Top Banner
9 February
73

9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Jan 01, 2016

Download

Documents

Gillian Kelley
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

9 February

Page 2: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

In Class Assignment #1

Page 3: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Set: {2, 4, 6, 8, 10}

  MEMBER SUBSET NEITHER2      

{4, 6}      {2, 10}      

{}      3      

{{2, 4}, 6, 8, 10}

     

Page 4: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Set: {2, 4, 6, 8, 10}

  MEMBER SUBSET NEITHER2  ✓    

{4, 6}      {2, 10}      

{}      3      

{{2, 4}, 6, 8, 10}

     

Page 5: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Set: {2, 4, 6, 8, 10}

  MEMBER SUBSET NEITHER2  ✓    

{4, 6}    ✓  {2, 10}      

{}      3      

{{2, 4}, 6, 8, 10}

     

Page 6: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Set: {2, 4, 6, 8, 10}

  MEMBER SUBSET NEITHER2  ✓    

{4, 6}    ✓  {2, 10}    ✓  

{}      3      

{{2, 4}, 6, 8, 10}

     

Page 7: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Set: {2, 4, 6, 8, 10}

  MEMBER SUBSET NEITHER2  ✓    

{4, 6}    ✓  {2, 10}    ✓  

{}    ✓  3      

{{2, 4}, 6, 8, 10}

     

Page 8: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Set: {2, 4, 6, 8, 10}

  MEMBER SUBSET NEITHER2  ✓    

{4, 6}    ✓  {2, 10}    ✓  

{}    ✓  3      ✓

{{2, 4}, 6, 8, 10}

     

Page 9: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Set: {2, 4, 6, 8, 10}

  MEMBER SUBSET NEITHER2  ✓    

{4, 6}    ✓  {2, 10}    ✓  

{}    ✓  3      ✓

{{2, 4}, 6, 8, 10}

     ✓

Page 10: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

In Class Assignment #2

Page 11: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

{1, 1} = {1}

Many students thought this was false. It’s not.

Page 12: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

For any two sets A and B, A = B iff (for all x)(x   A iff x   B)∈ ∈

Therefore, {1, 1} = {1} iff (for all x)(x   {1, 1} iff x   {1})∈ ∈

Therefore, if (for all x)(x   {1, 1} iff x   {1}), then {1, 1} = {1}∈ ∈

To prove: (for all x)(x   {1, 1} iff x   {1})∈ ∈

Page 13: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

To prove: (for all x)(x ∈ {1, 1} iff x ∈ {1})

Let x = 1. Then clearly: 1   {1, 1}  ∈And 1   {1}∈Therefore, 1   {1, 1} iff 1   {1}∈ ∈

(A iff B is true when A and B are both true.)

Page 14: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

To prove: (for all x)(x ∈ {1, 1} iff x ∈ {1})

Let x ≠ 1. Then clearly: x   {1, 1}  ∉And x   {1}∉Therefore, x   {1, 1} iff x   {1}∈ ∈

(A iff B is true when A and B are both false.)

Page 15: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

For every set S, S ∪ S = S ∩ S

Proof:A   B = {x: x   A or x   B}∪ ∈ ∈Therefore, S   S = {x: x   S or x   S}∪ ∈ ∈

(P or P) iff PTherefore, S   S = {x: x   S or x   S} = {x: x   S} = S∪ ∈ ∈ ∈

Page 16: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

For every set S, S ∪ S = S ∩ S

Proof, cont’dA ∩ B = {x: x   A and x   B}∈ ∈Therefore, S ∩ S = {x: x   S and x   S}∈ ∈

(P and P) iff PTherefore, S ∩ S = {x: x   S and x   S} = {x: x   S} = S∈ ∈ ∈

And so: S   S = S = S ∩ S ∪

Page 17: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write the Name in Extensive Notation{Hong Kong, London, New York}   ({London, Sydney} ∩ {Sydney, Tokyo})∪

       {Sydney}

  {Hong Kong, London, New York, Sydney}

Page 18: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Some Strange Answers

{Hong Kong, London, New York, Sydney, Tokyo}

{Sydney}

Page 19: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Problem 3b

Write names for the following sets in intensive notation: {Michael}

{x: Michael}

{x: x is the first name of the person teaching this course}

{x: x is a person named “Michael”}

Page 20: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Problem 4a

Write the power set of the following sets: {{}}, i.e. {ø}

Definition: power set of S = set of all subsets of S

{}   {{}}⊆ {}   S, for every S⊆{{}}   {{}}⊆ S   S, for every S⊆

So: P({{}}) = { {}, {{}} } = { ø, {ø} }

Page 21: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Remember

If a set has N members, then its power set has 2N members.

So since {{}} has one member, its power set has 21 = 2 members.

And indeed, { {}, {{}} } has 2 members.

Page 22: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Some Answers

{}, {{}}

{}, {}, {{}}

{ {}, ø }

{ {{}} }

{ {}, {{{}}} }

Page 23: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write the power set of the following sets:{x: x is a dog}

{ ALL DOGS }

{ x: x is a dog }

{ {}, x: x is a dog }

{ {x: x is a dog} }

{ {}, {x: x is a dog} }

Page 24: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write the power set of the following sets:{x: x is a dog}

{ dog }

{ {}, dog }

{ {}, {y: y is the set of dogs} }

{ {x: x has four legs}, {x: x growls}, {x: x runs}, {x: x is a dog}, … }

{ {small dogs}, {medium dogs}, {large dogs}, {hunting dogs}, ….}

Page 25: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write a sentence that both uses and mentions the word ‘logic.’

A sentence obeys logic or does not obey logic.

People study logic to train their logic.

One must differentiate between the use of the word ‘logic’ and that of its token, “logic.”

Page 26: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write a sentence that both uses and mentions the word ‘logic.’

Logic is one of the concepts covered in this course.

Elementary logic course teachers use logic.

‘Logic’ has 5 letters and means rational. 

Logic is a subject and so is the name ‘logic.’

Page 27: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Some Clever Answers

According to logic, ‘logic’ can’t both have 5 letters and not have 5 letters.

I learned logic in logic class but I learned ‘logic’ in English class.

Using ‘logic’ doesn’t require logic. 

Page 28: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Homework #1

Page 29: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

True or False

T F In binary notation, 1 = 0.111...T F There exists a set S that can be paired one-to-one with its 

power set.T F The rational numbers are the same size as the power set 

of the natural numbers.T F According to standard set theory, the numerical size of the 

real numbers is the next highest number after the numerical size of the natural numbers. 

Page 30: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

True or False

T F In binary notation, 1 = 0.111...T F There exists a set S that can be paired one-to-one with its 

power set.T F The rational numbers are the same size as the power set 

of the natural numbers.T F According to standard set theory, the numerical size of the 

real numbers is the next highest number after the numerical size of the natural numbers. 

Page 31: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}
Page 32: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Power Set Theorem

Suppose that S is a set that CAN be paired 1-to-1 with P(S).

Let’s call the members of S: a, b, c, …

Let’s call the subsets of S: L, M, N, …

Page 33: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Power Set Theorem

a     b     c     d     e     f     …

L     M     N     O     P     Q     …

S

P(S)

Page 34: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Power Set Theorem

a     b     c     d     e     f     …

L     M     N     O     P     Q     …

S

P(S)

x :   x ϵ S   &   x ϵ x’s pair in P(S)K

Page 35: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Power Set Theorem

K   S⊆

So: K ϵ P(S) = {x: x   S}⊆

But K is not the pair of any member of S

K ≠ L, K ≠ M, K ≠ N, K ≠ O…

Therefore there is no 1-to-1 pairing between S and P(S)

Page 36: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

True or False

T F In binary notation, 1 = 0.111...T F There exists a set S that can be paired one-to-one with its 

power set.T F The rational numbers are the same size as the power set 

of the natural numbers.T F According to standard set theory, the numerical size of the 

real numbers is the next highest number after the numerical size of the natural numbers. 

Page 37: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}
Page 38: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

0     1     2     3     4     5     …

1     2     ½     ⅓     3     4     …

N

R

x :   x       N⊆P(N)

Page 39: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

True or False

T F In binary notation, 1 = 0.111...T F There exists a set S that can be paired one-to-one with its 

power set.T F The rational numbers are the same size as the power set 

of the natural numbers.T F According to standard set theory, the numerical size of the 

real numbers is the next highest number after the numerical size of the natural numbers. 

Page 40: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}
Page 41: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write names for the following sets in extensive notation

{Hong Kong, London, New York} ∩ ({London, Sydney}   {Sydney, Tokyo})∪

    {London, Sydney, Tokyo}

     {London}

Page 42: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write names for the following sets in extensive notation

{x: x shaves everyone who doesn’t shave themselves}

NAME: {}

Page 43: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Problem 3

Write two different names for the following set, both in intensive notation. (Hint: Michael Johnson is the instructor of this class.) 

{Michael Johnson}

Page 44: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Example Answers

• {x: x = Michael Johnson}• {x: x is the instructor of this class}• {x: x = Michael Johnson or x = Michael Johnson}• {x: x = Michael Johnson and (P or not-P)}• {y: y = Michael Johnson}• {x: x assigned this homework}• {x: x is named “Michael Johnson” & x is a philosopher at HKU}• {x: x’s homepage is michaeljohnsonphilosophy.com}

Page 45: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write the power set of {{{}}}

Cheesy but acceptable answer:

{x: x   {{{}}} }⊆

Page 46: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write the power set of {{{}}}

How many members does {{{}}} have?

How many subsets does it have?

When a set S has only 1 member, its power set is a set containing the null set and S. 

Page 47: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Write the power set of the following set.

({Hong Kong, London, New York} ∩ {London, Sydney})   {Sydney, Tokyo}∪

     {London}

     {London, Sydney, Tokyo}

Page 48: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

LONDON SYDNEY TOKYOLONDON SYDNEY -LONDON - TOKYOLONDON - -

- SYDNEY TOKYO- SYDNEY -- - TOKYO- - -

Page 49: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Barber Paradox

Page 50: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Barber Paradox

Once upon a time there was a village, and in this village lived a barber named B. 

Page 51: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Barber Paradox

B shaved all the villagers who did not shave themselves, 

And B shaved none of the villagers who did shave themselves.

Page 52: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Barber Paradox

Question, did B shave B, or not?

Page 53: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Suppose B Shaved B

1. B shaved B Assumption2. B did not shave any villager X where X shaved X

Assumption3. B did not shave B 1,2 Logic

Page 54: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Suppose B Did Not Shave B

1. B did not shave B Assumption2. B shaved every villager X where X did not shave X

Assumption3. B shaved B 1,2 Logic

Page 55: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Contradictions with Assumptions

We can derive a contradiction from the assumption that B shaved B.

We can derive a contradiction from the assumption that B did not shave B.

Page 56: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Law of Excluded Middle

Everything is either true or not true.

Either P or not-P, for any P.

Either B shaved B or B did not shave B, there is no third option.

Page 57: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

It’s the Law

• Either it’s Tuesday or it’s not Tuesday.• Either it’s Wednesday or it’s not Wednesday.• Either killing babies is good or killing babies is not good.• Either this sandwich is good or it is not good.

Page 58: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Disjunction Elimination

A or BA implies CB implies CTherefore, C

Page 59: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Example

Either Michael is dead or he has no legsIf Michael is dead, he can’t run the race.

If Michael has no legs, he can’t run the race.Therefore, Michael can’t run the race.

Page 60: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Contradiction, No Assumptions

B shaves B or B does not shave B [Law of Excluded Middle]

If B shaves B, contradiction.If B does not shave B, contradiction.

Therefore, contradiction

Page 61: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Contradictions

Whenever we are confronted with a contradiction, we need to give up something that led us into the contradiction. 

Page 62: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Give up Logic?

For example, we used Logic in the proof that B shaved B if and only if B did not shave B. 

So we might consider giving up logic.

A or BA implies CB implies CTherefore, C

Page 63: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

No Barber

In this instance, however, it makes more sense to give up our initial acquiescence to the story: 

We assumed that there was a village with a barber who shaved all and only the villagers who did not shave themselves. 

Page 64: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The Barber Paradox

The paradox shows us that there is no such barber, and that there cannot be.

Page 65: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Russell’s Paradox

Page 66: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Set Theoretic Rules

Reduction:a   {x: COND(x)}∈

Therefore, COND(a)

Abstraction:COND(a)

Therefore, a   {x: COND(x)}∈

Page 67: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Examples

Reduction: Mt. Everest   {x: x is a mountain}∈Therefore, Mt. Everest is a mountain.

Abstraction: Mt. Everest is a mountain.Therefore, Mt. Everest   {x: x is a mountain}∈

Page 68: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Self-Membered Sets

It’s possible that some sets are members of themselves. Let S = {x: x is a set}. Since S is a set, S   {x: x is a set} (by abstraction), and thus S   S ∈ ∈(by Def of S). 

Or consider H = {x: Michael hates x}. Maybe I even hate the set of things I hate. So H is in H.

Page 69: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Russell’s Paradox Set

Most sets are non-self-membered. The set of mountains is not a mountain; the set of planets is not a planet; and so on. Define:

R = {x: ¬x   x}∈

Page 70: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Is R in R?

1. R   R∈ Yes?2. R   {x: ¬x   x}∈ ∈ 1, Def of R3. ¬R   R∈ 2, Reduction

4. ¬R   R∈ No?5. R   {x: ¬x   x}∈ ∈ 4, Abstraction6. R   R∈ 5, Def of R

Page 71: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Historical Importance

Russell’s paradox was what caused Frege to stop doing mathematics and do philosophy of language instead.

Page 72: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

Comparison with the Liar

Russell thought that his paradox was of a kind with the liar, and that any solution to one should be a solution to the other. 

Basically, he saw both as arising from a sort of vicious circularity.

Page 73: 9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}

The von Neumann Heirarchy