.0 3.0 1.5 1 0.5 0.2 0.005 Moonie O i l 0.03 0.3 0.3 0.4 0.3 0.5 0.7 0.8 1 1.04 1.03 0.9 0.8 Green River

Shale 0.01 0.02 0.05 0.04 1 0.06 0.1 0.02 0.08 San Joaquin O i l 0.2 1.3 2.0 2.4 2.2 1.8 1.4 1 0.6 0.4 0.2 0.1 Abbott Seep O i l 0.1 0.7' 1 0.4 0.2 0.08 0.06 Abbott Rock O i l

0.01 0.05 0.2 0.6 1 1.2 • 1.3 1.0 0.8

Page 101: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE V Approximate R e l a t i v e Abundance of Alkanes*

Normal Alkanes Sample

'22 '23 '24 - 25 '26 '27 C. 28 '29 '30 '31 '32 '33 '34

Soudan Shale Nonesuch O i l 0.3 Nonesuch C a l c i t e 1.2

Vein Antri m Shale Moonie O i l 0.7 Green River 0.25

Shale San Joaquin O i l 0.05 Abbott Seep O i l 0.05 Abbott Rock O i l 0.5

0.2 0.1 0-.09 0.07 0.6 0.5 0.04 0.03 0.02 0.01 0.01 0.01 1.1 1.0 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0.08 0.05 0.03

0.65 0.4 0.3 0.1 0.06 0.01 0.005 0.1 0.01 0.15 0.01 0.25 0.2 1.1 0.02 1.1 0.01 0.09

0.04 0.025 0.025 0.025 0.06 0.04 0.07 0.08 0.3 0.1 0.05 0.03 0.3 0.2 0.15 0.1 0.08 0.01

Page 102: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

•TABLE V Approximate R e l a t i v e Abundance of Alkanes*

Sample Age '15

Iso-Alkane Anteiso-Alkane

^16 ^17 '18 16 '17 18

Nonesuch O i l 1 X 10 <0..1 .0.2 0-.07 <0.1 0.2 0.05

Moonie O i l 200 X 10 0.1 0.1

Page 103: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE V Approximate R e l a t i v e Abundance of Alkanes*

Sample n-Alkyl-Cyclohexanes

Age ^15" • 16 ^17 * 18 ^19 " 16 ^16 ^17 • * 17

Nonesuch O i l 1 X 10 0.1 0.1 <0.1 0.1

Moonie O i l 200 X 10" 0.2 0.3 0-1 <0.1 0.05 0.1

0

Page 104: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE V Approximate Relative Abundance of Alkanes*

Isoprenoids Sample Age

^15 ^16 ^17 ^18 ^19 * 20 ^21

Soudan Shale 2.7 X 10^ • 0.08 0.6 1 0.6 0.1 Nonesuch O i l 1 x 10^ 0.4 1.2 1 • 0.3 0.1 Nonesuch C a l c i t e

Vein 1 X 10^ 0.2 0.8 1 0.3 0.1

Antrim Shale 265 X 10^ 0.2 1.3 1 0.6 Moonie O i l 200 X 10^ 0.3 0.9 1 0.3 <0.05 Green River

Shale 50 X 10^ 0.4 <0.1 0.2 1 5.5

San Joaquin O i l 30 X 10^ 0.9 1 0.9 Abbott Seep O i l 3 X 10^ • 1 0.3 Abbott Rock O i l 3 X 10^ 0.4 1 0.5

•Determined from gas chromatographic peak heights

Page 105: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE V Approximate R e l a t i v e Abundance o f AlRanes*

Steranes Triterpanes Sample Age

^27 ^28 ^29 ^30

9 Soudan Shale 2.7 x 10 • 0.03 1.2

Green River 50 x 10^ 0.05 0.5 0.8 1.2 Shale

Page 106: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE VI Ecology Indices

Sample Age O r i g i n 0/E Normal Maximum Phytane/Pristane

Soudan Shale 2.7 X 10^ Marine .68 * .^17 .6 Nonesuch O i l 1 X 10^ Marine ? l . O l ^17 .3 Antrim Shale 265 X 10^ Marine 1.11 - ^13. .3. Moonie O i l 200 X 10^ ? .97 ^12'^18 .3 Green River Shale " 50 X 10« Non-Marine 8.75 *^17'^29 5.5 San Joaquin O i l 30 X 10^ ? 1.05 ^13 .9 Abbott Rock O i l 3 X 10^ Non-Marine" 1.05 ^19 .5 Apple Skin Wax Non-Marine 99*, 12"*" C

^29 --

Marigold Flowers Non-Marine .8 ^ ^30 Algae, Ascophyllum

nodosum Marine 19.8 n —

Nostoc Blue-Green Algae

Marine ^17 — —

CD

Page 107: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

69 REFERENCES

A. Hood, M. J. O'Neal.. Status of A p p l i c a t i o n o f Mass Spectrom­e t r y t o Heavy O i l Analysis, Advances i n Mass Spectrometry, 175. G. E g l i n t o n , P. M. Scott,' T. Belsky, A. L. Burlingame, and M. Ca l v i n , Hydrocarbons o f B i o l o g i c a l O r i g i n from A One B i l l i o n Year Old Sediment, Science, 145, 263 (1964). T. Belsky, R. B. Johns, E. D. McCarthy, A. L. Burlingame, V/. Richter., and M. Calvin, Evidence of L i f e Processes i n A Sediment Two and A Half B i l l i o n Years Old, Nature, 206, 446 (1965). G. E g l i n t o n , P. M. Scott, T. Belsky, A. L. Burlingame, W. R i c h t e r , and M. Calvin, Occurrence of Isoprenoid Alkanes i n a Precambrian.Sediment, Advances i n Organic Geochemistry, 2, Pergamon Press, 1966. R. B. Johns, T. Belsky, E. D. McCarthy, A. L. Burlingame, Pat Haug, H. K. Schnoes, W. Ri c h t e r , and M. C a l v i n , The Organic Geochemistry of Ancient Sediments - Part I I . , Geochim. et Cosmochim. Acta, 30, 1191 (1966). W. H. Van Hoeven, Pat Haug, A. L. Burlingame, and M. Ca l v i n , Hydrocarbons from A u s t r a l i a n O i l , Two Hundred M i l l i o n Years Old, Nature, 211, 1361 (1966).

T. Belsky, Chemical E v o l u t i o n and Organic Geochemistry, Ph.D. Thesis, U n i v e r s i t y of C a l i f o r n i a , Berkeley (1966). E. D. McCarthy, M. C a l v i n , The I s o l a t i o n and I d e n t i f i c a ­t i o n o f the C-j y Saturated Isoprenoid Hydrocarbon

Page 108: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

70 2,6,10-Trimethyltetradecane from a Devonian Shale: The Role o f Squalane as a Possible Precursor, Tetrahedron, 23, 2609 (1967).

9. B. P. S y l v e s t e r , The O r i g i n o f O i l and L i f e , Discovery, 2g, 37 (1964).

10- L. P. Lindemann, Personal Communication from Dr. Lindeman, Chevron Research Company.

11. A. S. K e l l e r , Personal Communication (1965).

12. R. C. McLaughlin, U n i v e r s i t y - o f Melbourne, V i c t o r i a , A u s t r a l i a , Personal Communication (1964).

13. H. B. M i l n e r , Search f o r O i l i n A u s t r a l i a , Nature,' 202, 959 (1964).

14. R. D. Matthews, P r i v a t e Communication from Mr, Matthews, Dow Chemical Company,. Midland, Michigan.

15. I . Z. Breger, A. Brown, D i s t r i b u t i o n and Types o f Orgajriic Matter i n a Barred Marine Basin, Trans. N.Y. Acad. S c i . , 25, 743 (1963)

16. P. E. Cloud, J r . , J. W. Oruner, H. Hagen, 'Carbonaceous Rocks o f the Soudan I r o n Formation (Early Precambrian), Science, 149, 1713 (1965).

17- S. S. Goldich, A. 0. N i e r , H. Baadsgaard, J. H. Hoffman, and. H. W. Krueger, The Precambrian Geology and Geochronology of Minnesota, Minn. Geol. Surv. B u l l . , 4 1 , 193 (1961).

18. E. S. Barghoorn, W. G. Meinschein, J. W. Schopf, Paleo­b i o l o g y o f a Precajnbrian Shale, Science, 148, 461 (1965).

19. E. S. Barghoorn, S. A. T y l e r , Microorgainlsms from the G u n f l l n t Chert, Science, 147, 563 (1965).

Page 109: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

71 20. A. L. Burlingame, F. C. V/alls. A High Performance Modified 21-

103C Mass Spectrometer, Fourth National Meeting, Society

f o r Applied Spectroscopy, Denver, Colorado (1965). 21. H. BudzikiewicZj C D j e r a s s i , D. H. Williams. I n t e r p r e ­

t a t i o n of Mass Spectra of Organic Compounds (Holden-Day, San Francisco, 1967). •

22. H. K. Schnoes, A. L. Burlingame. A p p l i c a t i o n s o f M.S. t o Organic Geochemistry, i n G. E g l i n t o n , Ed., Advances i n Organic Geochemistry ( i n press, 1967).

25. H. G. Deuel, J r . , The L i p i d s and Their Biochemistry, I n t e r s c i e n c e , New York, Vol. 1, 783, Vol. I l l , 96 (1S51-1957).

24. F. B. Shorland. The D i s t r i b u t i o n o f Fatty Acids i n Plant L i p i d s , Chemical Plant Taxonomy, Ed. T. Sw.ain (Academic Press, New York, 1963), 261.

25. J. D. Waldron, D- S. Gowers, A. C. Chi b n a l l , S. H. Piper. Further Observations of the P a r a f f i n s and Primary Alcohols o f Plant Waxes, Biochem. J., 78, 435 (1961).

26. G. E g l i n t o n , R. J. Hamilton. The. D i s t r i b u t i o n of Alkanes, Chemical Plant Taxonomy, Ed. T. Swain (Academic Press, New York, 1963) 187.

27. L. P. Lindemann, J. L. Annia. Use o f a Conventional Mass Spectrometer as a Detector f o r Gas Chromatography, Anal. Chem., 32, 1742 (1960).

28. W. Carruthers, R. A. W. Johnston, Comparison of a P a r a f f i n Was F r a c t i o n from Tobacco Leaf and Tobacco Smoke, Nature, 184, 1131 (1959).

Page 110: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

. 7 2 29. J. D. Mold, R. K. Stevens, R. E. Means, H. M. Ruth.

P r i s t a n e i n Wool Wax, Nature, 199, 283 (1963a).

30. J. D. Mold, R. K. Stevens, R. E. Means, H. M. Ruth. Normal, I s o - and Anteiso- Homologues o f Tobacco, Biochemistry, 2, 605 (1963b).

31. D. T, Downing, Z. H. K r a t z , K. E. Murray. Studies i n Waxes—XIV. An I n v e s t i g a t i o n of the A l i p h a t i c C o n s t i t ­uents o f Hydrolyzed Wool Wax by Gas Chromatography. Aust. J. Chem., 13, 80 (1960)

32. F. Sorm, V- Wollrab, P. Jarolimek, M. S t e i b l e O l e f i n s O l e f i n s i n Plant Waxes, Chem. and I n d . , 1833 (1964).

33. . G. L. Baker, H. E. Vroman, J. Padmore, Hydrocarbons of American Cockroach, Biochem. Biophys. Res. Comm., 15, 360. (1963)

34. A. Kuksis. The Hydrocarbon Composition of Some" Crude and Refined Edible Seed O i l s , Biochemistry,-3, 1086 (1964).

35. B. Nagy, G. C. Gagnon. The Geochemistry o f the Athabasca, Geochim. Gosmochim, Acta, 23, 155 (1961).-

36. E. J. Levy, R. R. Doyle, R. R. Brown, F. W. Molpolder. . I d e n t i f i c a t i o n o f Hydrocarbons by Gas-Liquid Chromato­graphy and Mass Spectrometry, Anal. Chem., 33, 698 (1961).

3 7 . W. G. Meinschein, Hydrocarbons i n the Orgueil Meteorite., Space Sciences Rev., 2, 653 (1963).

38. A. -W, Weitkamp, A. M. S i l j a n i c , S. Rothman. The Free F a t t y Acids o f Human Hair Fat, J. Am. Chem. Soc. > 69, 1936 (1947).

3 9 . N. A. Sorenson, Mehlum, Studies Related t o Pr i s t a n e - -The Unsaponifiable Matter o f the L i v e r O i l o f the Basking Shark, J. Acta Chem. Scand., _2, 140 (1948).

Page 111: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

73

40. J. G. Be n d o r a i t i s , B. L. Brown, R. S. Hepner. I s o l a t i o n and I d e n t i f i c a t i o n of Isoprenoids i n Petroleum, World Petroleum Congress, Frankford/Main, Germany,.June 19-25 (1S63).

41. J. D. Mold, R. K. Stevens J R. E. Means, H. M. Ruth. Pristane i n Wool Wax, Nature, 199, 283 (1963).

42. M. Blumer, M. M. M u l l i n , D. W. Thomas. .Search f o r Bio­genetic Source of Hydrocarbons i n Sea Water, Science,

• 140, 975 (1963). 43. M. Blumer, D. VJ. Thomas.. Phytadienes i n Zooplanktoh,

Science, 147, 1148 (1965). 44. R. P. Hansen, F.' B. Shorlajid. The Branched-Chain Fatty-

Acids of B u t t e r f a t , Biochem. J., 55, 662 (1953). 45. A. K- Lough. I s o l a t i o n of 3,7,11-Tetramethylhexadecanoic

Acid from Ox Plasma, Biochem. J., 86, 14 (1963). 46. J. Cason, D. W. Graham. Isoprenoids i n Petroleum:

I s o l a t i o n of Isoprenoid Acids from a C a l i f o r n i a Petroleum, Tetrahedron, 21, 471 (1965).

47. J. Cason, A. I . A. Kodair. I s o l a t i o n of the 11 Carbon A c y c l i c Isoprenoid Acid from Petroleum. Mass Spectroscopy of i t s p-Phthalimidophenacyl Ester, J. Org. Chem. ( i n press, 1967).

48. A. Kodair. I s o l a t i o n and St r u c t u r e Determination of , Certain A c i d i c Components from C a l i f o r n i a Petroleum,

Ph.D. Thesis, U n i v e r s i t y of C a l i f o r n i a , Berkeley (1965). 49. J. Cason, A. I . A. Kodair. Separation from a C a l i f o r n i a

Ethyl-4-Methyl Cyclopentylacetic Acid, J. Org. Chem., 31 3618 (1966).

Page 112: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

74 50. E. Anders, R. Hayatsu, H. St u d i e r . Science ( I n press,

1957). 51. E. J. Levy, E. j. G a l b r a i t h , F. W. Melpalder. I n t e r p r e ­

t a t i v e Techniques f o r the Determination o f P a r a f f i n Wax Composition by Mass Spectrometry and Gas Chromatography. I n R. M. E l l i o t t , Ed., Advances i n Mass Spectrometry, . Vol. 2, (Macmillan, New York, 1963). 395.

52. D. J. Mair, 2. Rouen, E. J. Eisenbrown, A. G. Harodysky. Terpenoid Precursors of Hydrocarbons from the Gasoline Range o f Petroleum, Science, 154, 1339 (1966).

53. W E. Robinson, J. J. Cummins, G. U. Dineeh. Change i n Green River O i l Shale P a r a f f i n s w i t h Depth, Geochim. Cosmochim. Acta, 29, 249 (1965).

54. R. Park, S. Epstein'. Metabolic F r a c t i o n a t i o n o f C"^ and C^^ i n P l a n t s , Plant Physiology, 56, 133 (1961).

55. J- G. B e n d o r a i t i s , B. L. Brown, L. S. Hepner. Isoprenoid Hydrocarbons i n Petroleum, Anal. Chem., 50, 49 (1962).

56. J. G. B e n d o r a i t i s , B. L. Brown, L. S. Hepner. I s o l a t i o n and I d e n t i f i c a t i o n o f P a r a f f i n s i n Petroleum, F i f t h World Petroleum Congresss, Sect. V-15, New York (1963).

57- . R. A. Dean, E. V. Whitehead. The Occurrence o f Phytane i n Petroleum, Tet. L e t . , 21, 768 (1961).

58. B. J. Mair, N. C Kronskap, T. J. Meyer. Composition of the,Branched P a r a f f i n - c y c l o p a r a f f i n P o r t i o n of the L i g h t Gas O i l F r a c t i o n , J. Chem. Eng. Data, 7 , 420 (1962).

59. J. D. Oro, D. W. Nooner, A. Z l a t k i s , S. A. Wikstrom, E. S. Barghoorn. Hydrocarbons of B i o l o g i c a l O r i g i n i n Sediments about Two B i l l i o n Years Old, Science, 148, 77 (1965).

Page 113: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

60 75 .

J. O r O j D. W. Nooner. Aliphatic Hydrocarbons from the Precambrian of South A f r i c a , Nature, 213, 1082 (1967).

61. W. G. Meinschein, Soudan Formation: Organic Extracts of Early Preceirabrian Rocks, Science, 150, 601 (1965).

62. G. Meinschein, E. S. Barghoorn, J. W. Schopf. Biological Remnants i n a Precambrian Sediment, Science, 45, 262 (1964)

63. B. L. Mair, Terpenoids, Fatty Acids and Alcohols as Source Material f o r Petroleum Hydrocarbons, Geochim. Cosmochim. Acta, 28, 1303 (1964).

64. D. G. Jones, J. J . D i c k e r t . Composition and Reactions of. O i l Shale of Green River, Chem. Eng. Prog., 61, 33 (1965).

65. M. Blumer, M; M. M u l l i n , D. W. Thomas. Pristane i n Zoo-plankton, Science, 14.0, 974 (1963). M. Blumer, W- D. Snyder. Isoprenoid Hydrocarbons i n Recent Sediments: Presence of Pristanes- and Probable Absence of Phytane, Science, 150,1588(1965). W. L. Whitehead, I . A. Breger. Geochemistry of Petroleum, i n Organic Geochemistry, I , A . Breger, ed. (McMillan, New York, 1963) 248.

66

67

Page 114: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Part I I Steranes and Triterpanes from The

Colorado Green River Shale

Page 115: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

The Colorado Green River Shale The Colorado Green River Shale; a carbon-rich sediment

of Eocene Age (52 x 10^ years)j i s perhaps the most exten-siv e l y investigated sediment. Isoprenoid hydrocarbons

7 12 and a series of normal alicanes have been i d e n t i f i e d / '

13-18 and more recently various classes of acids have also been isolated (See Part I I I ) . The abundance of the isoprenoids pristane and phytane i s a s t r i k i n g feature of the hydrocarbon content of t h i s rock (See Figure I ) . E a r l i e r investigations i n these laboratories,"^^ have dealt with the i d e n t i f i c a t i o n of isoprenoid and normal hydrocarbons. Gas chromatographic fractions from the high molecular weight region of the gas chromatogram obtained were investigated by mass spectrometry leading to the discovery of a series of sterane and triterpane

19 substances. The mass spectra of these compounds are quite characteristic and permit d e f i n i t e skeletal assignments.

Page 116: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Steranes and Triterpanes Isolated from Green River Shale Fractions were collected from the Green River (Mahogany-

Zone bed of the Green River formation near R i f l e , Colorado) Shale (provided by Dr. Robinson) extract whose gas chromat-ogram i s given i n Figure I . Mass spectra of these fractions led to the discovery of three steranes^ the C^jj Cgg and C g hydrocarbon skeletons of steroids. The three mass spectra i n Figures I I - I V were obtained by c o l l e c t i n g peaks on a 10 f t X 1/4 inch, 3^ SE-30 (Gaschrom Z, 100-120 mesh) with a program rate of 4°/min. and then rechromatographed isothermally at about 270°C. For purposes of comparison the mass spectrum of authentic sitostane (Structure I ) i s given i n Figure V.

18

12

I I The very intense peak at m/e 217 may" be r a t i o n a l i z e d by the ion represented i n Structure I I . However, deuterium labeling studies are ambiguous with respect to which hydrogen i s l o s t

27 S O that the l o c a t i o n of the double bond i s uncertain. . The .peaks at m/e 14 9 may arise by the pathway:^®

R . " R T

Page 117: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

The small peak at m/e 259 results from simple loss of the side chain to give Structure I I I

m/e 259

I I I

The peaks at m/e 191, 203, 231 probably arise from small amounts of triterpane impurities.

A CjQ triterpane was also isolated and i t s mass spectrum (Figure VI) i s quite similar to that of the lupane (Structure I"\f), Figure V I I , a sample of which was provided by Professor Carl Djerassi and Dr. H. Budzikiewicz of Stanford University. 29

The intense peak at m/e 191 i s formed by two d i f f e r e n t ruptures of. the central r i n g to give fragments V and VI.

Page 118: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

• 5

Figure I . Gas Chromatogram of the Branched-Cyclic Fraction of The Colorado Green River* Shale

Page 119: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

5a

TOTAL

lOOil

ATTN 10 X I

4pmin. 35 3P 2 ^

BRANCHED-CYGLIC 528 -^29 STERANE,

i^C^p TRITERPANE

^ 2 8 - 0 2 9 STERANE PHYTANE

lOOxl \ »

Cgg STERANE

COT S T E R A N E

10 XI

PRtSTANE

•C,g ISOPRENOID

4pmin.

0)8 tSO PRENOip 1 ^

NORMALS

,300*C L _ L

n-C,7

IT 10 XI

4.0 mln. ^ 22. 2 ^ 2P - 1 GREEN RiVER SHALE lCOlJ0RAD0).'v6OXIO6 YRS. ALKANE FRACTIONS

M U B - 7 8 5 0

Page 120: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure I I .

Figure I I I

Figure IV.

Figure V.

Mass Spectrum of Colorado Green River Shale C^j Sterane Mass Spectrum of Colorado Green River Shale CgQ Sterane Mass Spectrum of Colorado Green River Shale Cgg Sterane Mass Spectrum of Authentic Sitostane

Page 121: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

m/e 149

Mlll.l.Hlllllll.l.lL

c 6 ^ m/c 217

C-27 STERONE

x5 M-15,

I i . i i . ^ IJlj.i. . Iil.lli..|b.l.l.t)....ii.l,i

M (272)

IQD 150 200 1 1 1 " ' " '

250 300 350 400 450

m/e 149

u ItJJJ

m/e 217

C-2e STERRME

x5

M-IS

11 M (386) I'

400 100 ISO 200 250 300 T - — r — r

350 450

cb' m/e 149

il ill ..111,,

m/c 217

x5

C-29 S f E R P r i E

M-I5| M (400)

100 ISO 200 250 300 350 400 450

m/c 149

1. • 111 T I 1 1 r

m/e 217

fiUTH. SITDSTflNE

»5

f 100 150 200

— I r 250

J J l . M W (400)

300 350 400 450

Page 122: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

100

C 30 TRITERPflNE

I 3 m/e 191

150 T • 1 r

200 250 300 M-43 ~m—

350 400 ISO

100

+ CHn m/e 191

ISO 200 250 300

LUPONE

1 1

M-15 M(4I2) — u , 1

350 400 450

Figure V I . Mass Spectrum of the Colorado Green River Shale C^Q Triterpane Figure V I I . Mass Spectrum of Authentic Lupane

Page 123: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Extraction ' Seventy pounds of Colorado Green River Shale were c o l ­

lected* from the side of a c l i f f i n Parachute Creek, 8 miles northwest of Grand Valley, Colorado, l a t i t u d e N ZS"" 37', longitude W 108° 7', elevation 7300 f t . The white s t r a t i f i ­cations i n the photograph of Figure V I I I show the general area. The outer surface of the rock'was removed with hammer and c h i s e l . * * Large pieces were then crushed i n a rock-crusher.*** Rock chips between 3 and 20 mesh were sonicated with 4:1 benzene/methanol.(redistilled*** ACS reagent grade Baker) for at least seven minutes ( i n 200 ml batches) to remove the outer organic material. The collected residue represents the "v;ashings." The rock was then pulverized and sonicated twice ( i n 500g batches) with two l i t e r s of 4:1 benzene/methanol ( r e d i s t i l l e d ACS reagent grade Baker) for not less than twenty minutes with mechanical s t i r r i n g . Since i t was found that as much organic extract could be removed without sonicating^, the rock for columns IV and V (See below) was not sonicated but only s t i r r e d with solvent containing a s l i g h t l y higher benzene/methanol r a t i o . I t should be noted

*By Martin Senn and Bernd Simoneit. **VJith the help of Dr. G. Eglinton, Dr. Heinrich Schnoes,

Bernd Simoneit and Ted Belsky. ***With the assistance of Bernd Simoneit.

Page 124: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

that the second sonication gave approximately h a l f the amount of extract given by the f i r s t sonication and that the t h i r d sonication gave approximately h a l f the amount of extract - obtained from the second. Yields of extract were proportional to the amount of solvent used. A t o t a l of 17.5 kg of rock were extracted y i e l d i n g I S l g of crude extr a c t .

Page 125: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

10

Figure V I I I Photograph of Colorado Green River Shale Sample Location*

*Taken by Bernd Simoneit

Page 126: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

11 Alumina Coluinn Chromatography

The l i m i t i n g factor i n a uniform treatment of the extract proved to be i t s passage down an alumina column. For the f r a c t i o n a t i o n of the extracted material by column chromat­ography the t o t a l extract was divided into f i v e portions of 30-40 grams each (See Table I ) . Each portion was chromat-.ographed separately on 2 kg-of aluminum oxide. A l l columns were 10 cm i n diameter and 20-30 cm i n height depending on the type of alumina used and the mode of packing (See Table l ) . A l l columns were washed with two gallons of methanol (redis­t i l l e d ACS reagent grade Merk), two gallons of benzene ( r e d i s t i l l e d ACS reagent grade Baker), and two gallons of hexane ( r e d i s t i l l e d ACS reagent grade Matheson, Coleman, and B e l l ) . The most e f f i c i e n t method of packing a column was to make an alumina s l u r r y by sv/irling equal volumes of alumina and hexane which was then poured in t o a column containing one and a h a l f gallons of hexane running at a rapid rate; a column could thus be obtained with a flow rate of at least two l i t e r s per hour. Extract was added to the top of each column i n hexane, and eluted i n order with hexane, benzene, and methanol. Fractions of 1 l i t e r each were collected. The f i r s t hydrocarbon fractions were almost colorless; l a t e r ones were a pale yellow. After the brown and yellow bands an i n t e r e s t i n g pink to rose colored band was eluted by benzene. Table I gives the details- on the column preparation and chromatography of the f i v e columns.

Page 127: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

12 A l l fractions eluted with hexane v/ere checked for

absorption by u l t r a v i o l e t spectroscopy and those exhi b i t ­ing only end absorption and a gas chromatographic pattern similar to that i n the preliminary experiments v/ere taken as the t o t a l saturated hydrocarbon f r a c t i o n f o r further process­ing (See Table I I ) . Gas chromatograms of the f i r s t fractions eluted with hexane from these columns are shown i n Figures IX-XII. They give the t y p i c a l " t o t a l hydrocarbon" pattern expected from the Green River Shale from previous experi­ments .

Page 128: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure IX. Gas Chromatograms of Column I Fractions

Page 129: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

F R A C T I O N J

I ' ^ Alt*n I X 8

FRACTION n

Alt n I X 8

FRACTION ffl

Alt n I X 32 I 1

COLORADO GREEN RIVER SHALE N E U T R A L F R A C T I O N S

M U U - I 3 0 S 7

Page 130: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

14

Figure X. Gas Chromatograms o f Column I I I Fractions

Page 131: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

14a

Frcclion 2

Att'n 8

i U L

Fraction 3

Atl'n 8

.11

J u 4 0 ' 100' 150

Fraction 4

Attn I

200 250" 300

COLORADO GREEN R IVER S H A L E . COLUMN l U XBL 673-IOOr

Page 132: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

15

Figure X I . Gas Chromatograms o f Column IV Fractions

Page 133: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

15a

FRACTION 2

An'n B

FRACTION 3

Alt'n B

FRACTION 4

Attn B

FRACTION 5

Attn 8

I

FRACTION 6

Att'n 4

FRACTION 7 Atfn 2

Attn 1

' 100 1 I 250 ! 100» I i I

COLORADO GREEN RIVER SHALE COLUMN EC XBL 672-624

Page 134: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

16

Figure X I I . Gas Chromatograms of Column V Fractions

Page 135: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

16a

fflACTION 2

LL_Att'n

turn FRACTION - -3

L A l f n I I ' f

AttiT

C O L b R A l D O ^ ' G R E E N RIVtR ' S H A L E ^ * ^ COLUMN 2 XBLG74-I0I8

Page 136: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I Alumina Column D e s c r i p t i o n

Column

I I

I I I

IV

Alumina 2,000g Bio. Rad Aluminum Oxide f o r t h i n l a y e r chromatography. Neu t r a l Alumina AG 7, 2-44 microns w i t h binder (packed i n hexane). 2j000g Bio. Rad Aluminum Oxide f o r t h i n l a y e r chromatography. Neutral Alumina AG 7, 2-44 microns w i t h o u t binder (packed i n methanol). 2,000g Bio. Rad Aluminum Oxide f o r t h i n l a y e r chromatography. Neu t r a l Alumina AG 7, 2-44 microns w i t h o u t binder (packed i n hexane). 2 kg. E- Merck Ag. Darmstadt Aluminum Oxide a c t i v e n e u t r a l f o r chromatography a c t i v i t y 1. (packed i n hexane and r e a c t i v a t e d a f t e r methanol wash). 2 kg. Bio. Rad Aluminum Oxide f o r Column Chromatography. N e u t r a l Alumina AG 7, minus 200 mesh (packed i n hexane but not r e a c t i v a t e d a f t e r methanol wash).

E x t r a c t 31g o f extract- minus 5g hexane i n s o l u b l e .18g hexane sol u b l e acids and . l l g hexane sol u b l e bases.

33g of extract- (from 5826g rock i n c l u d i n g e x t r a c t o f I I I ) minus 5g hexane i n s o l u b l e m a t e r i a l .

26g of e x t r a c t minus 7g hexane i n s o l u b l e , .20 hexane sol u b l e acids*, .lOg hexane soluble bases.

48g o f e x t r a c t (from 6, 7507g rock together w i t h e x t r a c t of V, d i v i s i o n being c a r r i e d out w i t h hexane) minus 14g hexane i n s o l u b l e m a t e r i a l .

43g o f e x t r a c t minus 5g hexane i n s o l u b l e m a t e r i a l .

Page 137: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

18 TABLE I I Kydrocarbon Fractions E l u t e d from Alumina Column

and Sieving Treatment F r a c t i o n Sieving Treatment

I 1 0.27g.(normal hydrocarbons) unprocessed o

I 2 5.65g sieved w i t h 500g l / l 6 " 5 A molecular sieve i n benzene y i e l d e d 4:.06g branched-c y c ^ i c hydrocarbons sieved w i t h 250g 1/8" 10 A molecular sieve i n hexane, 2.33g recovered- from outside and 2.38g adsorbed, l-§9g of which was sieved w i t h 155.5g l / l 6 " 5 A molecular sieve i n benzene and y i e l d e d 1.14g.

I 3 0.52g (sieved w i t h 50g l / l 6 " 5 A molecular sieve i n benzene y i e l d e d 0.35g.

I 4: 0.21g (high molecular weight) unprocessed. o

I I 1 7.23g sieved w i t h 637g l / l 6 " 5 A molecular sieve i n benzene y i e l d e d 4.82g branched-c y q l i c hydrocarbons sieved w i t h 488g 1/8" 8 A molecular sieve i n hexane, 2.21g recover ed from outside and l-O l g (some lo s t ) o a d s o r b ­ed, which was sieved w i t h 57g 1/8" 5 A molec u l a r sieve i n benzene and gave .71g.

I I 2 3.95g (sieved w i t h 300g 1/8" 5 A molecular sieve i n benzene y i e l d e d 3 g branched-c y c l i c hydrocarbons.

I I 3 0.65g (high molecular weight m a t e r i a l ) unprocessed.

I I I 1 No m a t e r i a l e l u t e d .

I l l 2 5.79g sieved w i t h 287g I / I 6 " 5 A molecular sieve i n benzene y i e l d e d 4.09g branched-.cyclic hydrocarbons.

o

I I I 3 4.22g sieved w i t h 123g I / I 6 " 5 A molecular sieve i n benzene y i e l d e d 3.85g branched-c y c l i c hydrocarbons.

I l l 4 0.68g .(high molecular weight) unprocessed.

Page 138: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

19 TABLE I I (Cont'd.)

Hydrocarbon Fractions E l u t e d from Alumina Column and Sieving Treatment

F r a c t i o n Sieving Treatment IV 1 No m a t e r i a l e l u t e d . IV 2 2 g (normal and low molecular weight

branched) unprocessed. o

IV 3 5.81g sieved w i t h 265g 5 A molecular sieve and vacuum d i s t i l l e d a t 1.2 cm pressure

• and 200°C. l e f t u n d i s t i l l e d 4.0g only 1.8g of which was used.

IV 4 1.38g vacuum d i s t i l l e d at .5 cm of mercury u n d i s t i l l e d .08g.

IV 5 0.32g. IV 6 IV 7 V I No m a t e r i a l e l u t e d . V 2 8.28g sieved w i t h 4 90g l / l 6 " 5 A molecular

sieve i n benzene y i e l d e d 6g branched-cyclic hydrocarbons.

V 3 l l . l g sieved w i t h 601g 1/8" 5 A molecular sieve i n benzene y i e l d e d 10-8g branched-c y c l i c hydrocarbons.

V 4 1.70g. V 5 0.43g.

Page 139: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

20 Molecular Sieving

Hydrocarbon f r a c t i o n s c o l l e c t e d from a l l f i v e alumina columns (See Table I I I ) were subjected to s i e v i n g experiments. A l l molecular sieves were e i t h e r heated to 350°C f o r 24 hours or t o 200°C under vacuum (5 mm Hg) i n the presence o f P205-For the removal o f normal alkanes, a l l f r a c t i o n s used i n the l a r g e scale sterane and t r i t e r p a n e i s o l a t i o n were sieved

o

w i t h l / 8 " or 1/16" 5 A molecular sieve i n a r a t i o greater than 5 0 / l molecular sieve e x t r a c t . ^ I n an attempt t o sim­p l i f y the p u r i f i c a t i o n procedure by separating out the steranes and t r i t e r p a n e s . F r a c t i o n 1-2 (which consisted of 4.06g branched-cyclic hydrocarbons a f t e r being r e f l u x e d i n benzene

o w i t h 500g 1/16" 5 A molecular sieve) was r e f l u x e d w i t h 250g

o

of l / 8 " 10 A molecular sieve i n hexane. Figure X I I I shows the gas chromatogram r e s u l t i n g a f t e r s i e v i n g f o r 3 days w i t h

o

the 5 A molecular sieve; Figure XIV shows the gas chromatogram r e s u l t i n g a f t e r s i e v i n g f o r 3 days w i t h the 10 A sieve^ while Figure XV shows the gas chromatogram of the organic e x t r a c t

o

obtained by d i s s o l v i n g the 10 A sieve w i t h 24^% HF and e x t r a c t ­i n g w i t h benzene. I t i s of i n t e r e s t t h a t the sieve adsorbs predominantly the t r i t e r p a n e s , as i s evident from a compari­son of the mass spectra o f those compounds i n the sterane

o

r e g i o n adsorbed by the 10 A molecular sieve (Figures X V I I , XIX, XX, X X I I , XXIV) w i t h those not adsorbed (Figures XVI, X V I I I , XXI, and X X I I I .

o F r a c t i o n I I - l , t h e r e f o r e , was sieved w i t h 1/8" 8 A molecu-

o l a r sieve ( a f t e r s i e v i n g w i t h 5 A molecular s i e v e ) ; the

Page 140: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

21 r e s u l t i n g gas chromatograms are given i n Figures XXV-XXVII. I t should be noted t h a t i n both cases ( F r a c t i o n 1-2 and I I - l ) the m a t e r i a l recovered from the sieve v/as a dark brovjn gum, w h i l e the e x t r a c t remaining outside was a c o l o r l e s s l i q u i d . M a t e r i a l from the i n s i d e of the sieve was then resieved

o

w i t h 5 A molecular sieve although i t had l i t t l e e f f e c t on the c o l o r . A l l s i e v i n g data i s summarized i n Table I I .

A t t h i s stage i t was already apparent t h a t t h i s sterane-t r i t e r p a n e m i x t u r e was q u i t e d i f f e r e n t and indeed f a r more complex than the o r i g i n a l m ixture. Compare Figures XVI-XXIV w i t h Figures I I - V .

Page 141: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure X I I I . Gas Chromatogram of F r a c t i o n 1-2 A f t e r 5 A Molecular Sieve o

Figure XIV. Gas Chromatogram of F r a c t i o n 1-2 A f t e r 10 A Molecular Sieve o

Figure XV. Gas Chromatogram of F r a c t i o n 1-2 Adsorbed by 10 A Molecular Sieve

Page 142: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

A F T E R 5A S I E V E

•• • ' - I i . . - . . . 2 0 0 '

: I • -I - n . .- -I

A F T E R lOA S I E V E

_v:i"; ' i ;^ ' ; . ._

ADSORBED BY lOA S I E V E

1 ' 1 '

VER SHALEMr.^. FRACTIONS H COLORADO G R E E N R

MUB-13725 no

Page 143: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

23

Figure XVI. Mass Spectrum of C p ^ A f t e r 10 A Molecular Sieve

Figure X V I I . Mass Spectrum of C^y Adsorbed by 10 A Molecular Sieve

o

Figure XVII. Mass Spectrum of C ^ p A f t e r 10 A Molecular Sieve

Figure XIX. Mass Spectrum o f Cgo'Adsorbed by 10 A Molecular Sieve

Figure XX. Mass Spectrum o f C^g Adsorbed by 10 A Molecular Sieve

Page 144: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

23a

149

217 C27 AFTER lOA SIEVE

» 7

?.0G

191

217

i 223 I

. f ' " - . ' . ' 5

2SG

rum

I J O O

C27 ADSORBED BY IDA SIEVE I

•J50

109 149

i

217

hi,, JL

*P'''ER lOA SIEVE

400 385 I

371 . 386

!I9I

900 J S O

^28 ADSORBED BY lOA SIEVE

^ •!:.:i",;:Jv,f 365

393

2S0 300 ICC 5rc

XBL 678-6105

Page 145: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

24

Figure XXI. Mass Spectrum of C, A f t e r 10 A Molecular Sieve

o Figure X X I I . Mass Spectrum of Adsorbed by 10 A Molecular Sieve

Figure X X I I I . Mass Spectrum of C,«B A f t e r 10 A Molecular Sieve _ •

Figure XIV. Mass Spectrum of C,-.B Adsorbed by 10 A Molecular Sieve

Page 146: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

24 a

C29 ABSOSftEO ar lOA • SIEVE

4oa 3U IBS

I S C 200 3 0 0 3 S 0

i 191

ill

I

^00 ciJO

AFTER lOA SIEVE

zee

,00 : S D - 2 0 0 2 5 0 3 0 0 3f;o <i00 •JSC so: 191

AOSORBEO BY lOA SIEVE

397 MC4t2)

I C O 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 ^OO C S C sec

! 1 ^ ^ k ^ i

217

' ' I 1 1 r—^-i 1"- 1 r-3 S 0 4 0 0 I C C I S O 2 0 0

191

2 S 0 3 0 0

C 3 0 '

=cc

AOSORBEO BY lOA SIEVE j

• 4 —^ u l a sr. 200 2 S 0 3 0 0 3 5 0

397

flOO

XBL 678-6103

Page 147: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure XXV. Gas Chromatogram of F r a c t i o n I I - l a f t e r 5 A Molecular Sieve o

Figure XXVI- Gas Chromatogram of F r a c t i o n I I - l a f t e r 8 A Molecular Sieve o

Figure XXVII. Gas Chromatogram of F r a c t i o n I I - l Adsorbed by 8 A Molecular Sieve ro

Page 148: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

: ; J • I * >

J L : 100" : 200 '

AFTER 5 A .SIEVE

' Att'n Ix 10

.... . - J . - ^ L.: L.-..

t > I • • I I . !

i

jtll

I I r- I .1 - I .1 . . . . L . . ,

I

I. ! I *.: . L i , r . L l J _ . ; T l ; J

200'

I.. i A F T E R qI S I E V E

Ann IxlO

-

100

• I r VlLU

zoo*

i n ; r t A D S O R B E D B Y * sl S I E V E

Att n IxtO I - ' i I

COLORADO GREEN RIVER SHALE COLUMN n FRACTION I XDL 672-62

r\3

Page 149: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

26

o Figure XXVIII. Gas Chromatogram of F r a c t i o n I I I - 2 a f t e r 5 A

Molecular Sieve o

Figure XXIX. Gas Chromatogram of F r a c t i o n I I I - 3 a f t e r 5 A' Molecular- Sieve

Page 150: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

26a

. 1 1 i • ; i ' ! • i J i = 1 M l ^ i T ; • M i l • i. i : ! - M - i 1 • • t U M , 1 r • I : • n 1 : i . ! . i • 1 • 1 — . 1 * i T 1

• 1 • 1 ; 1 r M 1 ! 1 i ^ ( • . . i t — 1 1 • M . I ! 1 ! M • 1 i 1

: i t 1 • i 1 i : 1 • [ •• y : M M i" ~ 1 ! • 1 I 1 i ! • i i : 1 i M M i — A t t V " 1

! t : 1 • ! : ! i : 1 : ! • 1 : M • i . 1 1 ! i 1 i ^ ! ^ 1 : i • j 1 • ! 1 • ; 1 - : :• ft ! : 1 ; 1 i ; ! T " 1

r i j . i i . ! = j M • i 1 ^ 1 1 : 1) - ' 1 ^ • • 1 1

J - • 'a M M ! I f •

M 1 1 i • i • • : 1 1 • 1 1 i j ; 1 i 1 ; 1 : i : 1 \ I 1 . 1 1 . i : 1 1 1

-

M ; i ' = — FRACTION 3 U i ! ' - • •

-

1 M • 1 1 I . i : 1 ' 1 . 1 1 t M i ; !

-M ; i r 1 ' • 1 M 1 1 !

-: M i J ^ . ! h 1 I 1 1 I '

- 1 M M ! —1* : 1 1 1 1 ! • 1 t M 1 - P I I I ' • t 1 : • i t i I AH'n V i -! M M M 1 M • • f ' . 1 . 1 M t 1 M M i !

-1 1 i • t . 1 • 1 ' •• \ • r . 1 M 1 ! !. M . 1 t 1 M 1 ' : ! M ! 1'

! -)

^ d * i ' i ' 1 1 ' • • 1 1 I i i 1 M ' 1 ; 1 3'o6-i • 1 : I II 1 I I

- ; M- 1 I ! ; 1 1 ... -- I n ••

1 —I— i 1 : . I . ) . 1

M l , t I

COLORADO GREEN RIVER SHALE COLUMN d AFTER 5A SIEVE

XBL 674-1019

Page 151: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

27 Gas Chromatography

The only adequate method o f ' s e p a r a t i n g the sterane and t r i t e r p a n e f r a c t i o n s from the complex mixture o f hydrocarbons appeared t o be the use o f vapor phase gas chromatography. Accordingly f r a c t i o n s were f i r s t i n j e c t e d on an Areograph A-SO P-3 and programed from 200°-300° a t 10*"/minute. Fractions c o l l e c t e d were the low molecular weight branched c y c l i c s , the C^jj CgQ, Cgg, C Q C^QB and high molecular weight f r a c ­t i o n s (based on o r i g i n a l sterane and t r i t e r p a n e c o l l e c t i o n s as i n d i c a t e d i n Figure l ) . This was an extremely time con­suming method since the septum and i n j e c t o r were only capable of h o l d i n g i n j e c t i o n s o f 1/3 cc a t a time ( t h i s l / 3 ce was ne c e s s a r i l y h a l f solvent t o permit the i n j e c t i o n syringe t o be - f i l l e d ) . However, r e s o l u t i o n was good enough t o permit (even w i t h metximum load) c o l l e c t i o n of c r y s t a l l i n e ( s o l i d ) CjQ and CJQB f r a c t i o n s . I n t h i s manner. Frac t i o n s 1-2 Mon-adsorbed* and II-lNon-adsorbed were separated u s i n g 1/4" X 10' columns coated w i t h 3? SE-30 on 100-120 mesh areopak, and F r a c t i o n 1-2 Adsorbed v/as* separated using a 1/2" x 10' column o f S% SE-30 on 80-100 mesh areopak:.

For the f r a c t i o n a t i o n of l a r g e q u a n t i t i e s , a Hewlett Packard F and M Model 775 Preparative Gas Chromatograph was used. I n the beginning the manifold t r a p c o l l e c t i o n system v/as u t i l i z e d and a column o f 3/4" x 6 coated w i t h 20% UCV/ 98 coated on Cromosorb P (60-80 mesh) followed by a 1/4" x 4' connector f i l l e d w i t h uncoated support. The column

*"Non-adsorbed" here and i n the f u t u r e r e f e r s t o the mixture not adsorbed by molecular sieves; "Adsorbed" r e f e r s t o the mixture occluded i n the sieve and recovered by HF treatment

Page 152: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

28 was operated i s o t h e r m a l l y at 290°C, each run r e q u i r i n g about three hours f o r completion. F r a c t i o n 1-2 Adsorbed v;as separ­ated i n t h i s manner, and t r i t e r p a n e C^QB could be obtained as s o l i d white m a t e r i a l .

However when i t was observed t h a t extensive decomposition was t a k i n g place i n the m a n i f o l d , the manifold was removed and f r a c t i o n s c o l l e c t e d manually d i r e c t l y from the detector o u t l e t . The 4' x 1/4"-connector was discovered to. be the cause f o r the. requirement o f abnormally high head pressure and subsequently removed even though F r a c t i o n C^^B could no longer be i s o l a t e d i n s o l i d form. A s p e c i a l . c o l l e c t i o n system was constructed c o n s i s t i n g o f glass U tube traps f i l l e d w i t h glass wool (heated t o 350^C f o r 24 hours and washed w i t h d i s t i l l e d ACS benzene) which were connected d i r e c t l y t o the de t e c t o r o u t l e t v i a a glass/metal (copper) j o i n t , and a t e f l o n sleeve. The peaks were then c o l l e c t e d manually. Unfortunately r e s o l u t i o n was q u i t e poor and the peaks very broad. An attempt was made t o use a l a r g e r column (4" x 6», 20^ W 98 on cromo-sorb P, 10-60 mesh). However, d i f f i c u l t i e s were encountered w i t h the head pressure as w e l l as the extremely l a r g e sample si z e r e q u i r e d . Alumina column Fractions I I - l Adsorbed, 1-3, I I I - 2 , I I I - 3 , V-.2 and V-3 (See Table I I ) were separated i n t h i s manner. Five f r a c t i o n s were c o l l e c t e d , which, are la b e l e d as C^y^ ^28^ 29 s'*'® " ^ and C^QB t r i t e r p a n e s

since they corresponded i n r e t e n t i o n times t o the compounds i s o l a t e d i n the p r e l i m i n a r y experiments. About 0.5g o f each was obtained.

Page 153: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

29 R e c r y s t a l l i z a t i o n

Attempts were made t o c r y s t a l l i z e compounds of these f r a c t i o n s from hexane, benzene, and dichloromethane. While a white s o l i d could u s u a l l y be p r e c i p i t a t e d from hexane, no pure substances could be obtained i n t h i s way. C o - c r y s t a l l i z a t i o n might of. course, be expected f o r these compounds, since they a l l possess very s i m i l a r p r o p e r t i e s . F l u o r o s i l Columns

F l u o r o s i l (Sargent SC-21176, 60-100 mesh) was washed w i t h r e d i s t i l l e d methanol, benzene, and hexane u n t i l 200 cc of the l a t t e r evaporated t o dryness gave no perceptable peaks on the gas chromatograph. A l l f i v e f r a c t i o n s obtained from p r e p a r a t i v e GLC (C^^, C^Q, Cgg, C^Q, C^QB) were p u r i f i e d on columns about 1 cm x 10 cm. I n a l l cases the f i r s t f r a c t i o n e l u t e d was the only one which was pure white and gave the cleanest mass spectra. Only t h i s f r a c t i o n was, t h e r e f o r e , subjected t o f u r t h e r p u r i f i c a t i o n . T y p i c a l f l u o r o s i l f r a c ­t i o n a t i o n data are given f o r F r a c t i o n C^QB i n Table I I I . S ublimation

Fractions C^Q and C^QB were f u r t h e r p u r i f i e d by s u b l i ­mation under h i g h vacuum (mercury d i f f u s i o n pump). For F r a c t i o n 023^0.0953g of sublimate could be c o l l e c t e d a t 14:0°C. The data f o r the s u b l i m a t i o n o f F r a c t i o n C^QB are given i n Table IV.

Page 154: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I I I F l u o r o s i l F r a c t i o n a t i o n of C^QB

30

F r a c t i o n 1 2 3 4-5 6

Solvent • Weight Color

hexane 0.44g v/hite hexane O.lOg . o f f white benzene O.Olg pale yellow' benzene O.Olg .pale yellov; methanol O.Olg pale brown methanol O.Olg pale brown'

TABLE IV Sublimation of F r a c t i o n C^QB

F r a c t i o n 1

. 2 3 4 5

Temperature 20'*C-100°C 100''C-120**C 100°C-120°C 120°C-160°C Residue

Weight

0.007g 0.088g 0.083g 0.035g 0-054g

D e s c r i p t i o n yellow syrup pale yellow s o l i d pale yellow s o l i d pale yellow s o l i d y e l l o w s o l i d

TABLE V S i l i c a F r a c t i o n a t i o n o f C B

F r a c t i o n Solvent Hexane Benzene

10% DiClmethane DiClmethane

Weight '0.030g O.OSOg 0.082g O.OlSg

De s c r i p t i o n white c r y s t a l l i n e

s o l i d white s o l i d pale yellow s o l i d l i g h t yellow

s o l i d

Page 155: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

31 F r a c t i o n C^q

A GLC of the sublimate o f F r a c t i o n 0^3 (0.095g) e x h i b i t e d two major peaks. The mass spectra o f both i n d i c a t e d the pres­ence of a sterane and a C^Q t r i t e r p a n e . No f u r t h e r separ­a t i o n of these compounds was attempted. The t o t a l s u b l i m a t i o n f r a c t i o n o f C23 e x h i b i t e d a n ' o p t i c a l a c t i v i t y o f [ a j ^ = 20 + 1. F r a c t i o n C B

Sublimation Fractions 2 and 3 (See Table I V ) were combined and chromatographed on a s i l i c a g e l column (10 cm x 1 cm) a f t e r f i r s t washing w i t h d i s t i l l e d methanol, benzene, and hexane. Data f o r t h i s f r a c t i o n a t i o n are" given i n Table V. This f i r s t s i l i c a f r a c t i o n was -further p u r i f i e d by gas chromatography ( 1 / 4 " X 10' column of 5% SE-30 on aeropak 30, 80-100 mesh). Fractions were c o l l e c t e d the mass spectra o f which are e x h i b i t e d i n Figures XXX and XXXIV. The spectra i n Figures X X X - X X X I I are from three d i s t i n c t GLC peaks and are apparently t h r e e d i f f e r ­ent t r i t e r p a n e s o f molecular weight 412. Figure X X X I I I i s a l a t e r scan o f the same f r a c t i o n given i n Figure XXX and reveals a very i n t e r e s t i n g component of molecular weight 426 which i s of p a r t i c u l a r i n t e r e s t since i t . could represent e i t h e r a C^-j^ t r i t e r p a n e or a"C^Q keto t r i t e r p a n e . Figure X X X I V gives the mass spectrum of a very minor component w i t h a base peak a t m/e 272 and molecular i o n at m/e 412. The major GLC f r a c t i o n gave s o l i d v/hite m a t e r i a l w i t h an -apparent m e l t i n g p o i n t o f 285-290°. The o p t i c a l r o t a t i o n o f Sublimation 2 (See Table I V ) was measured and a value o f [q,]-^ = +16.6 + .1 was obtained. For comparison i t may be. noted t h a t cholestane has a r o t a t i o n of [ a ] ^ = +26 and lupane [ a ] j ^ = -7.5.

Page 156: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

32

Figure XXX. Mass Spectrum of So^ Figure XXXI. Mass Spectrum of ^30^ (1)

Figure XXXII. Mass Spectrum of So^ (2)

Figure X X X I I I . Mass Spectrum of ^30^ (3)

Figure XXXIV. Mass Spectrum of ^30^ .(6)

Page 157: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

003

00? osc ooe • 052 002 os : 00-

001

00> osc ooc osz ooz OS-

«i i

DCS OS? 009

1 M

\

osc OOC 0S2 ooz OS-. GO:

£02

DOS 00> OSC ooc OS? 0C2

161 !

Page 158: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

33 P o l y c y c l i c Hydrocarbons from the Soudan

The i s o l a t i o n * of a f r a c t i o n from the 2.7 b i l l i o n year o l d Soudan Shale whose mass spectrum (Figure XXXV) bore s t r o n g resemblance t o those o f steranes and t r i t e r p a h e s ( i n p a r t i c u l a r the i o n s a t m/e 149, 217, 218, 257, 272, 286

19 and 500) aroused considerable excitement and r e s u l t e d i n an attempt t o p u r i f y the f r a c t i o n f u r t h e r . The f r a c t i o n ( c o l l e c t e d from a !>% SE-30, l/4"x 10* column) was rechromat-ographed successively on columns of 2.5^ 7-ring-ineta-polyphenyl ether ( l / 4 " x 25') and 5Jg XE-60 cyanoethymethyl-silicone (1/4" X 10') i s o t h e r m a l l y a t 250°C. Figures XXXVI, XXX^II XXXIX -XLI give the mass spectra o f some of the f r a c t i o n s thus i s o l a t e d . Figure. XXXVII ows a f a i r l y clean p a t t e r n , e x h i b i t i n g e s s e n t i a l l y one molecular i o n a t m/e 372. The N i n t e n s i t y o f the peak a t m/e 218 deserves comment since a sterane s t r u c t u r e would be expected .to have a more intense peak a t m/e 217; i t would seem to r e q u i r e a non.-steroidal s k e l e t o n f o r t h i s compound. The t e t r a c y c l i c hydrocarbons (molecular weights 372, 386, 400) of Figure XXXVm d i s p l a y the same f e a t u r e . I t i s po s s i b l e t h a t they bear some s t r u c ­t u r a l r e l a t i o n s h i p t o Friedelane, S t r u c t u r e viI,whose mass

*By Ted Belsky

Page 159: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

34 spectrum i s displayed i n Figure XXXIX. (Note the i n t e n s i t y of m/e 218 as compared w i t h m/e 217). The t e t r a c y c l i c com­pounds of Figures XL and XLI (where m/e 217 i s more intense than m/e 218) l a c k dominajit ions a t m/e 217. I n the absence of adequate standards f o r comparison i t i s d i f f i c u l t t o drav/ very d e f i n i t e conclusions about the compounds.

Page 160: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

1 J

149

. 1 r 100

I 5

ES9 !32

150 200 250 300 ,-'1

350 -J 00 4 5!

Figure XXXV Mass Spectrum of Soudan Crude T e t r a c y c l i c Hydrocarbons

Page 161: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

36

Figure XXXVI Mass Spectrum o f Soudan C ™ T e t r a c y c l i c Hydrocarbon (MS 2985)

Figure XXXVII. Mass Spectrum of Soudan Cp^-Cpq T e t r a c y c l i c Hydrocarbons (MS 2998)

Figure XXXVIII. Mass Spectrum of Friedelane

Figure XXXI Mass Spectrum of ^27~^29 T e t r a c y c l i c Hydrocarbons (MS 2224)

Figure XL Mass Spectrum of Cg^-Cgg T e t r a c y c l i c Hydrocarbons (MS 2230)

Figure XLI. Mass Spectrum of Cpq Tetraunsaturated Alkene-(MS 2223) .

Page 162: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

149 163

.137

218 SOUDAN 11', '--'jbt

259 W372)

216 1 149 216

i i

Jf,0

SOUDAN 15 2993

259

00 150 .109 1^

200 250 300

372 386

T I .1 350 400

36a

450

218 239

I 397 412

ISO !D0 2SC 30u £0 400 109

149 SOUDAN nS 2224

217

100 ISO 200 250

M(372) / Mf386J

L i . i i . . . . . d , . .u , ^ Ad;lrffcv.l,J,l..,„...tk,.rA» l t* 250 300 350

,M(400)

I i I r 400 450

Il09 149 SOUDAN

i i i i I T 259

357 M(400}

100 150 200 250 300 350 400 450

,109 SOUDAN nS 2223

i i ii .1 .a i .L .L 200 250

t 1-363 r ^ * ^ ^

-.00 150 300 350 400 450

Page 163: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure X L I I . Gas Chromatograph o f Soudan E x t r a c t .

Page 164: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

PRISTANE

^1

PHYTANE

"21 ISOPRENOfD

4-

C,3 ISOPRENOID

ATT'N lOOil

SOUDAN SHALE BRANCHED-CYCLIC ALKANES, 2.5 X 10^ YRS.

FR'N 20

STERANES

RETENTION TIME OF CHOLESTANE

3 0 0 * C

35 m n

MUB-6664

CM

P

Page 165: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

T A B L E I I I

Off S c a l e Mass S p e c t r a l I n t e n s i t i e s

M/e

C - 2 7 Sterane

I I

C - 2 8 Sterane

I I I

C - 2 9 Sterane

IV

Soudan Soudan B/C F r a c . 2 0 MS 2 9 8 5

XXXV XXVI

Soudan MS 2 9 9 8 XXXVII

1 0 6

1 0 7

1 0 9

1 1 1

1 2 3

14 9

Off

o f f

1 1 6

1 8 7

1 2 7

1 0 3

1 2 0

1 2 0

o f f

1 3 0

o f f

1 3 1

1 2 0

2 7 2

1 4 3

1 2 5

1 9 0

1 1 3

Cl'

Page 166: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

39 S i g n i f i c a n c e o f Steranes, Triterpanes, and O p t i c a l A c t i v i t y

Steranes and t r i t e r p a n e s are one o f the most complex classes o f compounds i s o l a t e d from g e o l o g i c a l sources. They seem t o occur, however, i n a r e l a t i v e l y wide range of geolog­i c a l sediments. I n d i c a t i o n s of steranes have been reported

30 31 32 i n petroleum ' and i n recent sediments on the basis of the mass spectra of complex hydrocarbon mixtures. Meinschein has i n d i c a t e d the presence of a sterane i n the Nonesuch Shale on the basis o f large peaks a t 372, 218, 217, and 149 i n the mass spectrum o f a carbon t e t r a c h l o r i d e eluant f r a c ­t i o n from an alumina column 33

34 Barton etnd Carruthers have reported the i s o l a t i o n and

i d e n t i f i c a t i o n o f oxyallobetul-2-ene, a d e r i v a t i v e of a p l a n t t e r p e n o i d , from high b o i l i n g petroleum d i s t i l l a t e s ( i t sublimes a t 345** and has an [ a l ^ = +75° where the authentic sample sub­limes a t 345° and has an [ a ] j ^ = +79°).

V I I I

Schorm and co-workers have reported a se r i e s of t r i t e r p a n e s i n Bohemian brown coal (the age of which i s estimated t o "be tens

Page 167: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

1;0 TABLE I I I

Compound I s o l a t e d from Bohemian Brown Coal by Scherm

Compound M e l t i n g Point °C [ a ] ^ ^ i n CHCl.

F r i e d e l i n Friedelan-Sp-ol AlloBetulone Friedelan-3a-ol 3-Dehydroxyallobetulin A l l o B e t u l i n O x y a l l o B e t u l i n B e t u l i n g-ApoalloBetulln A 2 - A l l o B e t u l i n ApooxyalloBetulin A 2-oxy a l i o Be t u l e ne IX X 1,2^ 3.,4:,4a^5,6,14:b-oct. a.hydro

2,2 A J lia -tetraraethylpicene 1,2,3,4-Tetrahydro-2,2,9-

t r i m e t h y l p i c e n e 2,9-Dimethylpicene l j 2 , 3 j 4 - T e t r a h y d r o - l , 2 , 9 -

t r i m e t h y l p i c e n e

253- 255** • 285-286° 228-229"*

310° • 338° 266° 347°

254- 255° 218-222° 250- 250.5' 289-291° 369° 261° 250°

233-235°

251- 252

230-231.5'

•21.6° 20.7° 84 .4° 24.2° 91.3° 50.7° 46° 26.4° 65,5° 72.6° 70.3° 75.2°

34.2

50'

Page 168: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Friedelin I '

Friedelan-3^ol )etulone R=0 3-dehydroxyallobetiilin R=H

Friedelan-3c<ol

Oxyallobetulin

Betulin Allobetulin

«-Apoallobetulin R=H2 Allobetulin R=H2 Apoox-yallot)et\ain R=0 ^ T)-xyallobetulen R=0

l,2,3,U,l|a,5,6,lUb-0ctahydro-2,2,U,Ua tetramethylpicene.

1,2,3,^-tetrahydro-2,2,9-triinethylpicene

1,2,9-triinethyl-picene l,2,3,i+-tetrahydro-2,2,9-trimethylpicene

Page 169: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

h2

of m i l l i o n s of years based on g e o l o g i c a l s t r a t a ) s o m e of v/hich are summarized i n Table I I I . I n t h i s connection i t i s i n t e r e s t i n g to note the e a r l i e r work on peat by McLean, R e t t i e , and Spring^^^ who attempted t o a s c e r t a i n the chemJ.cal changes associated w i t h h u ma f i.cation. They have i d e n t i f i e d friedelan-3p-ol,' (mp 280-383° [a]j^ = -21.9°) as w e l l as a s t e r o l (mp 135-136°, [a]j^ - -15.8°) believed t o be a mixture of p - s i t o s t e r o l and stigmastanol. Ives and O'Neal had even e a r l i e r i d e n t i f i e d a mixture (mp 135-137°, [ a j ^ ^ = -12°- -24° w i t h average -18°) of p - s i t o s t a n o l and p - s i t o s t e r o l as w e l l as a-amyrin, t a r a x e r o l , and taraxerone from peat moss (Sphagnum). 46-47

Stimnasterol p - S i t o s t e r o l

a-Amyrin Taraxerol R = OH Taraxerone R = 0

Page 170: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

U3 ...48 Mair**^ has noted the s i m i l a r i t y between the s k e l e t a l

s t r u c t u r e s of hydrocarbons i s o l a t e d from petroleum and those of s t e r o i d s and t r i t e r p e n o i d s from p l a n t s . I n p a r t i c u l a r he c i t e s the r e l a t i o n s h i p of s'-methyl-l,2-cyclopentanophenanthrene, X I , ( i s o l a t e d from petroleum along w i t h phenanthrene, 1-methyl-phenanthrene, 2-methylphenanthrene, 3-methylphenanthrene, 9-methylphenanthrenem 1,8-dimethylphenanthrenej and t r i m e t h y l -phenanthrene) t o c h o l e s t e r o l , X I I , (which y i e l d s 3'-methyl-l, 2-cyclopentanophenanthrene among other cyclopentanophenanthrenes upon dehydrogenation w i t h selenium).

XI X I I

S i m i l a r l y dehydrogenation of l a n o s t e r o l , XIV, y i e l d s l , 2 j 8 ' trimethylphenanthrene, X I I I , which has been i s o l a t e d from petroleum by Carruthers and Douglas.

X I I I XIV

Page 171: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

44 22 A f t e r our i n i t i a l report'"'' o f the C , C^q^ C^g steranes

and C Q t r i t e r p a n e s i n the Colorado Green River Shale (which are now known t o be o p t i c a l l y a c t i v e i f not i n the desired s t a t e of o p t i c a l p u r i t y ) . H i l l s and Whitehead found several u n i d e n t i f i e d p e n t a c y c l i c t r i t e r p a n e s (tv/o o f molecular weight 412 and one o f molecular v/eight 398) from an o p t i c a l l y a c t i v e d i s t i l l a t e from a Nigerian crude o i l . ^ ^ Recently a hydrocar­bon of m e l t i n g p o i n t 285-286° (uncorrected) and o p t i c a l r o t a ­t i o n [ a ] j ^ 7= +31.9° + 0-4° i s o l a t e d by Cummings, Anders,, and Robinson from the Colorado Green River Shale was i d e n t i f i e d by H i l l s and l^hitehead^^ as gammacerane, XV, of [a]^"*" = 29.4°

+ 0.3° and m e l t i n g p o i n t 301°.^^ Much more r e c e n t l y Murphy, Mccormick and E g l i n t o n ^ ^ reported the i d e n t i f i c a t i o n of perhydro-p-carotene, XVI, from the Colorado Green River Shale.

They also v e r i f y the assignment of the three steranes (Cgy, CgQi and Cgg) as cholestane, ergostane, and s i t o s t a n e using

Page 172: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

45 a combination o f m i c r o - i n f r a r e d spectroscopy and a combined gas chromatograph-mass spectrometer.

I n m.ost o f these i n v e s t i g a t i o n s mass spectrometry has provided important s t r u c t u r a l i n f o r m a t i o n . Indeed w i t h the q u a n t i t i e s o f m a t e r i a l i s o l a t e d , mass spectrometry was o f t e n the o n l y method, which p e r m i t t e d the assignment of carbon s k e l e t o n s . I t should be stressed t h a t mass spectrometry alone i s i n s u f f i c i e n t f o r the unambiguous s t r u c t u r a l d e t e r m i n a t i o n of compounds o f t h i s complexity unless d i r e c t comparison w i t h known substances i s p o s s i b l e .

The complexity of these steranes and t r i t e r p a n e s suggest b i o l o g i c a l o r i g i n and as such would represent d e f i n i t i v e i n d i ­c a t i o n s o f l i f e processes. Nevertheless, such molecules are not unambiguous p a r t i c u l a r l y when derived from.very o l d s e d i ­ments. The non-enzymatic c y c l i z a t i o n s of polyisoprenoids t o

52 give t e t r a or p e n t a c y c l i c compounds are known. Of course such a b i o l o g i c a l syntheses are expected t o be much less s e l e c t i v e than b i o l o g i c a l syntheses.

O p t i c a l a c t i v i t y has been considered t o be an i n d i c a t i o n o f l i f e processes, the ordered s t r u c t u r e s (a r e s u l t of o p t i c a l p u r i t y ) o f l i f e , then, f i t i n t o the thermodynamics of i r r e v e r s ­i b l e processes and open steady s t a t e systems where order or i n f o r m a t i o n i s equivalent t o negative entropy. Indeed, o p t i c a l asymmetry or o p t i c a l p u r i t y o f metabolites i s a b s o l u t e l y essen­t i a l t o l i f e . T. L. V. U l b r i c h t , ^ ^ i n an e x c e l l e n t review, has noted t h a t unwanted isomers are e l i m i n a t e d by e x c r e t i o n and o p t i c a l l y s p e c i f i c d e s t r u c t i o n by oxidases, t h a t some organisms

Page 173: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

46 can convert one o p t i c a l l y a c t i v e aunino ac i d i n t o the other, and t h a t i n some cases the presence of both isomers i s e s s e n t i a l f o r p l a y i n g two d i f f e r e n t and d i s t i n c t chemical r o l e s . Since there i s a f i n i t e p r o b a b i l i t y t h a t a D-amino a c i d w i l l be b u i l t i n t o an enzyme (a very small p r o b a b i l i t y because normally none are present) and since enzymes have h i g h rate- constants but do not e f f e c t e q u i l i b r i u m ' (racemization i s thermodynamically i r r e v e r s i b l e and t h e r e f o r e bound t o occur e v e n t u a l l y ) i t might be possible t o f i n d i n very ancient s e d i ­ments d i f f e r e n c e s i n o p t i c a l p u r i t y r e f l e c t i n g enzymes less e f f i c i e n t than those of today, v/hich have n e c e s s a r i l y evolved t o a high degree of e f f i c i e n c y . (Of course the e f f e c t s of diagenesis would be d i f f i c u l t t o take i n t o account.)

I n any case, o p t i c a l a c t i v i t y i s an i n t r i c a t e p a r t of l i f e and as such has been taken as an i n d i c a t i o n of l i f e past or present. The observation of o p t i c a l a c t i v i t y i n a m e t e o r i t e ,

54 f o r example, l e d t o the immediate assumption o f contamination. Other experiments have pointed out some of the d i f f i c u l t i e s i n ­volved i n the measurement- of o p t i c a l a c t i v i t y i n sedimentary components.^^"^^ O p t i c a l l y a c t i v e f r a c t i o n s i n petroleum have been known f o r a long time^'''"^^ and are q u i t e w e l l character­i z e d . ^ " A systematic decrease i n the o p t i c a l a c t i v i t y of s e d i -ments w i t h age has been reported i n the l i t e r a t u r e , although the experimental mode of c a l c u l a t i o n i s both ambiguous and questionable.

The o r i g i n o f o p t i c a l a c t i v i t y i s q u i t e unknown. One of the older and more popular e v o l u t i o n a r y t h e o r i e s p o s t u l a t e s t h a t a t some stage of l i f e e v o l u t i o n , one o p t i c a l macromolecule

Page 174: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

47 gained a s e l e c t i v e advantage over the other. Quite r e c e n t l y , a number o f t h e o r i e s have been advanced i n an attempt t o e x p l a i n o p t i c a l a c t i v i t y as a n a t u r a l consequence inherent i n the chemical r e a c t i o n s composing l i f e . I t has been postu­l a t e d , f o r example, t h a t l i g h t t r a v e l i n g through the earth's atmosphere could be converted v i a sea r e f r a c t i o n and the earth's magnetic f i e l d t o c i r c u l a r l y p o l a r i z e d l i g h t , vjhich has been shown t o e f f e c t one o p t i c a l isomer more s t r o n g l y than the o t h e r . With regard t o the theory t h a t graphite may have given r i s e t o the organic m a t t e r . i n sediments (mentioned i n the I n t r o d u c t i o n ) i t has been noted t h a t the s p i r a l growth p a t t e r n s found i n n a t u r a l g r a p h i t e ^ ^ provide a possible explan­a t i o n f o r t h e i r o p t i c a l a c t i v i t y . O n e of the most i n t r i g u ­i n g ideas was conceived w i t h the discovery of the- non-conserva­t i o n o f p a r i t y i n weak i n t e r a c t i o n s (electrons from r a d i o ­a c t i v e p-decay and from meson decay i n cosmic rays are pre­dominantly l e f t - h a n d e d ) ajid b a s i c l y suggests t h a t o p t i c a l

asymmetry i s a r e f l e c t i o n of the asymmetry of t h i s p a r t of 66-68

the u n i v e r s e .

Page 175: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

48

REFERENCES

1.. W. H. Bradley, The Varves and Climate of the Green River Formation: U.S. Geological Survey Prof. Paper 158, 87 (1929)."

2. W. H. Bradley, O r i g i n and M i c r o f o s s i l s of the O i l Shale • of the Green River Formation o f Colorado-and Utah: U.S. Geol. Survey Prof. Paper 168, 58 (1931).

3. W. H. Bradley, Chloroplast i n Spirogyra from the Green River Formation of Wyoming, Am. Jour. S c i . , 260, 455

4. W. H. Bradley, Aquatic, Fungi from the Green River Forma­t i o n o f Wyoming, Amer. J. Science, 262, 413 (1964),

5. W. E. Robinson, J. H. Cummins, G. V. Dineen, Changes i n Green River Oil-Shale P a r a f f i n s w i t h Depth, Geochim. et Cosmochim. Acta, 29, 249 (1965).

6. W. E- Robinson, D. L. Lawlor, J. J. Cummins, J. I . Fester^ Oxidation of Colorado O i l Shale, U.S. Dept. o f the I n t e r ­i o r , Bureau of Mines, No. 6166 (1963).

7. J . J . Cummins, W. E.. Robinson, Normal and Isoprenoid Hydrocarbons I s o l a t e d from Oil-Shale Bitumen, Chem. Eng. Data, 9, 304 (1964) .

8. R. A. Van Meter, C- W. B a i l e y , J. R, Smith, R. T. Moore, C. S-. A l l b r i g h t , I . A. Jacobson, J r . , V. M. H y l t o n , J. S. B a l l , Oxygen and Nitrogen Compounds i n Shale-Oil Naphtha, A n a l y t i c a l Chemistry, 24, 1758 (1952).

9; T. l i d a , . E..Yoshii, E. K i t a t s u j i , I d e n t i f i c a t i o n o f Normal P a r a f f i n s , O l e f i n s , Ketones, and N i t r i l e s from Colorado Shale-Oil, A n a l y t i c a l Chemistry, 38, 1227 (1966).

Page 176: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

49 10. G. E g l i n t o n , P. M. S c o t t , T. Belsky, A. L. Burlingame,

M.. C a l v i n . Hydrocarbons of B i o l o g i c a l O r i g i n From a One-B i l l i o n Year Old Sediment, Science, 145, 263 (1964).

11. G. E g l i n t o n , P. M. S c o t t , T. Belsky, A. L. Burlingame, W. R i c h t e r , M. C a l v i n . Occurrence o f I s o p r e n o i d Alkanes i n a Precambrian Sediment, Advances i n Organic Geochemistry, 2, (Pergamon Press, 1966).

12. R. B. Johns, T. Belsky,. E. D. McCarthy, A. L. Burlingame, Pat Haug, H. K- Schnoes, W. R i c h t e r , M. C a l v i n . The Organic Geochemistry o f Ancient Sediments. Part I I , Geochim. e t Cosmochim. Acta ( i n p r e s s ) .

13. G- Eg"linton, A. G. Douglas, J.-R. Maxwell, J. N. Ramsay, S. S. Stenhagen. Occurrence o f Isoprenoid F a t t y Acids i n the Green River Shale, Science, 153, 1133 (1966).

14. J. N. R^nsay. Organic Geochemistry o f F a t t y Acids,. MasterThesis, U n i v e r s i t y o f Glasgow (1966)-

15. P. Haug, H. K. T-chnoes, A. L. Burlingame. Isoprenoid and D i c a r b o x y l i c Acids I s o l a t e d from the Colorado Green River Shale (Eocene), Science ( i n p r e s s ) .

16. P. Haug, H. K. Schnoes, A. L. Burlingame. The Aromatic Acids from the Green River Shale, Geochim. Cosmochim. Acta ( i n p r e s s ) .

17. P. Haug, H. K. Schnoes, A. L. Burlingame. Keto Acids I s o l a t e d from the Colorado Green River Shale, Chefn. Comm. ( i n p r e s s ) .

18. P. Haug, H. K.. Schnoes, A. L. Burlingame. Acids from the Colorado Green River.Shale, Geochim. Cosmochim. Acta (manuscript i n p r e p a r a t i o n ) .

Page 177: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

20

50 P. H. Abelson^ P. L. Parker. F a t t y Acids i n Sedimentary Rocks J Carnegie I n s t . j Washington Year Book, 61, 131 (1962).

D. L. Lawlor, W. E. Robinson. F a t t y Acids i n Green R i v e r

Formation O i l Shale, Div, Pet. Chem., Amer. Cham. Soc.,

D e t r o i t , May 9 (1965).

21. R. F. Leo, P. L. Parker. Branched Chain F a t t y Acids i n

Sediments, Science, 152, 64 9. (1966)

22. A. L. Burlingame, P. Haug, T. Belsky, M-. C a l v i n . Steranes

And T r i t e r p a n e s I s o l a t e d from Green R i v e r Shale, The Proc•.

N a t l . Acad. S c i . , 54, 1406 (1965).

23. S i s t e r Mary T. J . Murphy, A. McCormick, G. E g l i n t o n ,

Perhydro- -Carotene i n the Green R i v e r Shale, S c i e n c e ,

157, 1040 (1967).

24.. A. G. Douglas, K. Douraghi-Zadeh, G. E g l i n t o n , J . R. Maxwell,

J . N.-Ram.say, F a t t y .Acids i n Sediments I n c l u d i n g the Green

R i v e r Shale (Eocene) and S c o t t i s h T o r b a n i t e . ( C a r b o n i f e r o u s )

(Manuscript submitted f o r p u b l i c a t i o n ) .

25. I . R. H i l l s , E. V. Whitehead, D. E A n d e r s , J . J . Cujmnins,

W. E. Robinson. An O p t i c a l l y A c t i v e T r i t e r p a n e , Gamma-

cerane i n Green R i v e r , Colorado, O i l Shale Bitumen, Chem..

Comm., 20, 752 (1966).

26. K. Biemann, Mass Spectrometry (McGraw-Hill, New York, 1962)

343.

27. H. Budzikiev/icz, C. D J e r a s s i , D. H. W i l l i a m s . I n t e r p r e ­

t a t i o n of Mass Spectra of Organic Compounds (Holden-Day,

San F r a n c i s c o , 1967).

Page 178: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

28

29

30

• 51 H. B u d z i k i e w i c z J C. D j e r a s s i , D. H. W i l l i a m s . I n t e r p r e - . t a t i o n of Mass Spe c t r a of Organic Compounds (Holden-Day, San F r a n c i s c o , 1963).

H. Budzikiev/icz, J . M.'Wilson, C. D j e r a s s i . Mass Spectrom­

e t r y i n S t r u c t u r a l and Stereochemical Problems. XXXII.

P e n t a c y c l i c T r i t e r p a n e s , J . Am. Chem. Soc., 85j 3688 (1963).

A. Hood^ M. J . O'Neal. Status of A p p l i c a t i o n of Mass

Spectrometry to Heavy O i l A n a l y s i s , P r e p r i n t s , Div. Pet.

Chemistry, Am.- Chem. Soc., 1, 4 (1956).

31. D. 0. S c h i s s l e r , D. P. Stevenson, R. J . Moore, G. J .

O'Donnell, R. E . Thorpe. Steranes i n Petroleum, ASTM-E-14:

Meeting, New York, N.Y., May 1959.

32. E . S. Barghoorn, W. G. Meihschein, J , W; Schopf-. Paleo­

b i o l o g y of a Precambrian Shale, Science, 148, 461 (1965).

33. W.G. Meinschein. O r i g i n of Petroleum, B u l l . Am. Assoc.

P e t r o l . G e o l o g i s t , 43, 925 (1959).

34. D. H. R. Barton, W. C a r r u t h e r s , K. H. Overton. T r i t e r p e n o i d s ,

P a r t XXI, A T r i t e r p e n o i d Lactone from Petroleum, J . Chem•

Soc., 788 (1956).

35. V. J a r o l i m , M. S t r i f i b i , K. Hejno, F. Sorm. Uber die

Zusammensetzung der Braunkohle I . Uber E i n i g e I n h a l t s s t o f f e

des Montan-wachses, Czechoslov. Chem. Commun., 26, 451 (1961).

Page 179: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

52

36. V. Ja r o l i m , K. HeinOj M. S t r e i b l j M. Horak, F. Sorm.

Uber Die Zusi- jJ iunensetzung der Braunkohle 11. Uoer V/eitere

I n h a l t s s t o f f e des Montanwachses, Czechoslov. Chem. Coimnun.,

26, 259 (1951).

37. V. Wollrab, M. S t r e i b l , F. Sorm. Uber Die Zusannensetzung

Der Braunkohle I I I . Uber die Zusammensetzung der Wachsan-

t e l l e des Montanwachses, Czechoslov. Chem• Commun., 27,

757 (1962).

38. V. Wollrab, M. S t r e i b l , F. Sorm. Uber Die Zuszmmenset-

zung der Braunkohle I V. Uber Die Gruppentrennung des

Wachsanteils des Montanwachses mit H i l f e der Chromato-

graphie, Czechoslov. Chem. Commun., 28, 1316 (1963).

39. v.- Wollrab, M. S t r e i b l . Uber d i e Zusammensetzung der

Braunkohle V. B e i t r a g zur Papierchromatographie Hdherer

A l p h a t i s c h e r Carbonsauren und Alkohole, Czechoslov. Chem.

Common., 28, 1895 (1963).

40. V. Wollrab, M- S t r e i b l , F. Sorm.- Uber die Zusammen­

setzung der Braunkohle V I . Analyse von V/achskomponenten

des Montanwachses M i t t e l s Hochtemperatur-G^s-Verteilungs-

chromatographie, Czechoslov. Chem. Commun., 28, 1904 (1963)

41. V. J a r o l i m , K. Heino, F. Sorm. Uber die Zusammensetzung

der Braunkohle V I I . Uber E i n i g e Weitere I n h a l t s s t o f f e des

Harzemteils des Montanwachses, Czechoslov. Chem. Commun.,

28, 2318 (1963).

42. V. J a r o l i m , K. Heino, F. Sorm. Uber d i e Zusammensetzung

der Braunkohle V I I I . S t r u k t u r e i n i g e r aus Montanwachs

I s o l i e r t e r T r i t e r p e n i s c h e r Verbindungen, Czechoslov. Chem.

Commun., 28, 2443 (1963).

Page 180: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

53

45. .V. J a r o l i n i j K. Heino^ F. Henunert, F. Sorm. Uber die

Zusammensetzung der Braunkohle I X . Uber E i n i g e Aromatische

Ko h l e n w a s s e r s t o f f e des H a r z a n t e i l s des Montanv/achses,

Czechoslov. Cham. Conunun., 30, 873 (1965).

44. P. J a r o l i m e k , V. Wollrab, M. . S t r e i b l , F. Sorm, Uber die

Zusammensetzung der Braunkohle X. Uber die Chemische

Zusammensetzung des Hydrierten Montanwachses, Czechoslov.

Chem. Commun., 50, 880 (1965).

45. J . McLean, G. H'. R e t t i e and F. S. S r i n g , T r i t e r p e n o i d s from

Peat, Chem. and I n d . , 1515 (1958).

46. D. A. J . I v e s , A. N. O ' N e i l l . The Chemistry of Peat,

I . The S t e r o l s of Peat Moss (S^hagmm), Can. J . Chem.,

36, 434 (1958) .

47. D. A. J . I v e s , A. N. O ' N e i l l . The Chemistry of Peat, I I .

The T r i t e r p e n e s of Peat Moss (Spagnum), Can. J . Chem., 36,

.926 ( 1 9 5 8 ) .

48. B. J . Mair. Terpenoids. F a t t y Acids and Alcohols as Source

M a t e r i a l s f o r Petroleum Hydrocarbons, Geochim. et Cosmocihlm

Ac t a , 28, 1303 (1964).

49. B. J . Mair, J . L. Martinez-Pico. Composition of the T r i -

n u c l e a r Aromatic P o r t i o n of the Neary Gas O i l and L i g h t

L u b r i c a t i n g D i s t i l l a t e , Proc. Amer. P e t r o l . I n s t . , 42,

173 (1962).

50. W. C a r r u t h e r s , A. G. Douglas. The Constituents of High-

B o i l i n g Petroleum D i s t i l l a t e s . Part IV. Some P o l y c y c l i c

Aromatic Hydrocarbons i n a Kuwait O i l , J . Chem. S o c , 1957,

278 (1957).

Page 181: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

. 54 51. I . R. H i l l s , E. V. Whitehead. T r i t e r p a n e s i n O p t i c a l l y

A c t i v e Petroleum D i s t i l l a t e s , Nature, 209, No. 5027, 977

(1986).

52. S. E. van Tamelen, J . W i l l e t , M- Schwartz, R. Nadeau.

Nonenzymic Laboratory C y c l i z a t i o n of Squalehe 2,3-Oxide,

J . Am. Chem. Soc., 88, 5937 (1966).

53. T. L. V. A l l b r i c h t . The O p t i c a l Asymmetry of Metabolites,

Comparative Biochem., 4, ed. by M. Florken and H. S. Mason

(Academic P r e s s , New York, 1962).

54. Anders, DuFresne, Hayatsu. Contaminated Meteorite, S c i e n c e ,

146, 1157 (1964).

55. R. Hayatsu. O p t i c a l A c t i v i t y i n the Orgueil Meteorite,

Science, 14 9, 443 (1965).

56. B.Nagy. A Study of the O p t i c a l Rotation of L i p i d s E x t r a c t e d

from S o i l s , Sediments, and the Or g u e i l Carbonaceous Meteo­

r i t e , Proc. N.A.S., Chemistry, 56, 393 (1966).

57- F. L. Carnahan, R. E. Hersh, M. R'. Fenske. O p t i c a l Rota­

t i o n of Pennsylvania L u b r i c a n t s , I n d . Enp;- Chem., 36, 333

(1944 ) .

58. M. R. Fenske, F. L- Carnahan, J . N. Breston, A. H. Case,

A. R. R e s c o r l a . O p t i c a l R o t a t i o n of Petroleum F r a c t i o n s ,

Ind. Eng> .Chem., 34, 638 (1942).

59. R. E. Hersh, M. R. Fenske, H. J . Matson, E. F. Koch,

E. R. Booser, W. G. Braun. I d e n t i f i c a t i o n of Pennsylvania

L u b r i c a t i n g O i l s , A n a l y t . Chemistry, 20, 434 (1948).

60. C Zahn, S. H. Langer, B. D. B l a u s t e i n , I . Wender.

O p t i c a l A c t i v i t y i n O i l s Derived from Coal, Nature, 200,

53 (1963).

Page 182: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

55 61. • T.- S. Oakwood, D. S . ' S h r i v e r , H. H. F a l l , W. J , McAleer,

P. R. Wunz. O p t i c a l A c t i v i t y . o f Petroleum, I n d . Eng.

Chem., 44, 2568 (1952).

62. M. L o u i s . Rotatory Capacity of Hydrocarbons i n Ancient

Sedimentary Rocks, Comptes Rendus de I'Academie des

S c i e n c e s , 259, 1889 (1964).

63. A. By K. C i r c u l a r l y P o l a r i z e d L i g h t , Z. p h y s i o l . Chem.,

4_9, 641 (1904).

64. F. H. Horn. S p i r a l Growth on Graphite, Nature, 170,

581 (1952).

65. P. C. Marx. Graphite and the O r i g i n of Petroleum,

Aerospace Corp. (1964).

66. T. L, V. U l b r i c h t , Quasars, Anti-Matter and O p t i c a l

Asymmetry, Nature, 209, 3 91 (1966).

67. G. K. Gray. A s t r o p h y s i c s , Quasars and Antimatter, Nature,

206, 175 (1965).

68. T- L. V. U l b r i c h t . Asymmetry: The Non-Conservation of

P a r i t y and O p t i c a l A c t i v i t y , Q uarterly Reviews, 13, 48

(1959).

Page 183: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Part I I I

Acids from the Colorado Green R i v e r Shale

Page 184: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

2 Acids and Bases from Geological-Sediments

The hydrocarbons of a sediment are u s u a l l y assumed to

have been formed through chemical change by the process of

both b i o l o g i c a l ( b a c t e r i a l ) and a b i o l o g i c a l (due to geolog­

i c a l p r e s s u r e , heat, and time exposure) d i a g e n e s i s . The

minute q u a n t i t y of r e a c t i v e ' organic m a t e r i a l p o s s e s s i n g

r e a c t i v e heteroatoms such as oxygen i n the case of a c i d s

and n i t r o g e n i n the case of bases i s of geochemical i n t e r e s t

p a r t i c u l a r l y s i n c e i t might be expected to be more c l o s e l y

r e l a t e d to the o r i g i n a l organic d e b r i s deposited with the

sediment (although b a c t e r i a l o x i d a t i o n must a l s o be kept i n

mind). As i n the case of hydrocarbons i t would be of p a r t i c u ­

l a r value i f the a c i d s or bases from a sediment bore a p r e d i c t ­

a b l e r e l a t i o n s h i p to the a c i d i c and b a s i c c o n s t i t u e n t s of the

l i v i n g organisms from which they are presumably d e r i v e d .

Comparison of the a c i d s i s o l a t e d from g e o l o g i c a l sources with

the known d i s t r i b u t i o n , of a c i d s present i n present-day ( p r i m i ­

t i v e ) organisms might be expected to l e a d to a b e t t e r comprehen­

s i o n of t h e i r b i o l o g i c a l o r i g i n , and the important d i a g e n e t i c

f a c t o r s . An e x t e n s i v e review of the f a t t y a c i d s i s o l a t e d from

g e o l o g i c a l sediments has been given by R a m s a y . A c o n s i d e r a b l e

number of b a s i c compounds have been i s o l a t e d from petroleum,

but no i n d i v i d u a l compounds have been i d e n t i f i e d i n s e d i ­

ments .^^'^^'^'^

The Colorado Green R i v e r Shale i s thought to be the end

product of a q u a t i c organisms such as algae and protozoa

sedimented i n a s e r i e s of f r e s h water l a k e s . S e v e r a l r e p o r t s

Page 185: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

3

have d e a l t with the f a t t y a c i d s obtained from t h i s sediment.

Abelson and Parker^ reported the presence of normal f a t t y

a c i d s i n the range ^i2'^15^ Lawlor and Robinson^ found normal 8

C-j^Q-C^^ a c i d s , and Leo and Parker reported the occurrence of i s o and a n t e i s o a c i d s as w e l l as normal a c i d s ( C T O - C T Q ) .

9 Eglington and c o l l a b o r a t o r s have reported the presence of •

i s o p r e n o i d ' f a t t y a c i d s from the shale ranging from ^^^-^21

( i n c l u d i n g both phytanic and nor-phytanic) with the excep­

t i o n of C-^Q and noted t h a t they p a r a l l e l the d i s t r i b u t i o n

of corresponding hydrocarbons. The i n v e s t i g a t i o n d e s c r i b e d

here was intended as a, complete mass s p e c t r a l survey of the

types of a c i d s present i n the e x t r a c t s of the Green R i v e r

Shale. I n d i v i d u a l a c i d s were i s o l a t e d and i d e n t i f i e d u s i n g

mass spectrometry.^^"^^

Page 186: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

4

Acid and Base E x t r a c t i o n of Shale E x t r a c t s

Before p a s s i n g the e x t r a c t s down Columns I and I I I (26g)

and ( 2 9 g ) , - r e s p e c t i v e l y - ( r e f e r to Part I I ) , they were each

d i s s o l v e d i n 500 m.l hexane and e x t r a c t e d three times with

100 ml 1 N sodium hydroxide s o l u t i o n and once with 50 ml

s a t u r a t e d sodium c h l o r i d e s o l u t i o n . These aqueous s o l u t i o n s

were combined and back-extracted three times with 100 ml of

hexane ( t h i s hexane s b l u t i o n being returned to the n e u t r a l

hexane s o l u t i o n ) , f i l t e r e d ar.d a c i d i f i e d to a pH of 1. This

s o l u t i o n was e x t r a c t e d three times w i t h 50 cc of hexane and

t h r e e times w i t h 50 cc of dichloromethane. These hexane

s o l u b l e a c i d s and dichloromethane soluble a c i d s were d r i e d

over magnesium s u l f a t e and evaporated. The r e s u l t s are given

i n Table I .

The f i l t e r e d n e u t r a l s o l u t i o n was e x t r a c t e d twice with-

100 ml 1 N ' s u l f u r i c a c i d and once with s a t u r a t e d sodium

c h l o r i d e s o l u t i o n . The combined e x t r a c t s were, then back-

e x t r a c t e d t h r e e times with 50 cc of hexane (which was added

to the n e u t r a l hexane s o l u t i o n ) . The aqueous s o l u t i o n was

brought to a pH of 10 and e x t r a c t e d three times with 50 ml

of hexane and three times w i t h 50 ml of dichloromethane,

which was d r i e d with magnesium s u l f a t e and the s o l v e n t

evaporated. Table I gives the r e s u l t s of t h i s e x t r a c t i o n .

H a l f of the hexane s o l u b l e a c i d s were d i s s o l v e d i n 10

ml of hexane and e x t r a c t e d t h r e e times with 3 ml of sodium

bicarbonate ( s a t u r a t e d ) and 3 ml of d i s t i l l e d water. The

m a t e r i a l which remained i n the hexane s o l u t i o n c o n s t i t u t e s

Page 187: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

5

the phenol f r a c t i o n . The bicarbonate s o l u t i o n was then

a c i d i f i e d to a pH of 2 and r e - e x t r a c t e d three times v/ith

25 ml of hexane. T h i s hexane f r a c t i o n c o n s t i t u t e s the a c i d

f r a c t i o n .

The a c i d f r a c t i o n was t r e a t e d w ith methanol/boron-tri-

fl.uoride reagent and r e f l u x e d f or an hour. T h e - s o l u t i o n was

then concentrated, 3 ml of water added and e x t r a c t e d three

times with 5 ml of hexane. The hexane e x t r a c t s v/ere com­

bined and washed with d i l u t e base and water, concentrated,

and the hexane evaporated. Figure I shows a gas chromato-

gram of the e s t e r s u s i n g a 1/16" x 10' column of 3jg SE-30

on 50-100 mesh aeropack and a flow r a t e of 30 cc/min. pro­

gramed a t 2*'/min. from 50° to 280° C E s t e r s were c o l l e c t e d

from a 5Jg SE-30 on 80-100 mesh aeropack, 10* x 1/4" column

with a flow r a t e of 50 cc/min. programed from 50° to 280° i n

two separate runs. The f i r s t was programed at 2**/min. and

f r a c t i o n s c o l l e c t e d were not p u r i f i e d but immediately ana-

lyzed""by mass spectrometry. The s.econd was programed a t

4''/min. and f r a c t i o n s c o l l e c t e d were f u r t h e r p u r i f i e d by

i n j e c t i o n onto a 3^ HIEPP 8 BP on 80/100 gas chrom Q (Applied

S c i e n c e ) 6 ' x 1/4" column programed a t 6°/min. with a flow

r a t e of 50 ml/min. A t h i r d c o l l e c t i o n , s i m i l a r i n c o n d i t i o n s

to the f i r s t , was made to c o l l e c t f r a c t i o n s f o r high r e s o l u ­

t i o n mass spectrometric a n a l y s i s .

Page 188: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

F i g u r e I . Gas Chromatogram of Colorado Green R i v e r Shale E s t e r s

Page 189: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

COLORADO G R E E N RIVER S H A L E E S T E R S

J w

50- 100' 150' 200' 250'

Page 190: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE I

Acid and Base E x t r a c t i o n Data

Neutral Column Components Hexane

I 31g .1837g

I I 36g 1005g

Acids Dichlormethane

.0965g

.1094g

Hexane

.1076g

.0979g

Bases Dichlprmethane

.0167g

.0272g

Washings 6.75g 04 g 00? g

Page 191: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

e

High Resolution Mass Spectrometric Instrumentation

A Consolidated Electrodynamics Corporation Model 21-110

(employing Mattauch-Herzog geometry) high r e s o l u t i o n mass

spectrometer, capable of d i s t i n c t i o n between thre e m i l l i m a s s

u n i t s , was used to determine the e m p i r i c a l compositions of

a l l fragments formed upon e l e c t r o n impact. A photoplate v;as

used to c o l l e c t a l l ions, simultaneously with subsequent data

t r a n s m i s s i o n of the d i g i t i z e d l i n e p o s i t i o n s and p l a t e black­

ening ( i n percent t r a n s m i s s i o n ) by a J a r r e l l - A s h model 23-500,

high p r e c i s i o n microphotoraeter. These data were recorded by

magnetic tape and fed i n t o a 7090 computer together with the

c a l i b r a t i o n masses of p e r f l u r o k e r o s e n e . The output c o n s i s t s

of the a c c u r a t e mass together- with the e m p i r i c a l composition

of a l l peaks i n the spectrum (found by comparison with a s e l f

generated mass t a b l e ) . F u r t h e r computer programs permit 14

automated g r a p h i c a l p r e s e n t a t i o n of t h i s data.

Low r e s o l u t i o n mass s p e c t r a of i n d i v i d u a l e s t e r s were

a l s o run on t h i s instrument.* A l l mass s p e c t r a l i n t e n s i t i e s

which are o f f s c a l e due to the choice of the r e f e r e n c e peak

are t a b u l a t e d i n Table I I .

* By P r o f e s s o r H e i n r i c h Schnoes. The s p e c t r a were

measured by Garry Zellweger and Gene Tobias.

Page 192: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

69

74

84

87

98

TABLE n

Off S c a l e Mass S p e c t r a l I n t e n s i t i e s

M/E X V I I I X X I I I XXIX XXX ' XXX I I I XXXV L I I LXXX LXXXII LXXXVIII LXXXIX

41 o f f 100 200 110 115 " 1 0 2

43 202 o f f 240 198. 44 750 .

55 '102 o f f

o f f

o f f

103

103

o f f

Page 193: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

10 Kormal Esters

Normal esters have been e x t e n s i v e l y studied and t h e i r fragmentation p a t t e r n s permit unambiguous i d e n t i f i c a t i o n . Figures I I - V I I are the C -C-j -j normal methyl esters i s o l a t e d from the Colorado Green River Shale together w i t h t h a t o f auth e n t i c methyl l a u r a t e .

The major i o n i s formed by the McLafferty rearrangement

Q'^'A^^CHg • OH

^ i H ^ ^ '(CH^0C=CH2)"^ + CH2=CHR

to give a peak a t m/e 74. An important series a r i s e s by simple carbon carbon bond cleavage as i l l u s t r a t e d i n I , where the f i r s t member o f t h i s s e r i e s i s 87, followed by 101, 115, 129, e t c . The molecular i o n i s also a reasonably

CH3-|-CH.

I l 5 7

i l l ! "CH^ CHg CHg CHg4—CHg CH^ COOCH3

lii3 !l29 ills llOl 187

prominent i o n . Fragments corresponding t o M-29. ( i n Figures I I - V I I these are 129, 143, 157, and 171, r e s p e c t i v e l y ) and M-4:3 (115, 129, 143, and 157) ions are due t o expulsion of the a and 3 methylene groups and expulsion of the a, 3 and y methylene groups plus a hydrogen-. The loss of 31 mass u n i t s (127, 141, 155, and 169) i s , of course, due t o loss of the methoxy r a d i c a l (OCH^)-

Page 194: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

11 I t i s i n t e r e s t i n g t o note t h a t the Cg-Cg normal acids

have a l s o been i s o l a t e d from p e t r o l e u m . I n b i o l o g i c a l systems p a l m i t i c a c i d (normal C-j g) i s u s u a l l y the predominant species (15-50^ of t o t a l a c i d content) among the saturated a c i d s , and i s almost never absent. Accompanying i t i s o f t e n o l e i c a c i d . Ramsay has categorized the saturated normal acids as: n-even found i n the range of C^-Cgg w i t h n-C^g predominating i n n a t u r a l f a t s and i n the range w i t h n-C^Q and n-C^Q predominating i n insect and p l a n t wax; n-odd i n the range C -C ^ i n the f a t s of ruminants."^

Page 195: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

12

Figure I i Mass Spectrum of E s t e r i i

COOCH.

Figure I I I . Mass Spectrum of Ester 8 F r a c t i o n 2

•COOCH.

Figure IV. Mass Spectrum of Ester 14 F r a c t i o n 2

COOCH.

Figure V. Mass Spectrum of Ester 19 F r a c t i o n 1

•COOCH.

Figure V I . Mass Spectrum of Ester 22 F r a c t i o n 1

COOCH,

Figure V"II. Mass Spectrum of Methyl Laurate

COOCH,

Page 196: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

GREEN RIVER SHALE NORMAL ESTERS

101 lis

101 115

esTEft e

12a

2o; ? 5 0 j C C

'23 ITa ,84

ESTER 14 FRACTION 2

' 5 0 3 0 0

t. .1

ESTEfl t» RUCTION I

SO 1 0 0

174

1 5 0 2 0 0 7 5 0 3 0 0

Ik or 169

3 5 0 COO

E S m 22 fBACTlON I

1 0 0 I S O 2 0 0 2 5 0 1 0 0 3 5 0

fcCThVL L4UBATE

>43 I7t las

bO 7 0 0 300

XBL 676-1114

Page 197: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

13 Branched Esters

The mass s p e c t r a l p a t t e r n of branched esters i s q u i t e s e n s i t i v e t o the s i t e of branching,and s t r u c t u r e s are u s u a l l y determined by the fragmentation p a t t e r n . For example, the mass spectrum of Ester 10 F r a c t i o n 1 (Figure V I I I ) estab­l i s h e s the s t r u c t u r e as methyl 2-methyl octanoate ( I I ) - The 2 methyl group s h i f t s the t y p i c a l carboxyl fragment from m/e

0H+ 0H+ 74 (CH2COCH3) t o m/e 88 (CHCH^COCH^). As would be expected the expulsion

COOCH3

I I

o f the cv. and 3 methylene carbons' r e s u l t s i n the loss of 43 mass u n i t s (m/e 129) while the expulsion of the a, and x carbons produces the peak a t m/e 115. The presence of an a methyl s u b s t i t u e n t and the l a c k of f u r t h e r branching com­pl e t e s the i d e n t i f i c a t i o n .

I t i s worthy of note t h a t 2-methyl pentanoic, and 2-methyl hexanoic acids have been i s o l a t e d from petroleum and i d e n t i f i e d by mixed m e l t i n g p o i n t s of the p - t o l u i d i d e s .

The i s o p r e n o i d a l S t r u c t u r e I I I i s assigned t o Ester 8 F r a c t i o n 1 (Figure i x ) • The rearrangement peak a t m/e 88 requires an a methyl s u b s t i t u e n t while the loss of 15 and 43 mass u n i t s (m/e 157 asid 159) are consistent w i t h a

Page 198: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

14 t e r m i n a l i s o p r o p y l group. The .combination of these s t r u c ­t u r a l groups req u i r e s S t r u c t u r e I I I . The gas chromato­graphic data support t h i s conclusion because the mono-

COOCH3 ^^^^N.^-^^N^x^-'X/ COOCH3

I I I IV

methyl s u b s t i t u t e d ester (Ester 10 F r a c t i o n l ) w o u l d be expected t o have a longer r e t e n t i o n time than the isomeric dimethyl s u b s t i t u t e d compound ( i l l ) .

Ester 14 F r a c t i o n 1 appears to be an is o p r e n o i d a l ' homologue of the i s o p r e n o i d Ester 8 Fr a c t i o n 1 and was iden­t i f i e d as 3,7 - dimethyloctanoate. S t r u c t u r e IV. I t s mass spectrum, e x h i b i t i n g an intense peak a t m/e 101 (Figure X), i s t y p i c a l f o r esters possessing a methyl branch a t C -The i d e n t i t y i s confirmed by comparison w i t h a s y n t h e t i c sample o f methyl 3,7-dimethyloctanate, the mass spectrum of which i s shown i n Figure X I .

There were i n d i c a t i o n s of small q u a n t i t i e s of other s a t u r a t e d esters t h a t , c o u l d not be i s o l a t e d i n pure enough s t a t e t o make even t e n t a t i v e s t r u c t u r a l suggestions.

* K i n d l y provided by Professor James Cason

Page 199: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

15 E g l i n t o n has found the C-J 3-C2Q isoprenoid acids w i t h

the exception of the C^Q i n Colorado Green River.Shale digested w i t h h y d r o f l u o r i c acid."^'^ Cason has noted the presence of the i s o p r e n o i d a l C , C , C , and C^Q acids i n petroleum. He searched f o r the C-^q isoprenoid but v/as unable t o f i n d i t . ' ^ ' ^ '

Page 200: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

16

'igure V I I I , Mass Spectrum of Ester 10 F r a c t i o n 1

COOCH.

Figure IX. Mass Spectrum of Ester 8 F r a c t i o n 1

COOCH.

Figure X. Mass Spectrum of Ester 14 F r a c t i o n 1

COOCH.

Figure X I . Mass Spectrum of Methyl Ester of 3,7 Dime t h y l o c t a n o i c Acid

COOCH.

Page 201: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

GREEN RIVEfl SHALE BRANCHED ESTERS

ESTER 10 FRACTION I

: 5 0

CSTEB a FRACnOH I

^ . 1 . 07 n 06

4 3 0

ESTcn 14 nucnoN i

ISO

hi W ° * ITI 186

UETMtL £3Ttfi OF ^ T - O w n H T L OCTANOIC AOO

SO ISO 3 5 0 < 0 0

XW. fiT6-1096

16a

Page 202: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

. , 17 Cyc l i c Esters

C y c l i c acids have long been known t o e x i s t i n petroleum. Lochte has reported cyclopentanoic c a r b o x y l i c , 2-methylcyclo-pentanoic, 3-methylcyclopentanoic, c y c l o p e n t y l a c e t i c , 3-methylc y c l o p e n t y l a c e t i c 2,3-dimethylcyclopentylacetic and c y c l o h e x y l a c e t i c acids. Cason has i d e n t i f i e d trans 2,2,6 t r i m e t h y l c y c l o h e x y l a c e t i c a c i d ^ ^ and 3-ethyl-4-methyl-

22 c y c l o p e n t y l a c e t i c a c i d from petroleum. Ramsay mentions having observed c y c l i c acids i n the Green River Shale but gives no data about them."^ Cyclic acids are known to be present i n many and diverse b i o l o g i c a l systems. ' Unfortu­n a t e l y t h e i r mass spectrometric fragmentation p a t t e r n s have

25 received very l i t t l e a t t e n t i o n . Figure, X I I gives the mass spectrum o f methyl cy c l o p e n t y l a c e t a t e w h i l e Figures X I I I - X V I I g i v e the mass spectra of the series of methyl cyclohexyl esters from the acetate through caproate. I t i s t o be noted f i r s t o f a l l t h a t t here i s no way of d i s t i n g u i s h i n g a c y c l o -p e n t y l from a cyc l o h e x y l ester as the peaks a t m/e 69 and m/e 83 are n e i t h e r d i s t i n c t nor c h a r a c t e r i s t i c . The spectra o f a l l o f these standards have intense peaks a t m/e 74. A l l show reasonable loss of 31 mass u n i t s . Methyl cyclohexyl p r o p r i o n a t e shows loss of 28 mass u n i t s as w e l l as intense ions a t m/e 87 and m/e 97 . The f a c t t h a t

T7""l COOCH,

I

•;_ _ 8 j _

Page 203: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

18

methyl cyclohexylbutyrate loses 32 mass u n i t s i n preference t o 31 mass u n i t s vjas somewhat unexpected. Equally unexplained i s the loss of 76 mass u n i t s from methyl cyclo-h e x y l v a l e r a t e . Since l i t t l e i s understood about the knovm c y c l i c esters i t i s d i f f i c u l t indeed t o i n t e r p r e t the mass spectra of those i s o l a t e d from the sediment (Figures X V I I I -XXXV) p a r t i c u l a r l y • s i n c e many of them are obviously impure.

The mass spectrum of Ester 6 Fr a c t i o n 1 (Figure X V I I I ) and Ester 7 F r a c t i o n 2 (Figure XIX) co n t a i n i n g molecular ions a t m/e 156 and 170 could be explained by s t r u c t u r e s such as methyl cyclopentylacetate and methyl 2-cyclopentyl-p r o p r i o n a t e . The peak a t m/e 101 could then be explained by loss of the cyclopentyl- r i n g from the l a t t e r and the m/e 70 by a hydrogen rearrangement:

CH„

COOCH ( COOCH,

Ester 10 F r a c t i o n 3 (Figure XXII) could be i n t e r p r e t e d as e i t h e r methyl t r i m e t h y l c y c l o p e n t y l carboxylate or methyl dimethylcy c l o h e x y l c a r b o x y l a t e , whereas Ester 12 F r a c t i o n 2 (Figure XXIII) could be envisioned as a methyl methylcyclohexyl acetate.

At l e a s t one c y c l i c ester of molecular weight 184 appears t o have an a s u b s t i t u e n t as evinced by the m/e 88 peak of Ester 15 F r a c t i o n 3 (Figure XXV). Comparison o f Ester 15-Fr a c t i o n 4 (Figure XXVI) w i t h methyl cyclohexylproprionate

Page 204: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

19 (Figure XIV) suggests t h a t i t contains methyl cyclohexyl-p r o p r i o n a t e and methyl methylcyclohexylproprionate (although the p o s s i b i l i t y o f methyl methylcyclopentylproprionate and m.ethyl d i m e t h y l c y c l o p e n t y l p r o p r i o n a t e cannot be discarded, as i n d i c a t e d p r e v i o u s l y .

The i n t e n s e m/e 88 peak and the l a c k of an m/e 87 i o n i n the spectrum o f Ester 17 F r a c t i o n 2 (Figure XXVII) com­bined w i t h t h e lo s s o f 15 mass u n i t s suggests a pos s i b l e 3 methyl branch. However, i t i s evident -that a t l e a s t f i v e isomers o f molecular weight 198 are present. Note the presence o f the mono-unsaturated c y c l i c esters (or p o s s i b l y b i c y c l i c e s t e r s ) a t m/e" 196 and- 210 i n Ester 21 F r a c t i o n 3 (Figure XXX).

Esters 23 F r a c t i o n 2 and Ester 24 F r a c t i o n 2 (Figures XXXIV and XXXV) appear t o be a mixture of a C^^ c y c l i c and a t i i c y c l i c e s t e r .

Page 205: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

20

M E I n CYClOPENTri ACETATE

: 99 i : i iV ,27

ISO 2G0 250 300

Figure X I I . Mass Spectrum of Methyl Cyclopentylacetati

Page 206: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

21

Figure X I I I . Mass Spectrum of Methyl Cyclohexylacetate

Figure XIV. Mass Spectrum o f Methyl Cyclohexylproprionate

Figure XV. Mass Spectrum of Methyl Cyclohexylbutyrate

Figure XVI. Mass Spectrum o f Methyl Cyclohexylvalerate

Figure X V I I . Mass Spectrum of Methyl Cyclohexylcaproate

Page 207: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

MEtHn C T a O K E I Y l ACHATE

2 l a

.00

7i I f " ! "

100 200 2S0 3CC

M E T H T I C T C L O H E I T L - P I O P R I O N A I E

i 1

^oo

100 150 200 251 330 35Q

"CTHYL CYaOHEXYL BUTWATE

100 ISO 200 250 30-:

! ! [, '6? ISO

ICO ,50 200 250

METHYL CVaOHEXYL VALERATE

300 35C

METHYL CYCLOHEXYLCAPROATE

i I ! 129 169

_ l 1 _

50 100 150 200 250 300 35;

XBL- 678-4594

Page 208: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure X V I I I . Mass Spectrum of Ester 6 F r a c t i o n 1

Figure XIX. Mass Spectrum of Ester 7 F r a c t i o n 2

Figure XX. Mass Spectrum of Ester 2

Figure XXI. Mass Spectrum of Ester 9 F r a c t i o n 2

Figure X X I I . Mass Spectrum of Ester 10 F r a c t i o n 3

Figure X X I I I . Mass Spectrum o f Ester 12 F r a c t i o n 2

22

Page 209: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

CM

i i

I !

Page 210: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

23

Figure XXIV. Mass Spectrum of Ester 13 F r a c t i o n 2

Figure XXV. Mass Spectrum of Ester 15 Fr a c t i o n 3

Figure XXVI. Mass Spectrum of Ester 15 Fr a c t i o n 4

Page 211: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

GREEN RIVER SHALE CYCLIC

23a

5 5

63

i. i i

t09

134 I

137 169

..i J .

ECTEfl 13 fRACTlM 2

5 0 1 0 0 . 5 0 2 0 0 2<50 3 0 0 3 5 0 iOO

5 5

69 74

- 1 81 : : 9S 184

E S T E R 15 FRACTION 3

, 0 0 I S O 2 0 0 2 5 0 3 0 0 J 5 C

5 5 87

l l 170 184

E S T E R 15 FRACTION 4

5 C :o; I S O 2 0 0 2 5 0 3 0 0 ceo

X0L679 -Sia4

Page 212: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

24

Figure XXVII. Mass Spectrum of Ester 17 F r a c t i o n 2

Figure X X V I I I . Mass Spectrum o f Ester 18 F r a c t i o n 1

Figure XXIX. Mass Spectrum of Ester IS F r a c t i o n 2

Figure XXX. Mass Spectrum o f Ester 21 F r a c t i o n 3

Page 213: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

6 0 1 I - 9 Z 9 lex

OS'

601

OOt ooe 0 0 2 OSX COT OS

Gal i8'> 11

esl 19.

69!

OSC ooe osz ooz o s i OOT OS

: r T r r r ^ C I 601 S G ^ B ! \

I NOIIOVMJ ei H31S3

661 C8i i a

861

SU3153 3nOA3 TT7HS tf3AlU N33U3

?5

^2

Page 214: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure XXXI. Mass Spectrum of Ester 22 Fr a c t i o n 2

Figure XXXII. Mass Spectrum of Ester 22 F r a c t i o n 3

Figure X X X I I I . Mass Spectrum of Ester 23 Fr a c t i o n 2

25

Page 215: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

I

s —

: s s ! i

4- a

S I -

Page 216: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

26

GREEN RWEB SM£LE CYCUC ESTtHS

I k lii 100

e$TEH 24 nUCTWM 2

i ! 1 •• :i I . I • •

350 4 0 0

Figure XXXIV. Mass Spectrum of Ester 23 F r a c t i o n 2

Figure XXXV. Mass Spectrum of Ester 24 F r a c t i o n 2

Page 217: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

27 Unsaturated Esters

Figures XXXVI-XXXIX give the mass spectra o f a u t h e n t i c methyl 10-undecenoate and three unsaturated esters v/hich were i s o l a t e d . Assignment t o the class of unsaturated esters i s based p r i m a r i l y on the molecular v/eight; d i f f e r e n t i a t i o n from the c y c l i c esters i s based on the s t r o n g loss o f 32 mass u n i t s (OHCH^). Such fragmentation i s c h a r a c t e r i s t i c f o r unsaturated esters and would not be expected f o r monocyclic esters (see c y c l i c e s t e r s ) . Unfor­t u n a t e l y no s i n g l e compound can be i d e n t i f i e d , since a l l of them are apparently impure. Comparison of the mass spectra of the three unknowns w i t h t h a t of the known undecenoate shows q u i t e c l e a r l y the s i m i l a r i t i e s between them, i . e . the l o s s of 32 and 74 mass u n i t s and major ions a t 55, 69, 74, and 87. Nevertheless such prominent peaks as m/e 111, lOS, and 95 i n the spectra of Ester 9 F r a c t i o n 1, Ester 11 F r a c t i o n 1 and Ester 14 F r a c t i o n 3 seem t o i n d i c a t e c o n t r i ­b u t i o n from c y c l i c isomers. A d e t a i l e d i n t e r p r e t a t i o n of the spectra i s not p o s s i b l e . s i n c e r e p r e s e n t a t i v e unsaturated acids were not a v a i l a b l e f o r study and the data from the l i t e r a t u r e do not prove p a r t i c u l a r l y h e l p f u l i n t h i s case.

Another c o m p l i c a t i n g f a c t o r i n the t h e o r e t i c a l i n t e r p r e ­t a t i o n of unsaturated esters i s the d e l o c a l i z a t i o n o f the double bond upon e l e c t r o n impact. I t might be p o s s i b l e t o gain more i n f o r m a t i o n about these esters using chemi-ioniza-t i o n i n a high pressure mass spectrometer a t very low

Page 218: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

. 28 i o n i z i n g voltages. Since i o n i z a t i o n i s accomplished by e x c i t e d simple molecules, small samples could t h e o r e t i c a l l y be observed; the lovj energy t r a n s f e r r e d would not be expected t o d i s t u r b the double bond: However, t h i s l a b o r ­a t o r y was not equipped f o r such s t u d i e s .

Unsaturated esters have so f a r not been reported from g e o l o g i c a l sources w i t h the exception of the work of Ramsay,"*" who has reported normal O^q-C^q t e r m i n a l monoenoic acids i n a recent sediment and an ancient mineral o i l . He has t h e o r i z e d t h a t recent b a c t e r i a l a c t i o n i s the source of such compounds; i n the case of the o i l an igneous i n t r u s i o n i s invoked t o cause cracking. Oleic (cis-octade-9-enoic a c i d ) i s the most common c o n s t i t u e n t o f a l l n a t u r a l f a t s c o n t r i b u t -i n g a t l e a s t 305^ t o the t o t a l f a t t y acids . Even unsaturated acids range, from C-j g-Cg maximizing a t C- g i n aquatic o i l s , w h i l e they range from Cgy-C^^ I n waxes and seed f a t s . Odd unsaturated acids are found i n human h a i r f a t . " ^

Page 219: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

29

Figure XXXVI. Mass Spectrum of Ester S F r a c t i o n 1

Figure XXXVII. Mass"Spectrum of Ester 11 F r a c t i o n 1

Figure XXXVIII. Mass Spectrum of Ester 14 F r a c t i o n 3

Figure XXXIX. Mass Spectrum o f Methyl 10-Undecenoate

Page 220: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

GREEN RIVER SHALE UNSATURATED E S T E R S

29a

; i I J i 87

lOI

. • 1 '

t.a

i I 7-i\ 1

1 5 0 2 0 0

E5TXR 9 nucnoM I

3 ? 0

M G9

11 87 J09

IPI 1

i

csTEB II n u c n o N

2 0 0

ESTEB 14 FRACnOM 3

as i •»

IS2

I ! 1 ' ? \ I C O I S O 2 0 0 3 0 0

tee I

UETHYL lO-UKOCCENOATE

3<BL 676-I I2S

Page 221: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

30 Methyl Benzoates

Several series of aromatic esters were i s o l a t e d , the f i r s t of which i s the methyl s u b s t i t u t e d methyl benzoate s e r i e s . Two isomers of mono-methyl s u b s t i t u t e d methyl benzoate were i s o l a t e d and i d e n t i f i e d on the basis of t h e i r mass spectra (Figures XL and XLI) and t h e i r GLC p r o p e r t i e s . ' The major i o n a t m/e 119 i s the c h a r a c t e r i s t i c i o n i n methyl s u b s t i t u t e d methyl benzoate e s t e r s , r e s u l t i n g from the loss o f 31 mass u n i t s (OCH^) - Ester 12 F r a c t i o n 4= i s assigned the s t r u c t u r e of methyl m-toluate. S t r u c t u r e V, and Ester 13 F r a c t i o n 3 t h a t of methyl p - t o l u a t e . Structure V I . . Although the mass spectra are p r a c t i c a l l y i d e n t i c a l , they show minor d i f f e r e n c e s such as the i o n a t m/e 118 correspond­i n g t o M-32. (Refer t o Table i i i I t should be noted t h a t one can d e f i n i t e l y e l i m i n a t e the ortho isomer; d i s t i n c t i o n between meta and para compounds i s made p r i m a r i l y on the basis of the GLC r e t e n t i o n time.

VI

Page 222: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

31 Four methyl demethylbenzoates of molecular weight 164

were found; t h e i r mass spectra are given i n Figures XLII-XLV The a l t e r n a t i v e t o l y l a c e t a t e s are r u l e d out by the fact-t h a t these e s t e r s a l l have s t r o n g peaks a t M-31 and not a t M-59 as would be expected from, t o l y l a c e t a t e s . The l a c k o f an intense i o n a t M-15 e l i m i n a t e s the p o s s i b i l i t y of methyl ethylbenzoates. The i n t e n s i t y o f the M-32 peak i n d i c a t e s t h a t a l l have a t l e a s t one ort h o ^ u b s t i t u e n t which reduces' the s t r u c t u r a l p o s s i b i l i t i e s t o f o u r . S t r u c t u r e s VII-X.

COOCH COOCH. COOCH. COOCH.

V I I V I I I IX

Ester 17 F r a c t i o n 4 and Ester 16 Fr a c t i o n 4 have very s i m i l a r s p e c t r a ; presumably they are d i f f e r e n t " i s o m e r s although GLC t a i l i n g c ould r e s u l t from a s i n g l e compound. (See Table 3V )

The next homologues of t h i s series (Figures XLVI-XLVII) have molecular weight 178; two isomers were i s o l a t e d . Both are i d e n t i f i e d as s u b s t i t u t e d methyl benzoates by the base peak a t m/e 147. The l a c k o f an intense M-15 peak suggests t h a t a l l s u b s t i t u e n t s are methyl groups. However, d e f i n i t e assignments are not p o s s i b l e w i t h o u t standards. I t i s i n t e r ­e s t i n g t h a t Ester 23 t'raction 7 bears a close s i m i l a r i t y t o methyl 2,4,S-trimethylbenzoate. (Table V)

Page 223: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

32 I t would be premature t o speculate e x t e n s i v e l y on the o r i g i n of these benzoic a c i d d e r i v a t i v e s . Obviously they could represent degradation products of terpenoids such as the p-cymene and m-cymene class of monoterpenes. Both of the aromatic parent compounds occur i n nature (the £-cymene class i s much more abundant) and of course many saturated

p-cymene compounds of t h i s type are knovm

limonene a - t e r p m e o l

phellandrene t e r p i n

m-cymene

terp i n o l e n e

thymol

terpinene

menthol 0=CH.

menthane: ca r v a c r o l i s o - p u l e g o l p e r i l l a l d e h y d e

Page 224: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

33 Only a few re p r e s e n t a t i v e s o f the m-cymene class occur i n nat u r e , f o r example:

carvestrene

B i c y c l i c compounds, mono terpenoids, could y i e l d aromatic d e r i v a t i v e s upon diagenesis, f o r example:

or

car-3-ene

Page 225: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

34

r i g u r e XL. Mass Spectrum of E s t e r 12 F r a c t i o n 4

Figure XLI- Mass Spectrum of E s t e r 13 F r a c t i o n 3

XV- 3

COOCH.

Figure X L I I Mass Spectrum of E s t e r 16 F r a c t i o n 4

Figure X L I I I . Mass Spectrum of E s t e r 17 F r a c t i o n 4

Figure XLIV. Mass Spectrum of E s t e r 18 F r a c t i o n 3

Figure XLV. Mass Spectrum of E s t e r 17 F r a c t i o n 3

COOCH.

OOCH.

COOCH.

OOCH.

Page 226: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

G R E E N RIVER S H A L E AROMATIC E S T E R S

3lia

6 5

E S T E R rZ FRACTION 4

2S0 inn

150

135

E S T E R 13 FRACTION 3

105

7 7

150

133

164

139 ' ^ 9 ^ 5 170

200 250 300 3 5 0

E S T E R 16 FRACTION 4

150 200 250 3 0 0 350

j i

i 103

1

>33

I

£STEB 17 F B A C T I O N 4

t

i

I k , 1

7 7

1

i 1. J.1 . i i . 11,1, 170

100 150 200 2 5 0 3 0 0 350 < 0 0

; i 3 3

105

164

149

E S T E R 18 FRACTION 3

100 150 200 250 3 0 0 350

E S T E B 17 fiACJtOf* 3

i 3 5 0 COO

X B L 676-1121

Page 227: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

35

OSZN RIVER SHALE ARQIUTIC £5T£RS

,.t- SI

ESTER 22 fRACnON 6

2S0

E5TER Z3 FRACTION 7

1 0 0 2 5 0 100

Figure XLVI. Mass Spectrum of Ester. 22 F r a c t i o n 6

Figure X L V I I . Mass Spectrum of E s t e r 23 F r a c t i o n 7

Page 228: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

36

• TABLE I I I

A Comparison of the Mass Spectrometric Fragments of Methyl Toluates

ortho* meta* para* 12-4 13-3 M-31 119 100 100. 100 100 100 M-32 118 62 1 2 1 2 M-33 117 •7 18 M-34 116 4 10

105 6 2 1 2 2 92 5 4 3 4 4 91 67 51 43 46 46

M-60 90 18 5 8 5 7

*McLafferty, Fred W. and Gohlke, Roland S., "Mass Spe c t r o m e t r i c A n a l y s i s of Aromatic Acids eind E s t e r s A n a l y t i c a l Chemistry, 31, no. 12, p. 2076 (December 1959)

Page 229: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE IV

Comparison of the R e l a t i v e I n t e n s i t i e s of Methyl Dimethyl'benzoates

16-4 17-3 a7-4 18-3 2,5* 2,4» 3, 5> P 164 56 46 72 31 56 38 40 P-1 163 2 3 3 2 2 2 2 P-15 14 9 15 13 15 13 15 6 2 P-17 147 2 3 2 1 -1 1 0 P-18 146 1. 2 1 0 0 0 0 P-31 133 100 100 100 100 100 100 100 P-32 132 73 39 68 40 77 40 1 P-44 120 1 1 1 1 0 0 0 P-45 119 3 7 5 . 4 2 2 0 P-59 105 68 41 75 73 65 51 39 P-60 104 56 17 40 35 4:1 14 5

91 22 24 13 14 2 5 3

77 42 26 47 58 40 26 18

A c a z e l , H. E. Lumpkin, A n a l y t i c a l Chemistryj 34, 33 (1962).

Page 230: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

38

" TABLE V

Comparison of the R e l a t i v e I n t e n s i t i e s of Methyl Trimethylbenzoates

22-6 23-7 2,4,5 P 178 55 38 50 P-1 177 4 2 2 P-15 163 25 . 12 12 P-17 161 4 2 1 P-18 160 5 0 0 P-31 147 100 100 100 P-32 146 40 58 59 P-44 134 1 1 1 P-45 133 : 7 3 4 P-59 119 1 42 39 P-60 118 21" 14 26

91 38 35 30 77 20 18 18

.105- 6 5 4 104 10 8 7

, r T-.'o' S ^ -'-' Lumpkin, A n a l y t i c a l Chemistry. o4 , 33 (1962J. '

Page 231: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

3S

Phenyl A l k y l E s t e r s

Another s e r i e s i s represented by one isomer of molecular

weight 192 (Figure X L V I I I ) , f i v e isomers of molecular weight

206 (Figures X L I X - L I I I ) , seven isomers of molecular weight

220 (Figures LIV-LX), and three isomers of molecular weight

234 (Figures L X I - L X I I l ) . Since many of them are apparently

mixtures, s t r u c t u r a l assignments are not p o s s i b l e a s i d e from

r e c o g n i t i o n of the c l a s s . F i g u r e s LXIV-LXVIII give the mass

sp e c t r a of s e v e r a l r e f e r e n c e standards. E s t e r 27 F r a c t i o n 7

(Figure L I T ) represents a mixture co n t a i n i n g an aromatic

component of molecular vjeight 206 (to which are assigned the

fragments a t m/e 175, 132, and 105): a cycloaromatic com­

pound would account f o r the molecular ion a t m/e 218 ( f r a g ­

ments a t m/e 189 and 145) and a keto e s t e r of molecular

weight 214 might e x p l a i n the fragments a t 183, 157, and 125.

The f a c t that E s t e r 29 F r a c t i o n 4 (Figure L I U ) l o s e s 73 i n

•pi ofereice to " inass u n i t s (m/e 133) might be explained by a

s t r u c t u r e such as S t r u c t u r e XI where there i s no t r a n s f e r a b l e

hydrogen. The dominance of the ion of m/e 147 i n the

133

^^../v^^x-a^^^COOCH^ f ^ ^ ^ ^ ^ ^ y ' ^ ^ COOCHj

XI X I I

Page 232: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

40 ,CO0CH. COOCH-

X I I I XIV

mass spectrum of E s t e r 27 F r a c t i o n 6 suggests a s t r u c t u r e

such as S t r u c t u r e X I I or X I I I . Isomers of phenyl a l k y l a c i d s

of molecular weight 234 appear to be pr e s e n t . Most of these

could not be obtained i n pure enough form to permit s t r u c ­

t u r a l deductions to be made. Hov;ever the mass spectrum of

E s t e r 32 F r a c t i o n 4 (Figure L X I I ) suggests a methyl sub­

s t i t u t e d phenylproprionate ( X I V ) . P o s s i b l e b i o l o g i c a l

p r e c u r s o r s might i n c l u d e substances l i k e p-ionone or long

c h a i n i s o p r e n o i d s w i t h a r i n g such as vitamine A (C^q)-

E s t e r 25 F r a c t i o n 6 (Figure XLIX) appears to be a

methyl monomethyl s u b s t i t u t e d 4 p h e n y l v a l e r a t e (compare with

4 p h e n y l v a l e r a t e i n Figure. L X V I I ) as i n d i c a t e d i n ' S t r u c ­

t u r e XV. A p o s s i b l e s t r u c t u r e f o r E s t e r 28 F r a c t i o n 2

(F i g u r e L V I l ) would appear to be methyl 4-dimethylphenyl-

v a l e r a t e . S t r u c t u r e XVI. Aromatic a c i d s to which a s i d e

c h a i n i s a s s i g n e d vjith a branch next to the r i n g j could

COOCH- .COOCH.

XV XVI

Page 233: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

41

be derived from sesquiterpenes l i k e the following

A oisaoo±ene aingiberene l a n c e o l

E s t e r 30 F r a c t i o n 1 i s i d e n t i f i e d as methyl 2-methyl

4-dimethylphenyl-butyrate/ S t r u c t u r e XXVII^ on the b a s i s of

the intense peak a t m/e 88 i n d i c a t i v e of the a branched r e a r ­

rangement i o n (CK^CHgCOOCH^ and by the intense peak at

m/e 119 r e p r e s e n t i n g the dimethyl t r o p y l l i u m i o n . ( I t should

be noted t h a t the composition of the l a t t e r peak has been

v e r i f i e d by high r e s o l u t i o n mass spectrometry to be indeed

CoH3_2_)- A p l a u s i b l e diortho s u b s t i t u t e d p r e c u r s o r would be

a hydrocarbon of the p carotene-type.^ S t r u c t u r e X V I I I , where

one methyl group could be l o s t i n aromazation during diagene-

s i s . Of course, the mass s p e c t r a l data do not permit a s s i g n ­

ment of methyl groups to s p e c i f i c p o s i t i o n s on the aromatic

XVII X V I I I

Page 234: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

42

ESTER 26 nwcnON 6

3ec !

F i g u r e X L V I I I . Mass Spectrum of E s t e r 26 F r a c t i o n 6

Page 235: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure XLIX. Mass Spectrum of E s t e r 25 F r a c t i o n 6

Figure L. Mass Spectrum of E s t e r 25 F r a c t i o n 5

Figure L I . Mass Spectrum of E s t e r 25 F r a c t i o n 4

Figure L I I . Mass Spectrum' of E s t e r 27 F r a c t i o n 7

Figure L I I I . Mass Spectrum of E s t e r 29 F r a c t i o n 4

43

Page 236: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

: - 8

Page 237: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure LIV. Mass Spectrum of E s t e r 26 F r a c t i o n 5

Figure LV. Mass Spectrum of E s t e r 27 F r a c t i o n 5

Figure LVI. Mass Spectrum of E s t e r 27 F r a c t i o n 6

Figure L V I I . Mass Spectrum of E s t e r 28 F r a c t i o n 2

44

Page 238: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

I

Page 239: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

•45

Figure L V I I I . Mass Spectrum of E s t e r 29 F r a c t i o n 3

Figure L IX. Mass Spectrum of E s t e r 30 F r a c t i o n 1

Figure LX. Mass Spectrum of E s t e r 31 F r a c t i o n 3

Page 240: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

(0

3-

Page 241: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure L X I . Mass Spectrum of E s t e r 32 F r a c t i o n 2

Figure L X I I . Mass Spectrum of E s t e r 32 F r a c t i o n 4

Fig u r e L X I I I . Mass Spectrum of E s t e r 34 F r a c t i o n 4

48

Page 242: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

s i "

h8

Page 243: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

4:7

Figure LXIV. Mass Spectrum of Methyl 2-Phenylbutyrate

Figure LXV. Mass Spectrum, of Methyl 3-Phenylbutyrate

Figure LXVI. Mass Spectrum of Methyl 4:-Phenylbutyrate

Fig u r e L X V I I . Mass Spectrum of Methyl 4-Phenylvalerate

Figure L X V I I I . Mass Spectrum of Methyl 5-Phenylvalerate

Page 244: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

U7a

91 ; 119

200 2SC

METHYI 7 - P H E N n b U T Y B A l E

30C

; MB

M E T M Y l 3 - P M E N Y l S U T Y f l A I E

200 2=10 300 3S0

M E T H Y L J - P H E N T l t U T Y R A T E

:00

100 LSO 200 250 3C3 3S0

M E T H Y I i P H E N Y t V A L E R A T E

SO 130 150 200 250 300 350 100

104

I • i 1 I . i

M E T Y l 3 P H E N Y L V A l £ a * T E

SO 100 ISO 200 250 300 350 400

XBL 678-6109

Page 245: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

46 Methyl Methyl S u b s t i t u t e d Napthoate E s t e r s and Cyclo-Aromatic E s t e r s

Two methyl methyl s u b s t i t u t e d napthoate e s t e r s of

molecular weight 200 w e r e . i s o l a t e d ; t h e i r mass s p e c t r a

are given i n F i g u r e s LXXI and L X X I I . High r e s o l u t i o n mass

spectrometric data v e r i f y t h a t the composition of m/e 200

i s C-j H- Ogj 169 i s C^2^9^' -'"- ^1^7* Unfor­

t u n a t e l y the mass s p e c t r a do not permit the points of sub­

s t i t u t i o n to be determined. The spectrum of authe n t i c

methyl 1-napthoate i s given for comparison i n Figure LXX-

Note that methyl napthylacetate i s r u l e d out by comparison

with Figure LXIX- Other members of t h i s s e r i e s were found

w i t h molecular weights of 214, 228, and 242 i n very s m a l l

q u a n t i t i e s .

Also found was a s e r i e s of cyclo-aromatic a c i d e s t e r s

of molecular weight 204, 218, and 232 (Figures LXXIV-LXXVI).

The mass s p e c t r a of E s t e r s 31 F r a c t i o n 4 and 33 F r a c t i o n 5

are c h a r a c t e r i z e d by in t e n s e peaks a t M-15. E s t e r 31

F r a c t i o n 5 c o n s i s t s of a mixture of compounds of molecular

weight 218 and 204. These substances may possess s t r u c t u r e s

of the t e t r a h y d r o naphthalene-type, but the s p e c t r a do not

permit more d e f i n i t e assignments.

Page 246: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

49

Many b i c y c l i c compounds a l s o occur i n nature v/hich c o u l d conceivably produce aromatics or c y c l o aromatics, among them a r e :

cadinene s e l i n e n e eremophilone

s c l a r e o l manool

Page 247: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

50

•Figure LXIX. Mass Spectrum of Methyl 2-Napthylacetate

Figure LXX. Mass Spectrum of Methyl Napthoate

Figure LXXI. Mass Spectrum of E s t e r 33 F r a c t i o n 6

Figure L X X I I . -Mass Spectrum of E s t e r 33 F r a c t i o n 7

Figure L X X I I I . Mass Spectrum of E s t e r 37

Page 248: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

$0a

lis I 201

L i I

M l i n 2-NAPrHVl ACETATE

50 103 ISO 200 250 300 350 4 00

METHYL N A P I H O A I E

50 103 150 200 250 300 350 400

ESTER 33 FRACTION 6

115

! d

200 ESTER 33 FRACTION 7

,00 ISO 200 250

" 1

112

I S 3

300 350 -SCO

50 100 150 200 250 300 350 400

XBL 678-4593

Page 249: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

51

Figure LXXIV. Mass Spectrum of E s t e r 31 F r a c t i o n 4:

Figure LXXV. Mass Spectrum of E s t e r 31 F r a c t i o n 5

Figure LXXVI. Mass Spectrum of E s t e r 33 F r a c t i o n 5

Page 250: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

5la

GREEN RIVER S H U £ C t O O " n M A T I t E S T E R S

2 I S

ESTCf t 31 n u c T i m 4

^ 1 n,K . 1 i . ' 1 200 3 5 0

.143 '13

129 ; ; ! E S T E A 11 H U C T I O N S j

, : i i j r . c j - c • ' ' - r

1 1 I E S T E R 33 n U C T l O N i

ZIS 1

! ^ — • • ' i -S O 350 too

X B L £ 7 6 - 1 1 1 7

Page 251: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

52 Dicar'ooxylic Acid E s t e r s

An i n t e r e s t i n g s e r i e s of compounds i s o l a t e d from the

s h a l e i s represented by the GLC peaks 38, 41, 43, 45, 48,

51, and 54 (See Figure l ) . Mass spectrometric a n a l y s i s of

these compounds revealed a homologous s e r i e s of s t r a i g h t

c h a i n C^^-C^g a,u)-dicarboxylic a c i d e s t e r s . The mass s p e c t r a

of these compounds are q u i t e c h a r a c t e r i s t i c and permit unam­

biguous i d e n t i f i c a t i o n . (See F i g u r e s LXXVII-LXXXIV.) The

high mass region i s c h a r a c t e r i z e d by a s m a l l molecular ion

peak and strong l o s s of both-of 31 mass u n i t s (OCH, ) and

of 73 mass u n i t s (CH^OCCH^). The base "peak of the s p e c t r a

i s the i o n of m/e 98 (except v/hen the ester, i s s u b s t i t u t e d

i n which case the base peak i s a higher homologue). S t r u c ­

ture XIX has been suggested f o r t h i s i o n . The f a c t t h a t .

C< ^H2

% )H XIX

i n a l l s p e c t r a ions of m/e 98 represent the base peak and

the presence of i o n s a t m/e 74 and 87, q u i t e c o n c l u s i v e l y

i n d i c a t e s that they are s t r a i g h t c h a i n . I t should be noted

th a t E s t e r 38 (Figure LXXVIIIhas an impurity at m/e 214

which may be a dimethyl s u b s t i t u t e d n a p h t h a l i c e s t e r , the peak

at in/e 183 r e p r e s e n t i n g l o s s of methoxy r a d i c a l , and 155,

Page 252: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

5 3

l o s s of carbomethoxy r a d i c a l , or a methoxy r a d i c a l and carbon monoxide. High r e s o l u t i o n mass spectrometric data v e r i f y t h a t the composition of m/e S 8 i s CgH j QO, 1 1 2 i s CrjE-^^O, 1 2 6 i s CQH^^O, 1 5 3 i s CgH^^O, 1 8 5 i s O^^E^^O^, and 1 S 9 i s

^ 1 2 ^ 2 3 ^ 2 •

Three a methyl branched d i c a r b o x y l i c a c i d e s t e r s were

a l s o found. F i g u r e s LXXXV-LXXXVII give t h e i r mass s p e c t r a .

The assignment of S t r u c t u r e s X X I - X X I I I (dimethyl 's-methyl-l,

l?--dioate; dimethyl 2-methyl-lA^y-dloate; and dimethyl 2 -

methyl-1 A 5-dioate) i s based on the prominent l o s s of m/e 0 0

87 (CH3OCHCH3) and m/e 7 3 (CH^OCCHg) as indicated.by the

ions a t m/e 1 8 5 and 1 S 9 i n E s t e r 3 9 , m/e 2 1 3 and 2 2 7 i n

E s t e r 4 4 and m/e 2 1 7 and 2 4 1 i n E s t e r 4 6 . I n the low mass

region there a r e i n t e n s e peaks a t both 74 and 8 8 , and 98

and 1 1 2 . T h i s combination of these peaks makes i t imperative

t h a t one a-carbon be s u b s t i t u t e d and the other u n s u b s t i t u t e d

by a methyl group. Note t h a t the impurity a t m/e 2 1 4 i n E s t e r

3 9 accounts f o r the peak a t m/e 1 8 3 ( l o s s of OCH^) hut does

not appear t o c o n t r i b u t e s i g n i f i c a n t l y t o the r e s t of the

spectrum.

;OOCH,

XX

Page 253: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

54

COOCK^

XXI

cr^coc OOCH.

XXII

Although the absence of d i c a r b o x y l i c acids i n petroleum

naphthenic a c i d f r a c t i o n s has been noted by Lochte, Douglas

et a l . have r e c e n t l y reported the i d e n t i f i c a t i o n of CQ-C^^

a,a)-dicarboxylic a c i d s from carboniferous S c o t t i s h T o r b a n i t e . ^ ^

Page 254: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

55

Figure LXX^;iI. Mass Spectrum of Authentic 1,12 Dimethyl Dodecanedioate

C H 2 0 0 C ( C H 2 ) ^ Q C 0 0 C K 3

Figure L X X V I I I . Mass Spectrum of E s t e r 38

Figure LXXIX. Mass Spectrum of E s t e r 41

C H 3 0 0 C ( C H 2 ) I - L C 0 0 C H 3

F i g u r e LXXX. Mass Spectrum of E s t e r 43

Figure LXXXI. Mass Spectrum of Es.ter 45

C H 3 0 0 C C C H 2 ) ^ 3 C 0 0 C H 2

Page 255: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

55a

GREEN RIVER SHALE NORMAL DICARBOXYUC E S T E R S

U2 n u C T X n . OOUC&NECtOATC

ESTER 3B

«0G

» 7 i

•i.; nil L U9

- L-L. Jl 50 too .50 200 250 3CG 350 <C0

9B

1. 1 -^i Mil J

ESTER 45

KBL 678-6127

Page 256: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

56

Fig u r e L X X X I I . Mass Spectrum of E s t e r 48

CH300C(CH2);L^C00CH,

F i g u r e L X X X I I I . Mass Spectrum of E s t e r 51

C H 3 0 0 C ( C H 2 ) - L 5 C 0 0 C H 2

F i g u r e LXXXIV. Mass Spectrum o f . E s t e r 54

C H 2 0 0 C ( C H 2 ) - L 5 C 0 0 C H 3

Page 257: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

-112

.1 •V 1

126

J 154 168 209

283

E S T E R 48

314 1

100 150 200 - 250 300 35(

.1

7Si I

328

•.Si . 200 250 30C 350 4 00

E5TEa 54

25, I 1 ICC • 5C 200 250 30i 350

X8L 676-1124

56a

Page 258: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Figure LXXX / Mass Spectrum of Ester 39

57

c:-i^ooc COOCI-i.

Figure LXXXVI. Mass Spectrum of Ester 44

Cn OOC

Figure LXXXVI I . Mass Spectriom of Ester 46

CH3OOC COOCH.

Page 259: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

G R E E N R I V E R S H A L E BRANCHED D ICARBOXYLIC E S T E R S

ESTER 39

98 «

69 214 74 )S5

126 199

135 181; 241

2S0 300 3SU <00

ea 98 112 E S T E R 44

74

57a

126 2J3 I I

227 269

290 300

200 3UG

112 ESTES U>

IS2

|2*1 t' • I • I

.OJ I5t: 3JU

XBL 678-6128

Page 260: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

56 Keto Acids

Tivo f r a c t i o n s \i;ere obtained • which v;ere i d e n t i f i e d as sat u r a t e d keto esters by t h e i r mass spectra (Figures LXXXVIII LXXXIX). The f i r s t (Figure LXXXVIIl)has a molecular i o n a t m/e 214 and s t r o n g peaks a t m/e 183 (M-3l),157 (M-57), 125 (M-57-52), 97, 87, 74, 69, and 58 (base peak). The second compound (Figure LXXXIX) has a molecular i o n a t m/e .256 and peaks a t 225 (M-31), 199 (M-57), 167 (M-57-32), 149 (187-18), 87, 74, and 58 (base peak). These data c l e a r l y i d e n t i f y the compound o f molecular weight 214 as methyl 11-oxydodecanoate ( X X I I I ) and the compound o f molecular weight 256 as methyl 13-oxytetradecanoate (XXIV).

G 0 II U

CH30-C-(CH2)y^-C-CH3.

X X I I I n = 8

XXIV n = 10

The mass spectra o f keto-esters have been studied and t h e i r f r a g m e n t a t i o n p a t t e r n s are c h a r a c t e r i s t i c of a l i p h a t i c d i k e t o - f u n c t i o n a l i z a t i o n ; i n p a r t i c u l a r , the sequence M-31, M-57 and M-57-32, together w i t h the intense peak a t m/e 58 ( r e s u l t i n g from the McLafferty rearrangement i n v o l v i n g the keto g r o u p i n g ) , i d e n t i f y these compounds as methylketo-esters C o n f i r m a t i o n o f t h i s i n t e r p r e t a t i o n i s provided by the high r e s o l u t i o n s p e c t r a * of several f r a c t i o n s which t h a t f o r the

un by Bernd Simoneit

Page 261: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

59 214 keto ester the peaks at m/e 183, 157, 125, and 58 had compositions C-j -jK gOg CgH^^O^, CgH^^^ S ^ 6 ^ r e s p e c t i v e l y . The 258 keto. ester had peaks a t m/e 199, 167, 149, and 58 w i t h the compositions o f C^2^23^2^ ' ^ l l ^ i g ' ^ - ' ^11^^17' CjHgO. An impure sample of the keto acid corresponding t o molecular weight 242 was obtained and the presence o f the remaining isomer of molecular weight 228 i s i n d i c a t e d i n a mixture.

The f i n d i n g of methyl keto acids in. an ancient sediment i s of some i n t e r e s t , since these long chain t e r m i n a l keto acids are r e l a t i v e l y r a r e i n natu r e . ^ ^ Long chain methyl ketones i^-^^-j'^-^-j) have been i s o l a t e d from s o i l . Since i t i s known t h a t c e r t a i n micro-organisms such as P e n i c i l l i u m , can metabolize f a t t y acids up to. C ^ t o methyl ketones,'^'^'^^ i t i s possible t h a t keto acids represent intermediates o f m i c r o b i a l degradation of n - f a t t y a cids. The i s o l a t i o n of such minor components from ancient sediments i s thus of some s i g n i f i c a n c e w i t h respect t o any speculations or deductions on the h i s t o r y of a given sediment and the o r i g i n a l diagenetic t r a n s f o r m a t i o n of organic m a t e r i a l .

Page 262: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

60

5» M

ESTEB SO fHAOlON 2

Figure LXXXVIII Mass Spectrum of Ester 30 Fr a c t i o n 2

; l i ; ! : ' I

£STER 40 FRACTION 3

Figure LXXXix. -Mass Spectrum of Ester 40 Fr a c t i o n 5

Page 263: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

61 Discussion of Esters

For the f i r s t time a comprehensive study has been made which has provided i n t e r e s t i n g and important i n f o r m a t i o n f o r an understanding of the t o t a l ' a c i d c o n s t i t u e n t s o f a shale. Table V summarizes the methyl esters vjhich were i s o l a t e d and i d e n t i f i e d (C^-C^^ normal c a r b o x y l i c acids; ana C-j ^ i s o -prenoid c a r b o x y l i c acids; Cg-C^^ mono-unsaturated a c i d s ; Cg-C-j 2 c y c l i c acids; CQ (two), Cg ( f o u r ) , and C-j^^ (two) benzoic acids; C -j_, C-^^ ( f i v e ) , C ^ (seven), and C-j ^ ( t h r e e ) phenylaltcyl acids; C ^ (two), C ' ^14 napthoic a c i d s ;

^ll'*^13 cyclo-aromatic-acids; C-j_2"' 18 a.cu-dicarboxylic acids; C ^ * 15 and-C-j^g mono-a-methyl branched a^oi-dicar-b o x y l i c acids; and C-j ^ and C-^^ ^^^to a c i d s ) i n order of GLC elutim f o r comparison of r e l a t i v e abundance as approximated by the gas chromatogram i n Figure I .

The data presented permit d e f i n i t e s t r u c t u r a l assign­ments only i n several instances, v;here e i t h e r the mass spec­trum i t s e l f i s unambiguous and conclusive, or where knov/n standard compounds were a v a i l a b l e f o r comparison. Neverthe­l e s s , i n a l l other cases, a t l e a s t the type of este r could be c l e a r l y i d e n t i f i e d . I t i s of p a r t i c u l a r value, since previous work has concentrated e x c l u s i v e l y on the saturated normal or branched acids i n the sediment eind also from other g e o l o g i c a l sources. Indeed, a t present no aromatic acids, f o r example, have been reported from e i t h e r petroleum or sediments.

The i d e n t i f i c a t i o n of series of p h e n y l a l k y l , d i c a r b o x y l i c , napthoic, c y c l i c , and keto a c i d s , as w e l l as normal and i s o -

Page 264: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

62 p r e n o i d acids i s of s i g n i f i c a n c e i n connection v/ith any t h e o r i e s on the o r i g i n o f these compounds and t h e i r geologic h i s t o r y . E v e n t u a l l y ^ o f course, d e t a i l e d i d e n t i f i c a t i o n of these acids w i l l have t o be undertaken, but the study was intended p r i m a r i l y t o i n v e s t i g a t e the range of acids present. I t may thus serve as a basis f o r s t r u c t u r a l studies on i n d i v i d u a l compounds. The normal and iso p r e n o i d acids found are a l l i n the low molecular v/eight range, and i n s i g n i f i c a n t q u a n t i t i e s only of the highe r f a t t y acids appear t o be present i n our e x t r a c t s . This c o n t r a s t s somewhat w i t h the r e s u l t s o f E g l i n t o n and c o l l a b -o r a t e r s on the same shale, who found t h a t p r i s t a n i c and phytanic acids (C-j_g and C^Q i s o p r e n o i d acids) are major c o n s t i t u e n t s and i s o l a t e d normal f a t t y acids up t o C^q- Parker and Leo reported the presence o f s i g n i f i c a n t q u a n t i t i e s of i s o - a c i d s , which were not found i n t h i s study or by Eglinton''s group. This d i s ­crepancy i n r e s u l t s may be due e i t h e r t o methods o f e x t r a c t i o n and work up or the inhomogeneous nature of the sediment. Cor­r o b o r a t i o n of the l a t t e r idea i s born out by the steranes and t r i t e r p a n e s where i t was also, noted (See Part I I ) t h a t the two samples examined v a r i e d considerably i n the types and con­c e n t r a t i o n s o f the steranes a n d - t r i t e r p a n e s present. Neverthe­l e s s , such discrepancies deserve f u r t h e r a t t e n t i o n , and studies u t i l i z i n g d i f f e r e n t experimental approaches are u r g e n t l y needed t o d e f i n e the t r u e a c i d content of a givefi shale sample. At the same tim e , shales from d i f f e r e n t l o c a t i o n s and d i f f e r ­ent depths o f d e p o s i t i o n should be s t u d i e d , since such data might shed much l i g h t on the o r i g i n of the organic m a t e r i a l

Page 265: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

83 and the ancient ecologies v/hich may have given r i s e t o i t . This was meant as a p r e l i m i n a r y study toward f u t u r e i n v e s t i ­gations and as such r e s u l t s are not q u i t e f i n a l . Kov/ever, i t does serve t o i l l u s t r a t e the value of such surveys u t i l i z i n g h i gh r e s o l u t i o n mass spectrometry on the t o t a l f r a c t i o n as w e l l as low and high r e s o l u t i o n mass spectrometry on i s o l a t e d f r a c t i o n s . I t has revealed an * i n t r i g u i n g d i s t r i b u t i o n of organic a c i d s , but any conclusions as t o the s i g n i f i c a n c e of the various compound types must av/ait f u r t h e r studies on other shales as w e l l as the d e t a i l e d d e f i n i t i o n o f the molecular s t r u c t u r e of the acids found here.'

Page 266: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE VI Tab u l a t i o n of Esters I d e n t i f i e d from the

Colorado Green River Shale

- 61;

Ester F r a c t i o n I d e n t i f i c a t i o n

Ester 2 Cg Cyclic Ester 4 Cy Normal Ester 6 Fra c t i o n 1 Cg-Cg Cyclic Ester 7 Fra c t i o n 2 CQ-CQ Cyclic Ester 8 Fra c t i o n 1 Cg Isoprenoid Ester S Fr a c t i o n 2 Cg Normal Ester 9 Fra c t i o n 1 Cg Mono-unsaturated Ester 9 Fr a c t i o n 2 - Cg- Cyclic Ester 10 F r a c t i o n 1 Cg Methyl Branched Ester 10 F r a c t i o n 3 Cg-C-j Q Cyclic Ester 11 F r a c t i o n 1 ^10 Ester 12 F r a c t i o n 2 .Cg-C Q Cyclic Ester 12 F r a c t i o n 4 CQ Benzoic Ester 13 F r a c t i o n 2 ^10 ^^^^^ Ester 13 F r a c t i o n 3 • CQ Benzoic Ester 14 F r a c t i o n 1 ^10 sop ® * * Ester 14 F r a c t i o n 2 Cg Normal Ester 14 F r a c t i o n 3 C Q Mono-unsaturated Ester 15 Fr a c t i o n 4 ^10 Ester 15 Fr a c t i o n 3 ^10 ^y^^^^

Ester 16 F r a c t i p n 4 Cg Benzoic Ester 17 F r a c t i o n 2 • C-L-j_ Cyclic

Ester .17 F r a c t i o n 3 Cg Benzoic Ester 17 Fr a c t i o n 4 • Cg Benzoic

Page 267: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

TABLE VI Tabulation of Esters I d e n t i f i e d from the

Colorado Green River Shale

65

Ester F r a c t i o n I d e n t i f i c a t i o n

Ester 18 F r a c t i o n 1 ^11 Cyclic Ester 18 F r a c t i o n 3 Cg Benzoic Ester 19 F r a c t i o n 1 , Normal

Ester 19 F r a c t i o n 2 hi Cyclic Ester 21 F r a c t i o n 3 hi Cyclic Ester 22 F r a c t i o n 1 • ^11 Normal

Ester 22 F r a c t i o n 2 ^12 Cyclic Ester 22 F r a c t i o n 3 ^12 Cyclic Ester 22 F r a c t i o n 6 • ho Benzoic Ester 23 F r a c t i o n 2 h2 Cyclic Ester 23 F r a c t i o n 5 ho Benzoic Ester 23 F r a c t i o n 7 ho Benzoic Ester 24 F r a c t i o n 2 h2 Cyclic Ester 25 F r a c t i o n 4 h2 Phenylalkyl

Ester 25 F r a c t i o n 5 hz Phenylalkyl

Ester 25 F r a c t i o n 6 h2 Phenylalkyl

Ester 25 F r a c t i o n 7 h2 Phenylalkyl

Ester 28 F r a c t i o n 5 . hs P h e n y l a l k y l Ester 26 F r a c t i o n 6 hi Benzoic

Ester 27 F r a c t i o n 5 h5 P h e n y l a l k y l

Ester 27 F r a c t i o n 6' h5 P h e n y l a l k y l

Ester 27 F r a c t i o n 7 h2 P h e n y l a l k y l

Page 268: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

. TABLE VI Ta b u l a t i o n of Esters I d e n t i f i e d from the

Colorado Green River Shale

66

Ester F r a c t i o n I d e n t i f i c a t i o n

Ester 28 F r a c t i o n 2 ^13 Phenylalkyl Ester 29 " F r a c t i o n 3 ^13 Phenylalkyl Ester 2S F r a c t i o n • 4 ^12 Phenylalkyl Ester 50 F r a c t i o n 1 • ^13 Phenylalkyl Ester 30 F r a c t i o n 2 ^10 Keto Ester 31 F r a c t i o n 3 • ^13 Phenylalkyl Ester 31 F r a c t i o n 4 ^14 Cyclo-aromati c Ester 31 F r a c t i o n 5 ^13- Cyclo-aromatic Ester 32 F r a c t i o n 2 ^14 Phenylalkyl Ester 32 F r a c t i o n 4 ^14 Phe n y l a l k y l Ester 33 F r a c t i o n 5 ^14 Cyclo-aroniatic Ester 33 F r a c t i o n 6 ^12 Naphthalic Ester 33 F r a c t i o n 7 ^12 Naphthalic Ester 34 F r a c t i o n 4 ^14 Phenylalkyl Ester 37 ^13 Naphthalic Ester 38 ^12 Normal d i c a r b o x y l i c Ester 39 ^14 Branched d i c a r b o x y l i c Ester 40 F r a c t i o n 5 ^12 Keto Ester 41 ^13 Normal d i c a r b o x y l i c Ester 43 ^14 Normal d i c a r b o x y i i c Ester •44 ^16 Branched d i c a r b o x y l i c Ester 45 ^15 Normal d i c a r b o x y l i c

Page 269: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

67 TABLE VI

Tabulation of Esters I d e n t i f i e d from the Colorado Green River Shale

Ester Frac t i o n I d e n t i f i c a t i o n

Ester 46 Ester 48 Ester 51 Ester 54

C ^ Branched d i c a r b o x y l i c C-j g Normal d i c a r b o x y l i c C- Normal d i c a r b o x y l i c C^g Normal d i c a r b o x y l i c

Page 270: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

68

REFERENCES

1. J.N. Ramsay. Organic Geochemistry of F a t t y Acids, M. S. Thesis, U n i v e r s i t y o f Glasgow^ 1S66.

2. H. L. Lochte, E. R. Littmann. The Petroleum Acids and Bases (Chemical P u b l i s h i n g Co.,'Inc., New York, 1955).

3. V. Z. Deal, F. T. Weiss, T. T. liThite. Oxygen and Nitrogen Compounds i n Petroleum, Ann. Chem•, 25, 426 (1953).

4. J. S. B a l l , W. S. Haines-, R. V. Helm. The minor c o n s t i t u e n t s o f Petroleum, F i f t h World Petroleum Congress, Sec. 5, paper 14, New York (1959).

5. G. U- Dinneen, R. A. Van Meter, J. R. Smith, C- W. B a i l e y , G. L. Cook, C. S. A l b r i g h t , J. S. B a l l . Composition of Shale O i l Naptha, U.S. Bureau of Mines B u l l . , 593 (1961).

6. P. H-. Abelson, P. L. Parker. Fatty Acids i n Sedimentary Rocks, Carnegie I n s t . Wash. Year Book, 61, 181 (1962).

7. D. L. Lawlor, VJ. E. Robinson. F a t t y Acids i n Green River Formation O i l Shale, Div. Pet. Chem. Amer. Chem. Soc.

• D e t r o i t Meeting, 5-9 (1965).

8. R. F. Leo, P. L. Parker. Branched Chain F a t t y Acids i n Sediments, Science, 152, 649 (1966).

9. G. E g l i n t o n , A. G. Douglas, J. R. Maxv/ell, J. N. Ramsay, S. Stalberg-Stenhagen. Occurrence o f Isoprenoid F a t t y Acids i n the Green River Shale, Science, 153, 1133 (1966).

10. P. Haug, H. K. Schnoes, A. L. Burlingame. Isoprenoid and D i c a r b o x y l i c Acids I s o l a t e d from the Colorado Green River Shale (Eocene), Science ( i n press).

Page 271: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

69

11. P. Haug, H. K. Schnoes, A. L. Burlingame. The Aromatic Acids from the Green River Shale, Geochim. et Cosmochim. Acta ( i n p r e s s ) .

12. ?. Haug, H. K. Schnoes,'A. L. Burlingame, Keto Acids I s o l a t e d from the Colorado Green River Shale, Chem.Comm., ( i n press) .

13. P. Haug, H. K. Schnoes, A. L. Burlingame. Acids o f the ' Green River Shale, Geochim. Cosmochim. Acta ( i n prepara­t i o n ) .

14a. A. L. Burlingame. High Resolution Mass Spectrometry i n Molecular S t r u c t u r e Studies, i n . W. L. Mead, ed.. Advances i n Mass Spectrometry, Vol. 3, 701 ( I n s t , o f P e t r o l . , London, 1966).

14b. A. L. Burlingame, D. H. Smith. Automated Heteroatomic P l o t t i n g as an Aid t o the Presentation and I n t e r p r e t a t i o n of High Resolution Mass S p e c t r a l Data, Tet. L e t . , ( i n press)

14c. A. L. Burlingame, D. H. Smith, R. U. Olsen. Real Time Data A c q u i s i t i o n , Processing and Display i n High Resolution Mass Spectrometry, Anal. Chem. ( i n p r e s s ) .

14d. D. H. Smith. High Resolution Mass Spectrometry: Techniques and A p p l i c a t i o n s t o Molecular S t r u c t u r e Problems, Ph. D-Thesis,. U n i v e r s i t y o f C a l i f o r n i a , Berkeley (1967).

15. M. W i l l i a m s , G. Ri c h t e r . Acid Constituents o f a West Texas Pressure D i s t i l l a t e , J. Am. Chem. Soc., 57, 1686 (1935).

16. W. 0. Ney, W. W. Croch, C E. Rannefeld, H. L. Lochte. Petroleum Acids. V I . Napthenic Acids from C a l i f o r n i a Petroleum, J. Am. Chem. Soc., 65, 770 (1943).

Page 272: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

7G 17. J. Cason, D. W. Graham.- I s o l a t i o n of Isoprenoid Acids

from a C a l i f o r n i a Petroleum, Tetrahedron, 21, 471 (1965). 18. J. Cason, A. I . A. Kodair. I s o l a t i o n of the 11 Carbon

A c y c l i c I s o p r e n o i d Acid from Petroleum. Mass Spectroscopy o f I t s p-Phthalimidophenacyl Ester, J. Org. Chem. ( i n press, 1967).

19. A. Kodair. I s o l a t i o n and St r u c t u r e Determination of Ce r t a i n A c i d i c Components from C a l i f o r n i a Petroleum, Ph.D. Thesis, U n i v e r s i t y o f C a l i f o r n i a , Berkeley (1965).

20. W. 0. Ney, W. W. Croch, C. E. Rannefeld, H. L. Lochte. Petroleum Acids. V I , Naphthenic Acids from C a l i f o r n i a Petroleum, J. Am. Chem. Soc, 65 , 7 70 (1943).

21. J. Cason, K. Liauw. C h a r a c t e r i z a t i o n and Synthesis o f a Monocyclic Eleven-Carbon Acid I s o l a t e d from a C a l i f o r n i a Petroleum, J. Org. Chem., 50, 1763 (1965):

22. J. Cason, A. I . A. Kodair- Separation from a C a l i f o r n i a Petroleum and C h a r a c t e r i z a t i o n of Geometric Isomers o f 3-Et h y l - 4 - M e t h y l c y c l o p e n t y l a c e t i c A c id, J. Org. Chem., ' 31, (1966). .

23. p. B e r n f e l d . Biogenesis o f Na t u r a l Compounds (Pergamon Press, New York, 1963).

24. J. P. F r i e d r i c h . C^Q-Saturated Cyclic Acids from Linseed O i l : A S t r u c t u r a l Study, J. Am. O i l Chem. S o c , 44, 242 (1967).

25. J. Cason, A. Kodair. Mass Spectra of Certain C y c l o - a l k y l Acetates and o f Related Unsaturated E s t e r s , J. Org. Chem., 32, 575 (1967).

Page 273: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

71 25. ?. B. Shorland. D i s t r i b u t i o n of Fatty Acids i n Plant

Lipids. I n Chemical Plant Taxonomy, T. Swain {Ed.)j (Academic Press, London, 1963) 253.

27. M. M. Kononova. Soil Organic Matter (Pergamon Press, New York, 1S61) 47.

26. A. G. Douglas, K. Douraghi-Zadeh, G. Eglinton, J. R. Maxwell, J. N. Ramsay. • Fatty Acids i n Sediments Includ­ing the Green River Shale (Eocene) and Scottish Torbanite (Carboniferous).. (Manuscript submitted f o r publication, 1967).

29. T. P. H i l d i t c h , P. N. Williams. Chemical Constitution of Natural Fats, (Chapman and H a l l , London, 1964).

30. A. S. Kester, J. W. Foster. Diterminal Oxidation of Long-Chain Alkanes by Bacteria, J. Bacteriol., 85, 859 (1963).

31. G. Eglinton, R. J. Hamilton. The D i s t r i b u t i o n of Alkanes, i n Chemical Plant Taxonomy, i n T. Swain, ed. (Academic Press, New York, 1965) 187.

32. R. I . Morrison, VJ. Bick. Long Chain Methyl Ketones i n Soils, Chem. ahd'Ind., 596 (1966).

33. M. StSirkle. Die Methylketone i n oxydativen Abbau einiger t r i g l y c e r i d e (BZVJ. FettsSuren) durch Schinelpilze unter BerUcksichtigung der Besonderen Ranziditat des.Kokosfettes, Biochem. Z., 151, 371 (1924).

34. W. Franke, W. Heinen. Arch. Mikrobiology, 31, 50 (1958).

Page 274: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

Part IV High Resolution Mass Spectrometry; A Study of Shale Extracts

Page 275: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

• 2 High Resolution Mass Spectrometry

Single focusing mass spectrometers, capable of resolu-.tio n M/AM of the order of 1000-2000, have been employed i n organic chemical and geochemical research f o r some time. These instruments permit the determination of the nominal mass of the molecular ion and recognition of the fragmentation pattern. Resolution and accuracy of mass measurement i s , how­ever, i n s u f f i c i e n t to permit-the determination'of elemental composition of either molecular or fragment ions. Double focus ing instruments (high resolution mass spectrometers), f i r s t introduced to organic chemical applications by Beynon"^ and since then exploited successfully i n various s t r u c t u r a l and mechanistic studies i n t h i s laboratory as well as those of Biemann, Lederer^ and Djerassi t o name a few, provides t h i s c a p a b i l i t y . Commercially available instruments-are capable of resolution i n the order of 20-30,000, and grosses an accuracy of mass measurement ( i n the order of a few parts per m i l l i o n ) v/hich permits the cal c u l a t i o n of elemental composition of any mass peak i n the high resolution mass spectrum. The advantages of such instruments to geochemical studies are evident i n p a r t i c u l a r when investigationsof the heteroatomic species of a geochemical sample are considered. For example, i n a high.resolution mass spectrum the molecular ion peaks of methyl methylnapthoate, methyl undecanoate, and a C^Q keto methyl e s t e r - - a l l possessing a nominal molecular weight of 200, would be c l e a r l y separated and t h e i r elemental composi- . t i o n couldbe determined accurately. The c a p a b i l i t y of

Page 276: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

determining elemental composition of molecular and fragment ions, f a c i l i t a t e s , of course, the i n t e r p r e t a t i o n of the spec­trum of pure compounds, and permits the recognition of com­pound types present i n a mixture.

For these reasons, high resolution mass spectrometry has found early applications to geochemical studies. Carlson et a l . f i r s t introduced the technique i n t h e i r study of aromatic compounds i n petroleum,. and since then the work of

3 4 5 Lumpkin, Reid and Johnson and Aczel i s i l l u s t r a t i v e of the ap p l i c a t i o n to various studies of petroleum f r a c t i o n s . Con-cu r r e n t l y , t h i s e x p l o i t a t i o n of computer methods ' to the reduction of high-resolution mass spectral data has advanced considerably, and f a i r l y ' s o p h i s t i c a t e d approaches to data reduction, handling and presentation have been worked out.^'®'^'^^ For a det a i l e d discussion of high resolution mass spectrometry and computer applications to. chemical problems the work of Smith"^*^ should be consulted, and recent geochemical studies u t i l i z i n g high resolution instrumentation i n conjunction w i t h

12 sophisticated computer method3 have been presented by Hayes. A recent review of the status of high resolutipn mass spectrom­etry i n organic geochemistry i s available also,^^ so that an extensive .discussion of the methodology and technology of t h i s research t o o l i s not required here.

I n t h i s work high resolution mass spectrometry was applied to the study of several t o t a l shale extracts and of acidic and basic mixtures, i n an attempt to gain preliminary information on the heteroatomic content .of the sediments, and to deduce.

Page 277: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

4 v?henever possible, some s t r u c t u r a l features of capacity present i n these sample mixtures. In Part I I I high resolution mass spectral data obtained on i n d i v i d u a l compounds or GLC fractions have been cited i n support of various s t r u c t u r a l proposals. I n t h i s section concentration w i l l be on the high resolution experiments performed on t o t a l extracts, and the int e r p r e t a ­t i o n w i l l be concerned with the recognition of compound types and t h e i r d i s t r i b u t i o n , rather than wit h s t r u c t u r a l assignments to i n d i v i d u a l components. Instrumentation

A high resolution mass spectrometer employing the Mattauch' Herzog geometry (Model 21-llOB, Consolidated Electrodynamics Corporation) was used i n these experiments. The instrument had a resolution of about 20,000, and mass measurement accuracy of+3mmu could be achieved.- An electron bombardment source' was used to ionize the sajnple (70 eV). The complete high resolution mass spectrum of sample and c a l i b r a t i o n compound was recorded on a photoplate. Positions of a l l lines and t h e i r i n t e n s i t y (as percent transmission) on the plate were subsequently measured via a precision microphotometer (Jarrell-Ash, Model 23-500). D i g i t i z e d data from the micro-photometer were recorded on magnetic tape, from which accurate mass and elemental composition of each ion were calculated by computer (IBM 7090). The computer output was i n the form of a l i s t i n g of accurate mass of each peak together wit h empirical

Page 278: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

5 composition. From these l i s t i n g s , high resolution spectra (as shown i n Figure IV, for example) were computer-plotted whenever desired. Smith" "*" gives a detailed description of the instrument and computer techniques u t i l i z e d i n t h i s work. Sediments Examined

High resolution mass spectra of t o t a l organic extracts of the Pierre, Nonesuch, and Soudan Shale were obtained. For. a description of these shales see Part I . Spectra were also measured of the neutral, basic and acidic f r a c t i o n obtained from the extract designated "Washings" (See Part I I I ) from the Green River Shale, as well as two ind i v i d u a l components isol a t e d from the acidic f r a c t i o n .

Samples were introduced i n t o the mass spectrometer via a d i r e c t introduction system (similar to the probe described i n Part I ) . Several plate exposures were obtained f o r each sample as the source temperature was- slowly raised to a maximum of about 250°. Perflorokerosene, contained i n an a u x i l i a r y reservoir was used as the mass ca l i b r a t i o n compound. The data are. presented here as element plots. A l l ions were sorted by.computer according to t h e i r heteroatomic content, i . e . CH, CHO, CHOg, CHN, etc. The in d i v i d u a l species were then p l o t t e d against mass number. This method i s no longer i n use i n these laboratories and has been replaced by heteroatomic p l o t ­t i n g techniques which permit the dir e c t reading of the ele­mental composition of each'ion."^^'^^

The two in d i v i d u a l acids obtained from the Green River Shale acidic f r a c t i o n were isolated by GLC methods. The conditions were: 10' x 1/4" column, of 35 SE-30 on gas-chrom ^

Page 279: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

6 Q, helium flow rate of 45 ml/min., programed at 4 V n i i n . , from 75°-300°. The acids were i d e n t i f i e d by the temperature at which they were eluted from the column, i . e . "105° Acid" and "150° Acid." Esters were prepared by re f l u x i n g the t o t a l mixture with BF^/Methanol reagent (1 hr.), followed by par­t i a l removal of solvent, d i l u t i o n with v/ater, and extraction of the esters with petroleum ether. Green River Shale Neutral Fraction

As expected the high resolution spectrum of the Neutral Fraction showed a preponderance of C / H ions, corresponding mainly to saturated a l k y i fragments, i n agreement with the high hydrocarbon content of t h i s shale. Two i n t e r e s t i n g 0^-containing species are notable which could correspond t o the. methyl esters of C^g and C-j_g acids respectively (note C HgO peak at 74 t y p i c a l f o r methyl esters). Green River Shale Basic Fraction

The basic f r a c t i o n of the Green River Shale shows particu­l a r l y intense peaks i n the C/H" N p l o t of the high resolution mass spectrum (Figure I ) . (It.should be noted that the C / H 0^ and C / H N plots are very s i m i l a r ; t h i s i s due to the fact that disttacti-on between combinations of C / H 0^ and C / H N i s d i f f i ­c u l t a p r i o r i since such peaks f a l l w i t h i n the error l i m i t of the mass spectrometer - the computer therefore p l o t s both combinations.) Peaks at m/e 107, 121, 135 i n the C / H N pl o t could correspond to molecular ions of simple a l l ^ l pyridines, and fragment ions'at even mass of m/e 106, 120,

Page 280: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

7

1 3 4 , 1 6 2 would be a fu r t h e r i n d i c a t i o n of t h i s group of com­pounds . • •

A series of a l k y l indoles seems to be indicated by the fragment peaks of m/e 1 3 0 , 1 4 4 , 1 5 8 , 1 7 2 , 1 8 6 , 2 0 0 , and 2 1 0 ,

and the series at m/e 1 4 3 , 1 5 7 , 1 7 1 , 1 8 5 , 1 9 9 , and 2 1 3 would represent the molecular ions of ^^-OQ a l k y l quinolines or iso-quinolines . Fragment ions even mass corresponding to t h i s series can be noted also. The C^, C^, and Cg a l k y l quinoline (m/e 1 7 1 , 1 8 5 , 2 1 3 ) appear to be present, i n greatest abundance. A f o u r t h series i s apparent from the spectrum, com­mencing w i t h the peak of m/e 1 3 3 , and containing m/e 1 4 7 , 1 6 1 ,

1 7 5 , 1 8 9 , 2 0 3 , 2 1 7 to which the structure of tetrahydroquino-l i n e s (from C^ to Cg) could be ascribed, but," of course, other cyclopyridines would, also give r i s e to t h i s series. Even mass peaks, such as the strong ions at m/e 1 4 6 , 1 6 0 , 174 could repre­sent fragments. A l k y l pyrroles may be present, since the peaks at m/e 2 0 7 and 1 9 3 to the C^Q and Cg a l k y l pyrrole molecular ions. The i n t e r p r e t a t i o n of other plots of the base f r a c t i o n i s d i f f i c u l t since many p o s s i b i l i t i e s must now be considered, and no f i r m conclusion could be drawn. Acidic Fraction

The high r e s o l u t i o n mass spectrum (Figure I I ) i s dominated by abundant ions i n the c / H , C/H 0 and C/H 0^ category, as might be expected f o r a f r a c t i o n containing predominantly saturated acids. The intense peaks at m/e 6 0 and 74 (CgH^O^ and C^HgO^)

correspond to the expected rearrangement ions of saturated

Page 281: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

8

acids, whereby the i n t e n s i t y of m/e fk peak suggest co n t r i b ­ution from branched acids. The ions at m/e 7 3 , 8 7 , 1 0 1 , 1 1 5 , 1 2 S , 1 4 3 , 1 5 7 , 1 7 1 , 1 8 5 , and 1 S 9 are the expected fragment . ions of the general composition C^^2n-1^2' " ^ P ^ ^ satur­ated a l k y l acids. The corresponding molecular ion of these acids can be found at mass 1 0 2 , 1 1 6 , 1 3 0 , 1 4 4 , 1 5 8 , 1 7 2 , 1 8 6 , and 2 0 0 , whereby the' C -j acid at m/e 186 seems to be a major component. The most intense molecular ions on the C/K plo t are due to c y c l i c and aromatic species. This may of course not r e f l e c t t h e i r greater abundance, since cyc l i c and aromatic esters would be expected to show more prominent molecular ions. Thus the series at m/e 1 1 4 , 1 2 8 , 1 4 2 , 1 5 6 , 1 7 0 , 1 8 4 , and 1 S 8 could correspond to monocyclic saturated acids

(Cg-C g).-* C-j_Q-acid at m/e 184 (^11^20^2^ being the major component. The Cg-acid could correspond to cyclopentyl carboxylic acid, but a d e f i n i t e structure can, of course, not be assigned. Some intense odd-mass ions, a r i s i n g probably by fragmentation of these cyc l i c acids should be noted: m/e 1 1 3 ,

1 2 7 , 1 4 1 , and p a r t i c u l a r l y 1 5 5 ( 1 7 0 - 1 5 ? ) are the most prominent. A further homologous series may be recognized: phenyl

a l k y l acids give r i s e to the series of peaks at m/e 1 2 2

(oenzoic a c i d ) , 1 3 6 (methylbenzoic), 1 5 0 (dimethylbenzoic ?) 1 6 4 , 1 7 8 , 1 S 2 , and 2 2 0 ; the acid of molecular weight 1 7 8

(C^ a l k y l phenyl) appears to be the major constituent of t h i s group. Indications of cyclo-aromatic compounds are present: the peaks at m/e*218, 2 0 4 , and 1 9 0 belong to th i s category, and the peaks at m/e 1 8 9 and 175. could be explained as M-QH-— • 3

fragments from m/e 204 and 1 9 0 respectively.

Page 282: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

9

Green River Shale Esters I t i s i n t e r e s t i n g to compare the results obtained for

the free acids wit h those revealed by the high resolution spectrum ( F i g u r e l l ^ of the corresponding methyl esters. I t i s seen that the pattern i s quite s i m i l a r . The C / H Og p l o t again shows intense rearrangement ions at m/e 74 and 8 8 (for methyl esters)-and the corresponding series of C Hg ^^0^

peaks ( 8 7 , 1 0 1 , 1 1 5 ' . . , ) • The aromatic group i s evident w i t h molecular ion peaks at m/e 1 5 0 , 1 6 4 , 1 7 8 , 1 9 2 , 2 0 6 , 2 2 0 , and 234 ( s h i f t e d by 14 mass units since methyl esters). Likewise the c y c l i c series can be easily recognized; i t suffices here to paint out the dominate C^Q compound at m/e 184 and the corresponding fragment peak (M-CH^) at m/e 1 6 9 , which relates to the peaks of m/e 1 7 0 and 1 6 9 seen i n the acid spectrum.

Notable also are two components evident i n the C / H Og-aromatic p l o t . Molecular ions at m/.e 2 0 0 and 2 1 4 correspond to C^2%2^2 ^14^14^2 thus i d e n t i f y these, compounds as the methyl C-^-alkylnapthoate and a methyl C2-alkylnapthoate

This comparison of acids and esters, shows that our resul t s are consistent and i n t h i s sense, the i n t e r p r e t a t i o n i s put on a firmer basis. To confirm some of our assignments and to t e s t the results several free acids were isolated by GLC methods and separately analyzed. Results f o r two of them are presented.

1 0 5 ° Acid. The high resolution mass spectruiri (Figure IV ) exhi b i t s a molecular ion at m/e 1 4 0 of composition C HgO - I t i s t o be noted .that-this same ion appeared i n the C / H 0^ p l o t s

Page 283: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

10 of the acids (Figure I I ) . The spectrum shows some loss of methyl group (m/e IgS) and prominent loss of carbon monoxide (m/e 112 i n C/H 0^ p l o t ) . A peak due to loss of H O should also be noted (m/e 122). The composition requires a f a i r l y unsaturated system. These data do not permit d e f i n i t e struc­ture assignment. A trihydroxytoluene derivative would be a p o s s i b i l i t y , but carbonj^ absorption i n the i n f r a r e d spec­trum does not agree wit h such a postulate. Ethyl methyl maleic anhydride ( l ) would f i t the composition, also, and seem to agree reasonably well, w i t h a l l data.

CO Such a compound could be expected since dimethyl msleic

14

anhydride has been found i n Ca l i f o r n i a petroleum. 150° Acid. The-high resolution mass spectrum of t h i s •

acid (Figure v) c l e a r l y indicates the compound to be the major c y c l i c acid already noted i n the mixture spectrum (Figure u ) . The molecular ion at m/e 184 (Cj Q^Hg Og) requires one degree of unsaturation or one r i n g . The c y c l i c nature of t h i s substance i s evident from i t s fragmentation pattern: Loss of methyl i s very prominent (m/e 169) and some loss of ethyl is-also observed (m/e 155) . The peak at m/e 125 i n the C / H p l o t , could correspond to the elimination of 59 mass units and would thus indicate ain acetic acid side chain. The

Page 284: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

11 peak at m/e 109 (CgH-j ) could be rati o n a l i z e d as r e s u l t i n g from the sequence M-CgH O-CH . The spectrum would thus suggest a structure of type I I , i n which the p o s i t i o n of substituents i s of course speculative at t h i s time. This acid has however been isolated from petroleum fractions ."^

COOH

I I

Nonesuch Shale The s t r i k i n g feature of the spectrum (Figure V I of the

Nonesuch Shale i s the almost t o t a l absence of heteroatomic species. Hydrocarbon ions predominate. From the C / H p l o t the t y p i c a l a l k y l ions are r e a d i l y discernable, but detailed i n t e r p r e t a t i o n would be f r u i t l e s s , since the spectrum i s extremely complex. This example i l l u s t r a t e s , however, very n i c e l y the value of preliminary high resolution data, i n estimating the d i s t r i b u t i o n of various component types; e x t r a c t i o n of the Nonesuch Shale would be expected t o y i e l d very l i t t l e basic and acidic material according to these data. Soudan Shale

The second Precaunbrian sediment examined gave very s i m i l a r r e s u l t s : the spectrum (Figure ' V I I reveals almost exclusively

Page 285: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

12 hydrocarbon species. The-C /H'plot, as i n the case of the Nonesuch, i s complex and shows peaks at almost a l l masses. Ions containing heteroatoms are n e g l i g i b l e . Those apparent i n the C / H 0^ and C / H 0^ plots are probably contributed by the c a l i b r a t i o n compound. Pierre Shale

The results for the Pierre Shale (Cretacious) contrast sharply with those obtained for the Precambrian rocks and • resemble more closely the Green River data. Again hydrocar­bon ions are most abundant ( i n the C / H p l o t of Figure v i l l

note that the i n t e n s i t y of the peaks above 100 i n the C/H p l o t have been a r b i t r a r i l y increased - X 10 - to permit'reading of the p l o t ) but the contribution of heteroatomic species (note i n p a r t i c u l a r the C / H 0^ and C / H N p l o t s ) is quite notable. The C / H Og plot shows a strong rearrangement peak at m/e 60, expected for f a t t y acids. The peaks at high mass are too small to permit d e f i n i t e assignments, but the ion of m/e 186, corres­ponding to a C|j_2^-saturated acid i s noteworthy. Furthermore, " odd-mass peaks at m/e 87, 101, 115, 129 are present. The ion at m/e 99 i s i n t r i g u i n g , - since i t might correspond to a lactone fragment, i . e .

m/e 99

The c/H N p l o t also exhibits an i n t e r e s t i n g pattern. The ion at m/e 129 (CgH^N) could correspond to quinoline (or i s p -

Page 286: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

1 3

q u i n o l i n e ) . A higher homologue of m/e 143 appears to be present. A C-j^-tetrahydroquinoline (or equivalent structure) i s evidenced by the peak at m/e 1 4 7 , and the intense ion of m/e 2 1 9 and that at m/e 1 6 3 could represent C J Q- and Cg-alkyl pyridines respectively. A more detailed i n t e r p r e t a t i o n of Other p l o t s seems f u t i l e at present since the s t r u c t u r a l p o s s i b i l i t i e s become enormous. The peak at m/e 87 i n the C / H NO p l o t might represent, f o r example, a rearrangement .. ion of amides. * .

Discussion The preliminary nature of these results and of the exper­

imental method should be stressed. No detailed information was sought, rather a study i n t o the p o s s i b i l i t i e s of using high r e s o l u t i o n mass spectrometry f o r the analysis of complex geochemical samples was intended. The- preceding i n t e r p r e t a ­t i o n i l l u s t r a t e s , however, the potential application of the technique. The special advantages of the method are i t s r a p i d i t y and the basic nature of the information obtained. Much information on the d i s t r i b u t i o n of heteroatomic species and their- s t r u c t u r a l type i s readily made available by these spectra, and more detailed experiments can .then be planned w i t h such data at hand. Furthermore the results of detailed analysis can then be'checked against those of the preliminary i n v e s t i g a t i o n . A good example of t h i s , i s provided by the

Page 287: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

14 comprehensive analysis of Green River Shale acids, presented i n Part I I I . A comparison of the high resolution data d i s ­cussed above, and the results of Part I I I , makes evident immediately that many conclusions drawn solely from the high resolution spectrum of a complex mixture, were indeed born out by the detailed experiments described i n Part I I I .

I t should also be obvious that the methods and techniques used i n these experiments were r e l a t i v e l y crude. Much r e f i n e ­ment i s possible; i n p a r t i c u l a r the use of low energy electrons to avoid fragment peaks, or the use of f i e l d i o n i z a t i o n for the same purpose, would permit much more detailed analysis. Computer methods could be refined, to the extent that pre­liminary sorting and i n t e r p r e t a t i o n according to compound type must not be done by the operator. F i n a l l y chemical frac­t i o n a t i o n according to compound types would allow a much more d e f i n i t i v e i n t e r p r e t a t i o n of the r e s u l t i n g spectra. With these p o s s i b i l i t i e s i n mind, i t i s f e l t that the data presented above demonstrate quite convincingly the e x t r a o r d i n a r i l y powerful.data high resolution mass spectrometry can furnish i n organic geochemical investigations.

Page 288: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

1 5 - 1 6

Figure I . High Resolution Mass Spectrum of Colorado .Green River Shale Bases (from Washings)

Page 289: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

GRS BPSES C/H

100 m W li^-J'."-. ISO 200 250

C/H 0

1^ 100 150 200

T 1 1 I I

250

C/H 02

100 150 200 250

1.1.,

C/H 03

100 ISO 200 250

C/H 04

15a

T 1 I I I r

IQO ISO 200 — r — T 250

G R E E N RIVER SHALE BASIC FRACTION

(ALL SPECTRA X5 ABOVE 2 0 8 )

Page 290: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

100 150 200 250 C^H NO

n i . u i L i , . i i . . i K 100

100

100

100

too

150 200 250 C^H N02

150 200 250

. 1 1 1 .

C/H N03

100 150 200 250

C/H N04

150 200 250

0 C/H N2

1 1 1 , 160 200 260

C/H H2a

160 1

200 2S0

(SLOUm GREEN mVCR 9N«e 8MIC FTUCTKM

(ALL SPECTRA X5 ABOtfE 208)

16a.

Page 291: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

17-18

Figure I I , High Reso l u t i o n Mass Spectrum of Colorado Green R i v e r Shale Acids (from Washings)

Page 292: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

50

GRS PCIDS C/H

•iL. .J Jim l_L i ' " " T ' " I " ' I " " I ' I 1 1 r

150 200

C/H 0

100 150 ' 200 '

11 iil_i4.

50 100 150 200

C/H 03

17a

C/H 04

ooLoiuoo mm river 'acid ntAcrioN (ALL SPECTRA XIO ABOVE 173)

Page 293: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

c^H nRonPTic

— 1 — I — I — I — I — 1 —

bO 100 ISO 200

C/H N

SO 100 - — I 1 1 r — I r —

150 200

C/H N02

50 100 " ISO ' 200 C/H N2a2

- r — . r- • -*

50 100 ISO 200

Q/H N203

50 100 ISO • ' 200

C/H N204

To 100 160 200

GREEN RIVER SHALE .AaWC FRACTION

(ALL SPECTRA XIO ABOVE 173)

18a

Page 294: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

19-20

F i g u r e I I I . High Resolution- Mass Spectrum of Colorado Green R i v e r Shale E s t e r s (from Washings)

Page 295: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

100

15a

GRS ESTERS C/H

150 300

C/H PRGHPTIC

l i A — f ^ * — r ' ' I — T I I

100 ISO 200 250 300

C/H •

•3 00

C/H 02

150 200 250 300

COLORADO GREEN RIVER SHALE ESTERS

Page 296: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

20a

C / H 0 2 R R D n R T I C

T 1 r — I r

1 0 0 I

150 — 1 1 I I

200 , 2 5 0 3 0 0

C / H N

T , . . • • •

1 0 0 1 5 0 r"—r-'-H r — 1 | I ' I I 1 1 1 1 1 r—

2 0 0 2 5 0 3 0 0

C / H NO

— n — I 1 1 1 1 1 ' 1 ' ~

200 250 3 0 0 T 1 1 r I

1 0 0 I I

150

C / H ND2

T 1 ' r

1 0 0 T 1 1 1 • I ' I r — 1 —

150 200 • I 1 I I I

250 3 0 0

COUORADO GREEN RIVER SHALE ESTERS

Page 297: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

21

Figure IV. High Resolution Mass.Spectrum of Colorado • Green R i v e r Shale 105** Acid (from Washings)

Page 298: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

P C I D S 1 0 5 C/H

21a

C / H •

a

C/H 02

T 1 1 1 1 1 r T - " 1 ' " " " I • ' " I " 1' 1 1 1 —

100 1 5 0 200

T — - - I 1 r

C/H 0 3

1 1 r

100 T 1 1 T

150 200

COLORADO GREEN RIVER SHALE I05« ACID

Page 299: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

22

Figure V. High R e s o l u t i o n Mass Spectrum of Colorado Green R i v e r Shale 150° A c i d (from Washings)

Page 300: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

I.. ..Jl

1 0 0

1 0 0 1 5 0

1 0 0 1 5 0

1 0 0 1 5 0

22a

C / H

I •! 1 I I I 1 1 r

1 5 0 200

C / H •

illlii .iillli. , hill, tJll. .l,hL' ... . 1 , , 1 1 1 1 1 1

200

C / H 02

C / H 03

T ' — I • I — • I " I r

200

COLORADC^ . l^EN RIVER SHAL E ACID

(ALL SPECTRA XIO ABOVE 152)

Page 301: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

23

Figure V I , High Resolution Mass Spectrum of Nonesuch

Page 302: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

23 a

100 Ju-i

NONESUCH C/H

L i ISO 250 300 350 400

C/H •

1 1 T 1 1 1 1 1 — T 1 1 1 1 1 1 1 1 1 1 1 r 1 — I 1 1 1 — I 1 1 1 r

100 150 200 250 300 350 400

C/H 02

C/H N

1 r. 1 r — 1 — I 1 1 1 — 1 1 1 1 -I I — r — i — i 1 i i 1 1 1 1 1 i i i 1 r

100 . 150 200 250 300 350 400

C/H NQ

I I I * ~ i " r ' " r - " r • 1 1 ^ 1 1 1 T- 1 1 • ' 1 1 1

100 ISO 200 250 300 350 400

C/H flROMPTIC

I I T

ItW ISO 200 250

NONESUCH (ALL SPECTRA k 10 ABOVE 1 4 0 )

1 — I — I — I — I — I — I — I — I — I -

300 350 400

Page 303: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

24

Figure V I I . High Resolution Mass Spectrum of Soudan

Page 304: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

SOUDRN C/H

\M 100 150 200

C / H 0

100 T - 1 - - T

150 200

100 T 1

150 200

C / H CJ

I. .. . •J ^

100 150 OH _ . .. _ - •• — - • C/H 04

, 1, , . 1 . r - ^ — r i , 1, ' • 100 ICO 200

C/H N

— > — 'T " I T r - I •

100 150 200 SOUDAN SHALE (ALL SPECTRA i l O ABOVE 194)

21,3

Page 305: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

25-27

Figure V i r i . . High Resolution Mass Spectrum of Pierre Shale

Page 306: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

2Si

PIERRE 2 C/H

Ik so 100 150 200 250

i l l t k l.ilu.,

C/H 02

.1 I WWu Ji

L 'H

250

PIERRE 3HAIE (4t-L SPBCTRA i lO ABOVE 165)

Page 307: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

C/H N

I—,—^ • . M , . r 50 100 150

5 0 100 150

250

T 1 1 1 1 1 r 200 250

C/H ND2

1 • . 1 ' " i . 1 . r - L - r — r 200 250

PIERRE SHALE (ALL SPECTRA x 10 ABOVE 165) ro-

Page 308: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

27a

C/H N2

' 200 SO 100 T r — I r

150 250

C/H N2D

—1 1 I I I 1 r

50 100 I I I

ISO 200 250

C/H N202

J ik ,1.11-• . i l l I . I — I — s o 100 150

I I r — I 1 1—

200 250

C/H N2a3

I I i I . • • "'• r^M . 1 1 1 r 50 100 200 250

C/H N2a4

T 1 1 1 1 1 I I I ' I I I I I I

200 250 PIERRE SHALE (ALL SPECTRA x 10 ABOVE 165)

Page 309: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

28

REFERENCES

J. H. Beynon, Experience i n Using a Double Focusing Mass Spectrometer f o r Organic Chemical Analyses, Advances i n Mass Spectrometry, Vol. 1 ^ J. D. Waldron, ed., (Pergamon Press, London, 1959), 328.

J. H. Beynon, Mass Spectrometry • " and I t s A p p l i c a t i o n t o Organic Chemistry, ( E l s i v i e r P u b l i s h i n g Co., Amsterdam, 1960). E. G. Carlson, G. T. Paulissen, R. H. Kuntj . M. J. O'Neal,-High Resolution Mass Spectrometry, Anal. Chem., 52, 1483 (1960)." H. E. Lumpkin, Analysis of a T r i n u c l e a r Aromatic Petroleum F r a c t i o n by High Resolution Mass Spectrometry, Anal. Chem., 36, 2399 (1964). W. K. Reid, Use of High Resolution Mass Spectrometry i n the Study o f Petroleum Waxes, M i c r o c r y s t a l l i n e Waxes and Cro k e r i t e , Anal. Chem., 38, 445 (1966).

B. H. Johnrjon and T. Aczel, Analysis, of Complex Mixtures • o f Aromatic Compounds by High Resolution Mass Spectrometry a t Low-Ionizing Voltages, Anal. Chem., 59, 682 (1967). K. Biamann, P. Bomme D. M. Desiderio, and W. J. McMurray, New Techniques; f o r the i n t e r p r e t a t i o n o f High Resolution MS of Organic Molecules, i n W. L. Mea<i . ed. , Advances o f Mass Spectrometry, Vol. 3, I n s t , of Petroleum, 639 (1966). A. L. Burlingame, A p p l i c a t i o n of High Resolution Mass Spectrum i n Molecular Structure Studies, i n W. L. Mead, ed.. Advances i n Mass Spectrometry, Vol. 3 , I n s t , of Petroleum, .701 (1966).

Page 310: 90 0883126 6 Applications of Mass Spectrometry to Organic ...

29 S. A. L. Burlingame^ D. H. Smith and R. W. Olsen, Real-Time

Data Acquisition,- Processing and Display i n High Reso­l u t i o n Mass Spectrometry, Anal. Chem. ( i n press, 1967).

9. K. Biemann, P. Bommer, and D. M- Desiderioj Element Mapping, a New Approach t o the I n t e r p r e t a t i o n of High Res o l u t i o n Mass Spectra, Tetrahedron L e t t e r s , 1725 (1964).

10. ' A. L. Burlingame and D. H. Smith, Automated Heteroatomic P l o t t i n g as an A i d t o the.Presentation and I n t e r p r e t a t i o n of High Resolution Mass Spectral Data, Tetrahedron L e t t e r s , ( s u b m i t t e d ) .

11. D. H. Smith, Hi^h Resolution Mass Spectrometry: Techniques and A p p l i c a t i o n t o Molecular Structure Studies, Ph.D. Thesis, U n i v e r s i t y of C a l i f o r n i a , Berkeley, 1967-

12. J. M. Hayes, Techniques f o r High Resolution Mass Spectro-m e t r i c Analysis o f Organic Constituents of T e r r e s t r i a l and E x t r a t e r r e s t r i a l Samples, Ph.D. Thesis, M.I.T. (1966).

13. H. K. Schnoesj A. L. Burlingame. A p p l i c a t i o n s o f Mass Spectrometry t o Organic Geochemistry, G: E g l i n t o n and M. Murphy, eds., Organic Geochemistry, Methods and Results, Springer Verlag ( i n p r e s s ) .

14. K. Hancock arid H. L. Lochte, A c i d i c Constituents o f C a l i f o r n i a Straight-Run D i s t i l l a t e , J. Amer•• Chem. Soc.,

.61, 2448 (1939). 15. J. Cason and K. L. Liauw, C h a r a c t e r i z a t i o n and• Synthesis of

a Mono-cyclic Eleven- Carbon Acid I s o l a t e d from a C a l i f o r n i a Petroleum, J. Org. Chem., 30. 1763 (1965).