Top Banner

of 18

8313 Berg Power Factors And

Apr 02, 2018

Download

Documents

Abdulyunus Amir
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 8313 Berg Power Factors And

    1/18

    Power Facto rs and theEf f i c i en t Pric ing and Product ionof React ive Power

    by Sanford V. Berg*

    with the a ss is ta nc e o fJim Adams

    and Bob Niekum**October 25, 1982

    *Associa-te Professor o f Economics and Execut ive Director ,P u b l i ~ u t i l i t y Research Cente r , Universi ty o f F lo rid a.--- -..

    **Research Assoc ia tes , PURC. Departments o f Nuclear Engineer ing and Elec t r i c a l Engineer ing, r espec t ive ly .The views e xp re ss ed h er e are so le ly those of the au thors ,not of sponsor ing organ iza t ions . P ro fe ssor Robert L.Sul l ivan , Department o f Elec t r i c a l Engineer ing, providedhe lp fu l comments on an ea r l i e r vers ion o f t h i s mater ia l .

  • 7/27/2019 8313 Berg Power Factors And

    2/18

    ABSTRACT

    Power Facto rs and th eEf f i c i en t Pric ing and Product ion o f React ive Power

    Most e l e c t r i c i t y pr ice schedules p en aliz e la rg e indus -t r i a l customers fo r low power f ac to r s . Not to be confusedwith the load f ac to r ( re l a t ing average to peak KW demand) ,th e power f ac to r r e f l ec t s th e impact o f r eac t ive power (mea-sured in k i l o v o l t ~ a m p e r e s - r e a c t i v e ) on e l e c t r i c a l systems:two loads with th e same p at te rn o f KW demand and KWH energyconsumption can have d i f f e r e n t im p lic at io ns f or e l e c t r i c a lcur ren t requ i rements . This note i den t i f i e s the r e levan tcos t -o f -se rv ice is sues fo r power fac to r . ad jus tment s , descr ibeshow i ndus t r i a l customers are charged fo r r eac t ive power, andsuggests t h a t presen t p r ic ing prac t i ces be re-examined s inceindus t ry norms have evolved out s ide a cos t -bene f i t framework.

  • 7/27/2019 8313 Berg Power Factors And

    3/18

    Power F a c t o r s and t h eE f f i c i e n t P r i c i n g and Product ion o f React ive PowerOur u n d e r s t a n d i n g o f t h e e f f i c i e n t p r i c i n g o f e i e c t r i c i t y

    has improved i n r e c e n t y e a r s as u t i l i t i e s and r e g u l a t o r s exam-i n e d t h e i m p l i c a t i o n s o f p r i c e s i g n a l s f o r customers . One neg-l e c t e d a r e a i s t h e s o - c a l l e d "power f a c t o r adjustment" f o rl a r g e i n d u s t r i a l customers found i n most e l e c t r i c i t y p r i c es c h e d u l e s . This n o t e i d e n t i f i e s t h e r e l e v a n t c o s t - o f - s e r v i c ei s s u e s , d e s c r i b e s how e l e c t r i c u t i l i t i e s t e n d t o charge c u s -tomers f o r c o s t s i n c u r r e d i n d e a l i n g w i t h t h e power f a c t o rproblem, and s u g g e s t s t h e need f o r changes i n p r e s e n t p r i c i n gp r a c t i c e s .

    React ive PowerOne reason so little a t t e n t i o n has been given t o r e a c t i v e

    power i s t h e i n h e r e n t d i f f i c u l t y i n u n d e r s t a n d i n g t h e c o n c e p t .A t e c h n i c a l d i s c u s s i o n o f t h e phenomenon o f r e a c t i v e poweri n v o l v e s r e f e r e n c e t o r e s i s t i v e and i n d u c t i v e l o a d s , c a pa ci -t o r s and i n d u c t o r s , and k i l o v o l t amperes . The e c o n o m i s t ' seyes g l a z e o v e r and he (o r she) t u r n s t o o t h e r , moreC"::pressing,probl-ems. The complexi ty o f an e l e c t r i c a l system gOQ-s beyondt h e know ledge (and i n t e r e s t ) o f most economists . So r a t ed e s i g n e r s a r e l e f t alone t o d e a l w i t h t h e f a c t t h a t two l o a d sp l a c e d on t h e system i n v o l v i n g t h e same k i l o w a t t (KW) demandand k i l o w a t t hour(KWH) energy consumption can have d i f f e r e n t

  • 7/27/2019 8313 Berg Power Factors And

    4/18

    -2 -

    i m p l i c a t i o n s f o r t h e e l e c t r i c a l c u r r e n t r e q u i r e m e n t s . Wea r e f a m i l i a r with t h e KWH energy c h a r g e , and unders tand t h a ti n d u s t r i a l customers a r e a l s o b i l l e d f o r t h e maximum i n s t a n taneous KW demand, b u t t h e presence o f a n o t h e r charge f o r alow power f a c t o r ( a f f e c t i n g e l e c t r i c a l c u r r e n t r e q u i r ~ m e n t s )i s n o t - w i d e l y known. -

    The impact o f d i f f e r e n t t y p e s o f e l e c t r i c a l l o a d s can bei l l u s t r a t e d by n o t i n g t h a t a r e s i s t i v e l o a d (such as a l i g h tbulb o r an e l e c t r i c h e a t s t r i p ) does n o t a f f e c t t h e r e l a t i o n s h i p between. t h e e l e c t r i c a l c u r r e n t and t h e v o lt a g e i n ana l t e r n a t i n g c u r r e n t (AC) power sys tem. The c u r r e n t remains i nphase w i t h t h e v o l t a g e . However, if t h e v o l t a g e were a p p l i e dt o a p u r e l y i n d u c t i v e l o a d (such a s an unloaded t r a n s f o r m e r ) ,t h e o u t p u t c u r r e n t would l a g o r fol low t h e o u t p u t v o l t a g e .Such a c i r c u i t would "consume" only r e a c t i v e pow er (m easu redi n k i l o v o l t ampere reactive--KVAR). The p h y s i c a l r e l a t i o n s h i p s i n an e l e c t r i c a l system imply t h a t as more r e a c t i v epower i s consumed, l e s s r e a l pow er (m ea su re d i n KW) can beproduced by t h e u n i t g e n e r a t i n g t h e e l e c t r i c i t y .

    The r e l a t i o n s h i p between r e a l power (KW) and r e a c t i v epower (KVAR) can be d e p i c t e d i n terms o f a p r o d u c t i o n p o s s i b i l i t i e s - f r o n t i e r r e l a t i n g t h e two. Figure 1 shows tile t e c h n i c a l - " t . r a d e - o f f between KWs and KVARs. The name pla"te c a p a c i t yo f a g e n e r a t i n g u n i t i s i n k i l o v o l t amperes (KVA) , which wouldbe n u m e r i c a l l y e q u iv a l e n t t o KW if no r e a c t i v e power wereproduced . However, a s more r e a c t i v e power i s produced t o

  • 7/27/2019 8313 Berg Power Factors And

    5/18

    ReactivePower

    KVAR

    20000.....__ ..... . . . ..... Real

    KW Power

    100

    200

    . ~ . , . , -:- ..-igure I' . , - , , "" ,The Power Factor (Cos 0> and Reactive Power

  • 7/27/2019 8313 Berg Power Factors And

    6/18

    -3 -

    serve in du ct iv e l oa ds , l e s s re a l power (KW) can be produced byth e g en era to r with a given KVA r a t i ng . The product ion poss i -b i l i t i e s f ron t i e r i s a c i r c l e , where th e quan t i ty cosine 8 i sca l l ed th e power fac to r o f th e load. l The r e s i s t i ve load froml i g h t bu l b s i s such t h a t 8 i s zero , so the power factoT i suni ty . On the o the r hand, if the load were pure ly i nduc t ive ,th e power f ac to r would be zero . Thus , if th e u t i l i t y meteredthe average va lue o f i ns ta nta ne ou s power (KW) , t h i s number would be

    z e r o - . S i m i ~ a r l y , z ; e r o KWH,wou1dhemeasured fo r a purfiely i ndac t i ve load .Systems planners and des igners o f e l e c t r i c a l systems can

    con tro l fo r the excess cu r r en t caused by induc t ive elements byadding_ dev ices ca l l ed capac i to r s a long th e cab le run. Capaci to rse s sen t i a l l y produce KVARs, so they can compensate fo r the reduc-t i on in KW capac i ty ava i lab le to serve o the r customers whichwould otherwise occur when induc t ive loads dominate th e sys tem.Thus , th e re are a t l e a s t two ways to main ta in r e a l capac i ty ascustomers demand more r eac t ive power (causing an inc rease in 8 ).One way i s to add capac i to r s and ano ther i s to add capac i ty . 2Ignor ing fo r now o th er b e ne fi ts from such addi t ions (improved

    I I f C = capac i ty , then r e a l pOvler = C(cos B) and r eac t ivepower = ( s i n 8 ) . The product ion pos s i b i l i t i e s c i r c l ~ - h a s th eform r e a l power squared plus r eac t ive power squared i s equalto the-'-square o f th e c ap ac ity .

    2A promising new device which can p rodu ce o r consume reac t i ve power i s the s t a t i c va r compensator . The ava i l ab i l i t y ofnew technologies fu r the r compl ica tes th e cho ices facing u t i l i t i e s .

  • 7/27/2019 8313 Berg Power Factors And

    7/18

    -4 -

    system s t ab i l i t y , th e c oun te ra ctio n o f vol tage problems, andinc reased system r e l i a b i l i t y ) , cost-minimizing systems plannerswi l l add devices o r capac i ty , depending on which i s more economical .

    Figure 2 i l l u s t r a t e s how a drop in the power f ac to r due toincreased consumption of reac t ive power (KVARs) can be compensa ted fo r by an expansion in genera t ing capac i ty . I n i t i a l l y ,there i s KWOin capac i ty , with KWO of r e a l power being de l ive red ,given a power fac tor o f cos 80. Now, if a change in the mix ofe l e c t r i c a l loads caused a drop in th e power f a c t o r to cos 81 ,the r e a l power that . could be de l ive red with th e ex i s t ing generat ing system drops to KWB, as the system moves from A to B. I fthe r e a l power d e m a n d ~ d remains a t KWO (and r e l ia b il i ty i s tobe held cons tan t ) , then th e i n s t a l l a t i on o f capac i ty ( sh i f t ingout the produc t ion poss ib i l i t y f ron t i e r ) equ iva len t to KWi - KWOpermi t s po in t C to be a t t a ined .

    Rate des igners who wish e f f i c i en t p ric e s ig na ls and equ i -t ab le shar ing o f cos t burdens wi l l include some pena l ty fo rthose who impose added cos t s onto th e system. The power f ac to radjustment i s j u s t such a s ign a l to la rge i ndus t r i a l customers .The ques t ion t h a t a r i ses i s the sever i ty o f the pena l ty , which(from th e s ta nd po in t o f economic ef f ic iency) ought to r e f l e c tth e c o s ~ s - o f coping with t h i s aspec t o f e l e c t r i c i t y d e ~ i v e r ysystems-: Too g rea t a pena l ty could r e su l t in custome'rs pur-chas ing expensive machinery and modifying p roduc ti on t ec hn iqu esunnecessar i ly . Too I owa charge would cau se under inve stmen t bycustomers , and over inves tment by th e e lec t r i c u t i l i t y fo r dea l -in g with the problem. I f one c on sid ers th e po ten t i a l resource

  • 7/27/2019 8313 Berg Power Factors And

    8/18

    KVAR

    Power Factor =Cos e-'" , COSecrCOsel" "

    ",

    Figure 2Capacity Expansion in Response to a Reduction inthe Power Factor

  • 7/27/2019 8313 Berg Power Factors And

    9/18

    -5 -

    misa l loca t ions from th e s tandpo in t o f th e na t ion as a whole ,then ca r e fu l ana lys i s o f proper s igna l s warrants much morea t t en t ion than it has rece ived in th e pas t . 3

    I l l u s t r a t i v e Pr ic ing Pol ic iesA ~ t u a l ra t e schedules from four u t i l i t i e s wi l l b ~ used to

    i l l u s t r a t e d i f f e r en t ways u t i l i t i e s dea l with th e power f ac to rproblem. One would hope to f ind some cons i s t ency in the wayregula tors allow th e co sts imposed by low power f ac to r s to ber e f l e c t ed in pena l t i e s . However, two o f th e u t i l i t i e s fromNorth Carol ina are a ll owed comp le te ly d i f f e r en t ways o f de t e r -mining th e power f ac to r pena l ty . A Flor ida u t i l i t y i s used toi l l u s t r a t e how grada t ions can be achieved in dea l ing with r e l a -t i v e l y l ow power fac to rs , whi le a Cal i fo rn ia company serves asan example o f how to le ra nc es fo r low power f ac to r s d i f f e r acrossj u r i sd i c t i ons .

    Of course , what i s on th e "books" as th e ra te schedule andwhat pena l t i e s a re ac tua l l y imposed are two d i f f e r en t i tems a l -t oge the r . These adjustments in th e ra te sc he du le te nd to leavemuch to the d i sc re t ion o f th e company. A t yp i ca l c lause fromFlor ida Power Corporat ion s t a t e s :

    Where the customer i s found to have a power fact.oro i ~ less than 8 5 % ~ the Company m a y ~ a t i t s o p t i o n ~ -

    ~ ~ a s u r e the monthly demand in K V A ~ in which c a s ~ ~the KW demand for h i l l ing. purposes sha l l he 85% o fthe measured KVA. [Emphasis added.]

    3As Sul l ivan (1982) notes in h is review o f th e i s sue s ,"[ Induc t ion motors] a re used in most app l iances as wel l as ina var i e ty o f la rge mining ac t iv i t i e s . Problems l i ke poor powerf a c t o r , vol tage f l i cke r , [and] high inrush cur ren t s , can usua l lybe t r aced to the s t a r t i ng and s topping o f l a rge induc t ionmachines" (p. 11) .

  • 7/27/2019 8313 Berg Power Factors And

    10/18

    -6 -Note t h a t the opera t ive c la use leav es th e i n i t i a t i v e up to thee l e c t r i c u t i l i t y to f ind cus tomers with low power fac to rs andi n s t a l l measurement devices . It may wel l be t h a t such c lausesin th e ra t e schedule (which amounts to a cont rac t ) merely givesome l everage fo r dea l ing with po t en t i a l prob lems--as nego t i a -t ions wi th la rg e cus tomers i ron ou t d i f f i cu l t i e s . An_ i nves -t i g a t i on o f p en al t ie s a ctu al ly imposed wou ld provide mportantin fo rmat ion abou t power f ac to r p en al t ie s in p rac t i c e . Fur the r -more, u t i l i t y - i n i t i a t ed discuss ions with l a rge power consumerswould have to be i d en t i f i ed in any such s tudy o f th e imple-mentat ion o f t h i s component o f th e ra t e schedu le .

    The two opposing cos t ing phi losophies are i l l u s t r a t ed byCaro l ina Power & Ligh t and Duke Power. The former uses 85% asth e t r i gge r fo r pena l t i e s , but th e r eac t ive power f ac to r ad -ju s tmen t i s based on th e cos t s o f providing capac i to r s to br ingth e power fac to r to 85% o r grea te r . Thus, the cus tomer hasth e op tion o f i n s t a l l i ng h is own capac i to r s , ad jus t ing h isequipment to reduce r eac t ive power consumption, o r paying apena l ty . Figure 3 i l l u s t r a t e s how capac i to r s a f f e c t th e pro-duct ion pos s ib i l i t y f ron t i e r r e l a t i ng KVARs and KWs. As ana l t e rna t i v e to ad din g 2 3.8 KVA (141.4 - 117.6) o f capac i ty tomeet th e reduc t ion in the power f ac to r from 0.85 to 0.717,capac i tQ. rscould be i n s t a l l ed , so th e r eac t ive power'o.emand o f100 KVAR (up from 62 KVAR) can be met withou t reducing-- KW ou t -put . The add i t iona l 38 KVAR o f r eac t ive power capab i l i t i e s can becharacterized as an outward shi f t in the production possibili ty f rontier .

    40ne could argue t h a t a pa r t i c u l a r demander ' s change inbehav ior (caus ing a drop in its power fac tor ) i s only pa r t i a l l yr e spons ib le fo r the need fo r an add i t i ona l 38 KVAR in capab i l i t i e s ;the cont inued ins tantaneous demand o f 100 KW a l so requi res KVARcapab i l i t i e s . Thus, KW o r KWH charges ought to r e f l e c t some cos tre spons ib i l i t y .

  • 7/27/2019 8313 Berg Power Factors And

    11/18

    KVAR

    al = ~ 8 e =45 02

    I141.4-

    Addition of~ ~ - 3 8 KVAReQu ivalent viacapacitors

    117.600

    cos a l =0.85cos 92 =0.717

    62

    100

    Figure 3Addition of Capacitors in Response to a Drop in

    the Power Factor

  • 7/27/2019 8313 Berg Power Factors And

    12/18

    -7 -

    The pa r t i cu l a r b i l l i ng algori thm used by Carol ina Power& Ligh t t akes customers with a power fac to r o f l e s s than 85%and ca l cu l a t e s th e adjus tment by mu ltip ly in g th e di f fe rencebetween th e maximum KVAR and 62% o f th e maximum KW demand r eg i s t e red in th e cur ren t b i l l i ng month by $0.25. A custOIRer withan 85%-power f ac to r and a maximum demand o f 100 KW would havea r eac t ive power demand o f 62 (a t po in t A in Figure 3 ) . A dropin th e power f ac to r to 71.7% would invo lve a maximum KVAR r ead ing o f 100 a t poin t C. Mult ip ly ing 0.62 t imes th e maximum KWread ing o f 100 and sub t rac t ing t h i s from th e maximum KVAR reading (100), y ie lds 38. The a d d it io n a l r ea c ti ve power r equ i re ments would r e s u l t in an add i t iona l monthly cos t to th e customero f $9.50 ($0.25 x 38) .

    Duke Power has th e same power f ac to r t r i gge r poin t o f 85%,but the b i l l i ng algori thm i s qu i te d i f f e r en t : "The t o t a l KWHfo r th e month i s mul t ip l i ed by 85% and div ided by th e averagepower f ac to r fo r t h a t month fo r ad jus tment purpose . ,,4 In te rmso f Figure 3, a decrease in th e power f ac to r from 85% to 71.7%,with a cons tan t r e a l power demand o f 100 KW w il l r e su lt in aninc rease in r eac t ive power load from 62 KVAR to 100 KVAR.Tota l monthly KWH consumption i s mul t ip l i ed by 1.185 to obta inth e power f ac to r pena l ty . I f th e Duke Power customer- had aload f ac to r o f one , it would consume 2400 KWH pe r day:" At5/KWH, th e monthly bi- l l would jump from $3600 to $4266: a

    4nuke Powe.r Schedu le- l (NC) , Indus t r i a l Serv ice , December1978.

  • 7/27/2019 8313 Berg Power Factors And

    13/18

    -8 -

    pena l ty o f $666--compared with $9.50 fo r Caro l ina Power &Ligh t ' s customer . A 3/KWH ra te would still y ie ld a $400pena l ty : for ty t imes the CP&L pena l ty . Both compani esa re re gu la te d by the same commission.

    Duke does not cons ider add i t iona l capac i to r s as the cos to f moving from A to C, r a t he r th e u t i l i t y seems to be chargingfo r the ex t r a gene ra to r c a pa c it y needed to move from B to C:a l loca ted over KWH consumption. The dis tance BC i s equal toHI, and represents add i t iona l capac i ty cos t s (23.8 KVA).However, the Duke pr ic ing algori thm i s i n cons i s t en t with t r e a t -ing c apa ci ty a dd it io n s as the response to drops in the powerf ac to r . Since th e charge i s app l i ed on the bas is o f t o t a lKWH, only so long as the c us tome r h as a load f ac to r ( ra t ioo f peak KW demand to average KW demand) o f un i ty , does th eadjus tment to the b i l l r e f l e c t th i s approach in a cons i s t en tfashion. For ex ample , if th e customer has a load f ac to r o f ,say 0 .80 , then its peak demand i s I 2 ~ % grea te r than i t s aver-age KW. Adjust ing the b i l l on the bas is o f t o t a l KWH wi l lu nd ers ta te th e "capac i ty cos t impact" o f increased r eac t ivepower consumpt ion--especial ly s ince the problem tends to beg rea t e s t dur ing per iods o f peak demand.-Economic pr inc ip les support a pr ic ing approach t h a t haspr ice r e f l e c t marginal cos t s . A case can be made t h a t th eoppor tun i ty cos t o f producing r eac t ive power i s the cos t o fc a pa c it or a dd it io n , r a t he r than capac i ty add i t ion . Not only

  • 7/27/2019 8313 Berg Power Factors And

    14/18

    -9 -

    i s th e comparable device l e s s expens ive , bu t l i ne l os se s (dueto higher cu r r en t requ i remen ts fo r low power fac tors ) a re cu t .Thus, the i n s t a l l a t i on o f c ap ac ito rs becomes even more economica l as th e power f ac to r dec reases , s ince such an inves tmentreduces th e tr an sm i ss io n l os se s in th e e l e c t r i c a l dis- t=r ibutionsystem in ques t ion . Of c ou rs e, v olta ge con t ro l , s y s t ~ m s t a b i l i t y and gene ra to r des ign op t ions wi l l also a f f e c t th e ap ....'propr ia te inves tment .

    The power f ac to r ad jus tment can be used to provide anin ce nt iv e fo r improving a cus tomer ' s power f ac to r . Flor idaPower Corpora t ion ' s r a t e schedule fo r l a rge genera l se rv icedemanC!:ers s t a t e s t h a t "When th e power f ac to r a t th e t ime o fth e h ig hes t measured 3D-minute i n t e rva l KW demand i s g rea t e rthan 85%, then fo r each 1% inc rease in th e power f ac to r above85% th e measured KW demand s ha l l be reduced by 0.5%." In t h i scase th e reward fo r high power f ac to r s i s based on avoided KWcapac i ty cos t s (presumably a t an embedded h i s t o r i c a l cos t ) .The u t i l i t y and th e i ndus t r i a l customer s p l i t th e ca lcu la tedsav ings and the demand charge i s reduced.

    In con tra s t to th e a lgor i thms discussed so fa r , th i sscheme avoids th e d is co n ti nu it y o f using some magic t a rge tpo in t tts pena l ize poor performance (in terms o f re ac tiv epower consumption) withou t rewarding improvements . Such ani ncen t ive s t ruc tu re i s good economics. Whether th e incen t ivel eve l i s appropr ia te depends on whether capac i to r s o r capac i ty

  • 7/27/2019 8313 Berg Power Factors And

    15/18

    -10-

    re pr es en ts th e co r r e c t investment fo r KVAR produc t ion . I fthe former are appropr ia te , th e FPC over-rewards high powerf ac to r s . Also , th e a pp ro pria te l eve l should r e f l e c t marginalcos t today , no t some measure o f undeprec ia ted investment indev ices o r capac i ty .

    The Flo r ida Power Corpora t ion (FPC) phi losophy i s s im i l a rto Duke Power, bu t in s tead o f ad jus t ing the b i l l in terms o ft o t a l KWH, the KW demand fo r b i l l i ng purposes i s taken to be85% o f the measured KVA. Thus, if the cus tomer i n i t i a l l y hada power fa c to r o f 0.85 , with a maximum ins tan taneous demand o f100 KW, and the power fac tor dropped to 0.717 (as in Figure 3 ) ,then the measured KVA would r i s e from 117.6 KVA to 141.4 KVA.The demand charge would be app l i ed to 85% o f 141.4 o r 120.2 KW( ins tead o f to 100 KW). The ca lcu la ted i nc rease in genera t ingcapac i ty to meet th e reduct ion in power f ac to r i s 20.2 KVA.for FPC.compared wi th a 23. 8 KVA i nc rease impl ied by th e reduc t ionin power f ac to r . When th e load f ac to r is l e s s than one , th eDuke ad jus tment approaches the FPC formula . Never theless ,the two adjus tment techniques i l l u s t r a t e how even s imi l a rpr inc ip l e s can yie ld d i f f e ren t s i gna l s , depending on the spec i f i cpenal ty a lgor i thm and whether it i s appl ied to KW o r KWH.

    And'ther example o f how th e power f a c to r can come i n t oplay i s with i n t e r r up t i b l e and c u rt ai la b 1e s e rv i ce . "For FPC,both these cus tomer c lasses a re p en aliz ed fo r power f ac to r so f l e s s than 85%. In a dd it io n, fo r i n t e r r up t i b l e customers ,th e non- fue l po rt io n o f the energy and demand charge (per KWH)

  • 7/27/2019 8313 Berg Power Factors And

    16/18

    -11-

    i s to be reduced by 0.5% fo r each 1% inc rease in average powerfac to r above 85%. Peak power f ac to r s might be a b e tte r ta rg e t,s ince assOcia ted oppor tuni ty co s ts o f KVAR product ion a rer e l a t i ve ly g rea t e r during peak per iods . For cur t a i l ab l e cus -tomers (who reduce loads a t the u t i l i t y ' s reques t ) , the measured KW demand . is reduced as th e power f ac to r i n c r e a ~ ~ s above85%. Note t h a t s ince KVARs c on tr ib ute to l i ne l o sses , improve-ments in power f ac to r s y ie ld a product ion bene f i t (due to fue lsavings) as wel l asa capac i ty (or capaci tor>. c red i t .

    A Cal i fo rn ia u t i l i t y has a d if fe re n t t ar ge t po in t fo rthe power f a c t o r : San Diego Gas and Elec t r ic s ta te s th at ifth e KVAR demand exceeds 75% o f the KW demand, the customer wi l lrece ive a wri t t en no t ice to i n s t a l l compensating equipment .The associa ted power fac to r t r i gge r po in t i s l e s s t i gh t thanthe three noted so ar because , as can be seen in Figure 3,th e 85% power fac to r has assoc ia ted with it a KVAR demand of62 when KW i s 100. Thus, fo r San Diego Gas and Elec t r i c , KVARcould exceed 62 fo r 100 KW, without the customer incur r ing apena l ty .

    The i n t e r e s t i ng economic i s sue i s how to determine thet r i gge r po in t . I f a l l o f San Diego ' s customers have r e l a -t i ve ly row power f a c t o r s , the equ ity o f t o l e r a t i ng low power

    . . . :- -f ac to r s may no t be c al le d in to ques t ion . Yet the prJ.:ce s igna lfo r e f f i c i ency may be inappropr ia te if th e o the r u t i l i t i e s areco r rec t in t h e i r choice o f 0.85. Our guess i s t h a t , l ike theindus t ry s tandard o f one day in ten yea r lo ss o f load prob-

  • 7/27/2019 8313 Berg Power Factors And

    17/18

    - 1 2 -

    a b i l i t y f o r system r e l i a b i l i t y e v a l u a t i o n , t h e c h o i c e o f a0.85 power f a c t o r r e f l e c t s h i s t o r i c a l a c c i d e n t and a con-v e n ie n t f o c a l p o i n t f o r e n g i n e e r s . The " s t a n d a r d " (developedo v e r seventy y e a r s ago) i n v o l v e s compromises r e f l e c t i n g c o s t sand m a t e r i a l c o n s t r a i n t s a t t h a t t i m e . However, g i v e n t h eh i g h c o s t o f a d d i t i o n a l i n v e s t m e n t s by e l e c t r i c u t i l i t i e st o d a y , r e g u l a t o r s and u t i l i t y managers ought t o be d e r i v i n gp r i c e s from economic p r i n c i p l e s t h a t r e f l e c t t o d a y 's t e c h -n o l o g i c a l c o n s t r a i n t s .

    ConclusionsThe d e t a i l e d e n g i n e e r i n g r e a l i t i e s o f e l e c t r i c u t i l i t y

    systems a r e beyond t h e u n d e r s t a n d i n g o f most r e g u l a t o r s andmanagers . However, t h e t e c h n o l o g ic a l t r a d e - o f f between p r o -ducing r e a l power ( K ~ ' V ) and r e a c t i v e power (KVAR) i s n o t sucha s o p h i s t i c a t e d n o t i o n t h a t a s p e c t s o f r a t e d e s i g n can be l e f tt o i n d u s t r y norms t h a t have evolved o u t s i d e a c o s t - b e n e f i tframework. The f o u r i l l u s t r a t i v e s c h e d u l e s r e v e a l e d somecommonal i t ies , b u t t h e y a l s o have some v e r y d i f f e r e n t approachest o p e n a l i z i n g customers w i t h heavy i n d u c t i v e l o a d s (and lowpower f a c t o r s ) .

    The r e a s o n f o r r e a c t i v e power p r i c i n g i s t h a t l a r g e KVARc u s t o m ~ r s may have r e l a t i v e l y low measured KW demand and KWH

    ...... ~

    consumption. P r e s e n t p e n a l t i e s r e f l e c t d i v e r g e n t c o s t i n gp h i l o s o p h i e s . The u t i l i t y i n d u s t r y i s o n l y b e g in n i n g t or e c o g n i z e t h e importance o f KVAR p r o d u c t i o n and consumpt ion--

  • 7/27/2019 8313 Berg Power Factors And

    18/18

    -13-

    by customers and by the u t il it y i ts e lf . The l a t t e r stem fromt ransmiss ion losses and system cha rac te r i s t i c s . For e xamp le ,how does e l e c t r i c u t i l i t y X deal with a neighbor ing u t i l i t ywho i s no t compensat ing X fo r supplying KVARs? In terconnectedsystems r a i se complex p ric in g is su e s.

    Furthermore, the KVAR problem r e in fo rces the argumentsfo r peak load pr i c ing . During per iods of heavy l oad , theret ends to be inadequate VAR product ion , so vol tage sags andcapaci tors must be switched in . When th e load i s l i gh t ,vol tage r i s e s , capac i to r s are switched o f f and reac tors mayby switched in to consume VARs. The r e la ted problems ofsysteII! design and customer incen t ives have no t been exploredby analys t s . It i s t ime fo r c ompanie s and r egu la to r s tofocus much more ca re fu l ly on pr inc ip l e s o f r a te design inar r iv ing a t r a te schedules which l ead to equ i t ab le cos t -shar ing and e f f i c i e n t pr i ce s igna l s .

    ReferencesSu l l ivan , "React ive Power Planning and Cont ro l , " ReportUnivers i ty o f Flo r ida cont rac t No. 124505143, September15 , 1982 .

    .. ~