Top Banner
Architecture and programming of 8051 MCU's TOC Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter1: Introduction to Microcontrollers 1.1 What are microcontrollers and what are they used for? 1.2 What is what in microcontroller? Introduction It was electricity in the beginning....The people were happy because they did not know that it was all around them and could be utilized. That was good. Then Faraday came and a stone has started to roll slowly... The first machines using a new sort of energy appeared soon. A long time has passed since then and just when the people finally got used to them and stopped paying attention to what a new generation of specialists were doing, someone came to an idea that electrons could be a very convenient toy being closed in a glass pipe. It 1
422
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

Architecture and programming of 8051 MCU's TOC Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7Chapter1: Introduction to Microcontrollers 1.1 What are microcontrollers and what are they used for? 1.2 What is what in microcontroller?IntroductionIt was electricity in the beginning....The people were happy because they did not know that it was all around them and could be utilized. That was good. Then Faraday came and a stone has started to roll slowly...The first machines using a new sort of energy appeared soon. A long time has passed since then and just when the people finally got used to them and stopped paying attention to what a new generation of specialists were doing, someone came to an idea that electrons could be a very convenient toy being closed in a glass pipe. It was just a good idea at first, but there was no return. Electonics was born and the stone kept on rolling down the hill faster and faster...A new science - new specialists. Blue coats were replaced with white ones and people who knew something about electronics appeared on the stage. While the rest of humanity were passively watching in disbelief what was going on, the plotters split in two groups - software-oriented and hardware-oriented. Somewhat younger than their teachers, very enthusiastic and full of ideas, both of them kept on working but separate ways. While the first group was developing constantly and gradually, the hardware-oriented people, driven by success, threw caution to the wind and invented transistors.Up till that moment, the things could be more or less kept under control, but a broad publicity was not aware of what was going on, which soon led to a fatal mistake! Being naive in belief that cheap tricks could slow down technology development and development of the world and retrieve the good all days, mass market opened its doors for the products of Electronics Industry, thus closing a magic circle. A rapid drop in prices made these components available for a great variety of people. The stone was falling freely...The first integrated circuits and processors appeared soon, which caused computers and other products of electronics to drop down in price even more. They could be bought everywhere. Another circle was closed! Ordinary people got hold of computers and computer era has begun...While this drama was going on, hobbyists and professionals, also split in two groups and protected by anonymity, were working hard on their projects. Then, someone suddenly put a question: Why should not we make a universal component? A cheap, universal integrated circuit that could be programmed and used in any field of electronics, device or wherever needed? Technology has been developed enough as well as the market. Why not? So it happened, body and spirit were united and the first integrated circuit was designed and called the MICROCONTROLLER.1.1 What are microcontrollers and what are they used for?Like all good things, this powerful component is basically very simple. It is made by mixing tested and high- quality "ingredients" (components) as per following receipt:1. The simplest computer processor is used as the "brain" of the future system.2. Depending on the taste of the manufacturer, a bit of memory, a few A/D converters, timers, input/output lines etc. are added3. All that is placed in some of the standard packages.4. A simple software able to control it all and which everyone can easily learn about has been developed.On the basis of these rules, numerous types of microcontrollers were designed and they quickly became man's invisible companion. Their incredible simplicity and flexibility conquered us a long time ago and if you try to invent something about them, you should know that you are probably late, someone before you has either done it or at least has tried to do it.The following things have had a crucial influence on development and success of the microcontrollers: Powerful and carefully chosen electronics embedded in the microcontrollers can independetly or via input/output devices (switches, push buttons, sensors, LCD displays, relays etc.), control various processes and devices such as industrial automation, electric current, temperature, engine performance etc. Very low prices enable them to be embedded in such devices in which, until recent time it was not worthwhile to embed anything. Thanks to that, the world is overwhelmed today with cheap automatic devices and various smart appliences. Prior knowledge is hardly needed for programming. It is sufficient to have a PC (software in use is not demanding at all and is easy to learn) and a simple device (called the programmer) used for loading raedy-to-use programs into the microcontroller.So, if you are infected with a virus called electronics, there is nothing left for you to do but to learn how to use and control its power.How does the microcontroller operate?Even though there is a large number of different types of microcontrollers and even more programs created for their use only, all of them have many things in common. Thus, if you learn to handle one of them you will be able to handle them all. A typical scenario on the basis of which it all functions is as follows:1. Power supply is turned off and everything is stillthe program is loaded into the microcontroller, nothing indicates what is about to comePower supply is turned on and everything starts to happen at high speed! The control logic unit keeps everything under control. It disables all other circuits except quartz crystal to operate. While the preparations are in progress, the first milliseconds go by.2. Power supply voltage reaches its maximum and oscillator frequency becomes stable. SFRs are being filled with bits reflecting the state of all circuits within the microcontroller. All pins are configured as inputs. The overall electronis starts operation in rhythm with pulse sequence. From now on the time is measured in micro and nanoseconds.3. Program Counter is set to zero. Instruction from that address is sent to instruction decoder which recognizes it, after which it is executed with immediate effect.4. The value of the Program Counter is incremented by 1 and the whole process is repeated...several million times per second.

1.2 What is what in the microcontroller?As you can see, all the operations within the microcontroller are performed at high speed and quite simply, but the microcontroller itself would not be so useful if there are not special circuits which make it complete. In continuation, we are going to call your attention to them.Read Only Memory (ROM)Read Only Memory (ROM) is a type of memory used to permanently save the program being executed. The size of the program that can be written depends on the size of this memory. ROM can be built in the microcontroller or added as an external chip, which depends on the type of the microcontroller. Both options have some disadvantages. If ROM is added as an external chip, the microcontroller is cheaper and the program can be considerably longer. At the same time, a number of available pins is reduced as the microcontroller uses its own input/output ports for connection to the chip. The internal ROM is usually smaller and more expensive, but leaves more pins available for connecting to peripheral environment. The size of ROM ranges from 512B to 64KB.Random Access Memory (RAM)Random Access Memory (RAM) is a type of memory used for temporary storing data and intermediate results created and used during the operation of the microcontrollers. The content of this memory is cleared once the power supply is off. For example, if the program performes an addition, it is necessary to have a register standing for what in everyday life is called the sum . For that purpose, one of the registers in RAM is called the "sum" and used for storing results of addition. The size of RAM goes up to a few KBs.Electrically Erasable Programmable ROM (EEPROM)The EEPROM is a special type of memory not contained in all microcontrollers. Its contents may be changed during program execution (similar to RAM ), but remains permanently saved even after the loss of power (similar to ROM). It is often used to store values, created and used during operation (such as calibration values, codes, values to count up to etc.), which must be saved after turning the power supply off. A disadvantage of this memory is that the process of programming is relatively slow. It is measured in miliseconds.

Special Function Registers (SFR)Special function registers are part of RAM memory. Their purpose is predefined by the manufacturer and cannot be changed therefore. Since their bits are physically connected to particular circuits within the microcontroller, such as A/D converter, serial communication module etc., any change of their state directly affects the operation of the microcontroller or some of the circuits. For example, writing zero or one to the SFR controlling an input/output port causes the appropriate port pin to be configured as input or output. In other words, each bit of this register controls the function of one single pin.Program CounterProgram Counter is an engine running the program and points to the memory address containing the next instruction to execute. After each instruction execution, the value of the counter is incremented by 1. For this reason, the program executes only one instruction at a time just as it is written. Howeverthe value of the program counter can be changed at any moment, which causes a jump to a new memory location. This is how subroutines and branch instructions are executed. After jumping, the counter resumes even and monotonous automatic counting +1, +1, +1Central Processor Unit (CPU)As its name suggests, this is a unit which monitors and controls all processes within the microcontroller and the user cannot affect its work. It consists of several smaller subunits, of which the most important are: Instruction decoderis a part of the electronics which recognizes program instructions and runs other circuits on the basis of that. The abilities of this circuit are expressed in the "instruction set" which is different for each microcontroller family. Arithmetical Logical Unit (ALU)performs all mathematical and logical operations upon data. Accumulatoris an SFR closely related to the operation of ALU. It is a kind of working desk used for storing all data upon which some operations should be executed (addition, shift etc.). It also stores the results ready for use in further processing. One of the SFRs, called the Status Register, is closely related to the accumulator, showing at any given time the "status" of a number stored in the accumulator (the number is greater or less than zero etc.).

A bitis just a word invented to confuse novices at electronics. Joking aside, this word in practice indicates whether the voltage is present on a conductor or not. If it is present, the approprite pin is set to logic one (1), i.e. the bits value is 1. Otherwise, if the voltage is 0 V, the appropriate pin is cleared (0), i.e. the bits value is 0. It is more complicated in theory where a bit is referred to as a binary digit, but even in this case, its value can be either 0 or 1.Input/output ports (I/O Ports)In order to make the microcontroller useful, it is necessary to connect it to peripheral devices. Each microcontroller has one or more registers (called a port) connected to the microcontroller pins.

Why do we call them input/output ports? Because it is possible to change a pin function according to the user's needs. These registers are the only registers in the microcontroller the state of which can be checked by voltmeter!Oscillator

Even pulses generated by the oscillator enable harmonic and synchronous operation of all circuits within the microcontroller. It is usually configured as to use quartz-crystal or ceramics resonator for frequency stabilization. It can also operate without elements for frequency stabilization (like RC oscillator). It is important to say that program instructions are not executed at the rate imposed by the oscillator itself, but several times slower. It happens because each instruction is executed in several steps. For some microcontrollers, the same number of cycles is needed to execute any instruction, while it's different for other microcontrollers. Accordingly, if the system uses quartz crystal with a frequency of 20MHz, the execution time of an instruction is not expected 50nS, but 200, 400 or even 800 nS, depending on the type of the microcontroller!Timers/CountersMost programs use these miniature electronic "stopwatches" in their operation. These are commonly 8- or 16-bit SFRs the contents of which is automatically incremented by each coming pulse. Once the register is completely loaded, an interrupt is generated!If these registers use an internal quartz oscillator as a clock source, then it is possible to measure the time between two events (if the register value is T1 at the moment measurement has started, and T2 at the moment it has finished, then the elapsed time is equal to the result of subtraction T2-T1 ). If the registers use pulses coming from external source, then such a timer is turned into a counter.This is only a simple explanation of the operation itself. Its somehow more complicated in practice.

A registeror a memory cell is an electronic circuit which can memorize the state of one byte. Besides 8 bits available to the user, each register has also a number of addressing bits. It is important to remember that: All registers of ROM as well as those of RAM referred to as general-purpose registers are mutually equal and nameless. During programming, each of them can be assigned a name, which makes the whole operation much easier. All SFRs are assigned names which are different for different types of the microcontrollers and each of them has a special function as their name suggests.Watchdog timerThe Watchdog Timer is a timer connected to a completely separate RC oscillator within the microcontroller.If the watchdog timer is enabled, every time it counts up to the program end, the microcontroller reset occurs and program execution starts from the first instruction. The point is to prevent this from happening by using a special command. The whole idea is based on the fact that every program is executed in several longer or shorter loops.If instructions resetting the watchdog timer are set at the appropriate program locations, besides commands being regularly executed, then the operation of the watchdog timer will not affect the program execution.If for any reason (usually electrical noise in industry), the program counter "gets stuck" at some memory location from which there is no return, the watchdog will not be cleared, so the registers value being constantly incremented will reach the maximum et voila! Reset occurs!Power Supply CircuitThere are two things worth attention concerning the microcontroller power supply circuit:

Brown outis a potentially dangerous state which occurs at the moment the microcontroller is being turned off or when power supply voltage drops to the lowest level due to electric noise. As the microcontroller consists of several circuits which have different operating voltage levels, this can cause its out of control performance. In order to prevent it, the microcontroller usually has a circuit for brown out reset built-in. This circuit immediately resets the whole electronics when the voltage level drops below the lower limit.Reset pinis usually referred to as Master Clear Reset (MCLR) and serves for external reset of the microcontroller by applying logic zero (0) or one (1) depending on the type of the microcontroller. In case the brown out is not built in the microcontroller, a simple external circuit for brown out reset can be connected to this pin.Serial communication

Parallel connections between the microcontroller and peripherals established over I/O ports are the ideal solution for shorter distances up to several meters. However, in other cases, when it is necessary to establish communication between two devices on longer distances it is obviously not possible to use parallel connections. Then, serial communication is the best solution.Today, most microcontrollers have several different systems for serial communication built in as a standard equipment. Which of them will be used depends on many factors of which the most important are: How many devices the microcontroller has to exchange data with? How fast the data exchange has to be? What is the distance between devices? Is it necessary to send and receive data simultaneously?One of the most important things concerning serial communication is the Protocol which should be strictly observed. It is a set of rules which must be applied in order that devices can correctly interpret data they mutually exchange. Fortunately, the microcontrollers automatically take care of this, so the work of the programmer/user is reduced to a simple write (data to be sent) and read (received data).

A byteconsists of 8 bits grouped together. If a bit is a digit then it is logical that bytes are numbers. All mathematical operations can be performed upon them, just like upon common decimal numbers, which is carried out in the ALU. It is important to remember that byte digits are not of equal significance. The largest value has the leftmost bit called the most significant bit (MSB). The rightmost bit has the least value and is therefore called the least significant bit (LSB). Since 8 digits (zeros and ones) of one byte can be combined in 256 different ways, the largest decimal number which can be represented by one byte is 255 (one combination represents zero).ProgramUnlike other integrated circuits which only need to be connected to other components and turn the power supply on, the microcontrollers need to be programmed first. This is a so called "bitter pill" and the main reason why hardware-oriented electronics engineers stay away from microcontrollers. It is a trap causing huge losses because the process of programming the microcontroller is basically very simple.In order to write a program for the microcontroller, several "low-level" programming languages can be used such as Assembly, C and Basic (and their versions as well). Writing program procedure consists of simple writing instructions in the order in which they should be executed. There are also many programs running in Windows environment used to facilitate the work providing additional visual tools.This book describes the use of Assembly because it is the simplest language with the fastest execution allowing entire control on what is going on in the circuit.

Interrupt-electronics is usually more faster than physical processes it should keep under control. This is why the microcontroller spends most of its time waiting for something to happen or execute. In other words, when some event takes place, the microcontroller does something. In order to prevent the microcontroller from spending most of its time endlessly checking for logic state on input pins and registers, an interrupt is generated. It is the signal which informs the central processor that something attention worthy has happened. As its name suggests, it interrupts regular program execution. It can be generated by different sources so when it occurs, the microcontroller immediately stops operation and checks for the cause. If it is needed to perform some operations, a current state of the program counter is pushed onto the Stack and the appropriate program is executed. It's the so called interrupt routine.

Stackis a part of RAM used for storing the current state of the program counter (address) when an interrupt occurs. In this way, after a subroutine or an interrupt execution, the microcontroller knows from where to continue regular program execution. This address is cleared after returning to the program because there is no need to save it any longer, and one location of the stack is automatically availale for further use. In addition, the stack can consist of several levels. This enables subroutines nesting, i.e. calling one subroutine from another.

2.1 What is 8051 Standard?Microcontroller manufacturers have been competing for a long time for attracting choosy customers and every couple of days a new chip with a higher operating frequency, more memory and upgraded A/D converters appeared on the market.However, most of them had the same or at least very similar architecture known in the world of microcontrollers as 8051 compatible. What is all this about?The whole story has its beginnings in the far 80s when Intel launched the first series of microcontrollers called the MCS 051. Even though these microcontrollers had quite modest features in comparison to the new ones, they conquered the world very soon and became a standard for what nowadays is called the microcontroller.The main reason for their great success and popularity is a skillfully chosen configuration which satisfies different needs of a large number of users allowing at the same time constant expansions (refers to the new types of microcontrollers). Besides, the software has been developed in great extend in the meantime, and it simply was not profitable to change anything in the microcontrollers basic core. This is the reason for having a great number of various microcontrollers which basically are solely upgraded versions of the 8051 family. What makes this microcontroller so special and universal so that almost all manufacturers all over the world manufacture it today under different name?

As seen in figure above, the 8051 microcontroller has nothing impressive in appearance: 4 Kb of ROM is not much at all. 128b of RAM (including SFRs) satisfies the user's basic needs. 4 ports having in total of 32 input/output lines are in most cases sufficient to make all necessary connections to peripheral environment.The whole configuration is obviously thought of as to satisfy the needs of most programmers working on development of automation devices. One of its advantages is that nothing is missing and nothing is too much. In other words, it is created exactly in accordance to the average users taste and needs. Another advantages are RAM organization, the operation of Central Processor Unit (CPU) and ports which completely use all recourses and enable further upgrade.2.2 Pinout DescriptionPins 1-8:Port 1Each of these pins can be configured as an input or an output.Pin 9: RSA logic one on this pin disables the microcontroller and clears the contents of most registers. In other words, the positive voltage on this pin resets the microcontroller. By applying logic zero to this pin, the program starts execution from the beginning.Pins10-17:Port 3Similar to port 1, each of these pins can serve as general input or output. Besides, all of them have alternative functions:Pin 10:RXDSerial asynchronous communication input or Serial synchronous communication output.Pin 11:TXDSerial asynchronous communication output or Serial synchronous communication clock output.Pin 12:INT0Interrupt 0 input.Pin 13:INT1Interrupt 1 input.Pin 14:T0Counter 0 clock input.Pin 15:T1Counter 1 clock input.Pin 16:WRWrite to external (additional) RAM.Pin 17:RDRead from external RAM.Pin 18, 19:X2, X1Internal oscillator input and output. A quartz crystal which specifies operating frequency is usually connected to these pins. Instead of it, miniature ceramics resonators can also be used for frequency stability. Later versions of microcontrollers operate at a frequency of 0 Hz up to over 50 Hz.Pin 20:GNDGround.Pin 21-28:Port 2If there is no intention to use external memory then these port pins are configured as general inputs/outputs. In case external memory is used, the higher address byte, i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is not used, which means that not all eight port bits are used for its addressing, the rest of them are not available as inputs/outputs.Pin 29:PSENIf external ROM is used for storing program then a logic zero (0) appears on it every time the microcontroller reads a byte from memory.Pin 30:ALEPrior to reading from external memory, the microcontroller puts the lower address byte (A0-A7) on P0 and activates the ALE output. After receiving signal from the ALE pin, the external register (usually 74HCT373 or 74HCT375 add-on chip) memorizes the state of P0 and uses it as a memory chip address. Immediately after that, the ALU pin is returned its previous logic state and P0 is now used as a Data Bus. As seen, port data multiplexing is performed by means of only one additional (and cheap) integrated circuit. In other words, this port is used for both data and address transmission.Pin 31:EABy applying logic zero to this pin, P2 and P3 are used for data and address transmission with no regard to whether there is internal memory or not. It means that even there is a program written to the microcontroller, it will not be executed. Instead, the program written to external ROM will be executed. By applying logic one to the EA pin, the microcontroller will use both memories, first internal then external (if exists).Pin 32-39:Port 0Similar to P2, if external memory is not used, these pins can be used as general inputs/outputs. Otherwise, P0 is configured as address output (A0-A7) when the ALE pin is driven high (1) or as data output (Data Bus) when the ALE pin is driven low (0).Pin 40:VCC+5V power supply.2.3 Input/Output Ports (I/O Ports)All 8051 microcontrollers have 4 I/O ports each comprising 8 bits which can be configured as inputs or outputs. Accordingly, in total of 32 input/output pins enabling the microcontroller to be connected to peripheral devices are available for use.Pin configuration, i.e. whether it is to be configured as an input (1) or an output (0), depends on its logic state. In order to configure a microcontroller pin as an output, it is necessary to apply a logic zero (0) to appropriate I/O port bit. In this case, voltage level on appropriate pin will be 0.Similarly, in order to configure a microcontroller pin as an input, it is necessary to apply a logic one (1) to appropriate port. In this case, voltage level on appropriate pin will be 5V (as is the case with any TTL input). This may seem confusing but don't loose your patience. It all becomes clear after studying simple electronic circuits connected to an I/O pin.

Input/Output (I/O) pinFigure above illustrates a simplified schematic of all circuits within the microcontroler connected to one of its pins. It refers to all the pins except those of the P0 port which do not have pull-up resistors built-in.

Output pinA logic zero (0) is applied to a bit of the P register. The output FE transistor is turned on, thus connecting the appropriate pin to ground.

Input pinA logic one (1) is applied to a bit of the P register. The output FE transistor is turned off and the appropriate pin remains connected to the power supply voltage over a pull-up resistor of high resistance.

Logic state (voltage) of any pin can be changed or read at any moment. A logic zero (0) and logic one (1) are not equal. A logic one (0) represents a short circuit to ground. Such a pin acts as an output.A logic one (1) is loosely connected to the power supply voltage over a resistor of high resistance. Since this voltage can be easily reduced by an external signal, such a pin acts as an input.Port 0The P0 port is characterized by two functions. If external memory is used then the lower address byte (addresses A0-A7) is applied on it. Otherwise, all bits of this port are configured as inputs/outputs.The other function is expressed when it is configured as an output. Unlike other ports consisting of pins with built-in pull-up resistor connected by its end to 5 V power supply, pins of this port have this resistor left out. This apparently small difference has its consequences:

If any pin of this port is configured as an input then it acts as if it floats. Such an input has unlimited input resistance and indetermined potential.

When the pin is configured as an output, it acts as an open drain. By applying logic 0 to a port bit, the appropriate pin will be connected to ground (0V). By applying logic 1, the external output will keep on floating. In order to apply logic 1 (5V) on this output pin, it is necessary to built in an external pull-up resistor.

Only in case P0 is used for addressing external memory, the microcontroller will provide internal power supply source in order to supply its pins with logic one. There is no need to add external pull-up resistors.Port 1P1 is a true I/O port, because it doesn't have any alternative functions as is the case with P0, but can be cofigured as general I/O only. It has a pull-up resistor built-in and is completely compatible with TTL circuits.Port 2P2 acts similarly to P0 when external memory is used. Pins of this port occupy addresses intended for external memory chip. This time it is about the higher address byte with addresses A8-A15. When no memory is added, this port can be used as a general input/output port showing features similar to P1.Port 3All port pins can be used as general I/O, but they also have an alternative function. In order to use these alternative functions, a logic one (1) must be applied to appropriate bit of the P3 register. In tems of hardware, this port is similar to P0, with the difference that its pins have a pull-up resistor built-in.Pin's Current limitationsWhen configured as outputs (logic zero (0)), single port pins can receive a current of 10mA. If all 8 bits of a port are active, a total current must be limited to 15mA (port P0: 26mA). If all ports (32 bits) are active, total maximum current must be limited to 71mA. When these pins are configured as inputs (logic 1), built-in pull-up resistors provide very weak current, but strong enough to activate up to 4 TTL inputs of LS series.

As seen from description of some ports, even though all of them have more or less similar architecture, it is necessary to pay attention to which of them is to be used for what and how.For example, if they shall be used as outputs with high voltage level (5V), then P0 should be avoided because its pins do not have pull-up resistors, thus giving low logic level only. When using other ports, one should have in mind that pull-up resistors have a relatively high resistance, so that their pins can give a current of several hundreds microamperes only.2.4 Memory OrganizationThe 8051 has two types of memory and these are Program Memory and Data Memory. Program Memory (ROM) is used to permanently save the program being executed, while Data Memory (RAM) is used for temporarily storing data and intermediate results created and used during the operation of the microcontroller. Depending on the model in use (we are still talking about the 8051 microcontroller family in general) at most a few Kb of ROM and 128 or 256 bytes of RAM is used. HoweverAll 8051 microcontrollers have a 16-bit addressing bus and are capable of addressing 64 kb memory. It is neither a mistake nor a big ambition of engineers who were working on basic core development. It is a matter of smart memory organization which makes these microcontrollers a real programmers goody.Program MemoryThe first models of the 8051 microcontroller family did not have internal program memory. It was added as an external separate chip. These models are recognizable by their label beginning with 803 (for example 8031 or 8032). All later models have a few Kbyte ROM embedded. Even though such an amount of memory is sufficient for writing most of the programs, there are situations when it is necessary to use additional memory as well. A typical example are so called lookup tables. They are used in cases when equations describing some processes are too complicated or when there is no time for solving them. In such cases all necessary estimates and approximates are executed in advance and the final results are put in the tables (similar to logarithmic tables).

How does the microcontroller handle external memory depends on the EA pin logic state:

EA=0In this case, the microcontroller completely ignores internal program memory and executes only the program stored in external memory.EA=1In this case, the microcontroller executes first the program from built-in ROM, then the program stored in external memory.In both cases, P0 and P2 are not available for use since being used for data and address transmission. Besides, the ALE and PSEN pins are also used.Data MemoryAs already mentioned, Data Memory is used for temporarily storing data and intermediate results created and used during the operation of the microcontroller. Besides, RAM memory built in the 8051 family includes many registers such as hardware counters and timers, input/output ports, serial data buffers etc. The previous models had 256 RAM locations, while for the later models this number was incremented by additional 128 registers. However, the first 256 memory locations (addresses 0-FFh) are the heart of memory common to all the models belonging to the 8051 family. Locations available to the user occupy memory space with addresses 0-7Fh, i.e. first 128 registers. This part of RAM is divided in several blocks.The first block consists of 4 banks each including 8 registers denoted by R0-R7. Prior to accessing any of these registers, it is necessary to select the bank containing it. The next memory block (address 20h-2Fh) is bit- addressable, which means that each bit has its own address (0-7Fh). Since there are 16 such registers, this block contains in total of 128 bits with separate addresses (address of bit 0 of the 20h byte is 0, while address of bit 7 of the 2Fh byte is 7Fh). The third group of registers occupy addresses 2Fh-7Fh, i.e. 80 locations, and does not have any special functions or features.Additional RAMIn order to satisfy the programmers constant hunger for Data Memory, the manufacturers decided to embed an additional memory block of 128 locations into the latest versions of the 8051 microcontrollers. However, its not as simple as it seems to be The problem is that electronics performing addressing has 1 byte (8 bits) on disposal and is capable of reaching only the first 256 locations, therefore. In order to keep already existing 8-bit architecture and compatibility with other existing models a small trick was done.What does it mean? It means that additional memory block shares the same addresses with locations intended for the SFRs (80h- FFh). In order to differentiate between these two physically separated memory spaces, different ways of addressing are used. The SFRs memory locations are accessed by direct addressing, while additional RAM memory locations are accessed by indirect addressing.

Memory expansionIn case memory (RAM or ROM) built in the microcontroller is not sufficient, it is possible to add two external memory chips with capacity of 64Kb each. P2 and P3 I/O ports are used for their addressing and data transmission.

From the users point of view, everything works quite simply when properly connected because most operations are performed by the microcontroller itself. The 8051 microcontroller has two pins for data read RD#(P3.7) and PSEN#. The first one is used for reading data from external data memory (RAM), while the other is used for reading data from external program memory (ROM). Both pins are active low. A typical example of memory expansion by adding RAM and ROM chips (Hardward architecture), is shown in figure above.Even though additional memory is rarely used with the latest versions of the microcontrollers, we will describe in short what happens when memory chips are connected according to the previous schematic. The whole process described below is performed automatically. When the program during execution encounters an instruction which resides in external memory (ROM), the microcontroller will activate its control output ALE and set the first 8 bits of address (A0-A7) on P0. IC circuit 74HCT573 passes the first 8 bits to memory address pins. A signal on the ALE pin latches the IC circuit 74HCT573 and immediately afterwards 8 higher bits of address (A8-A15) appear on the port. In this way, a desired location of additional program memory is addressed. It is left over to read its content. Port P0 pins are configured as inputs, the PSEN pin is activated and the microcontroller reads from memory chip.Similar occurs when it is necessary to read location from external RAM. Addressing is performed in the same way, while read and write are performed via signals appearing on the control outputs RD (is short for read) or WR (is short for write).AddressingWhile operating, the processor processes data as per program instructions. Each instruction consists of two parts. One part describes WHAT should be done, while the other explains HOW to do it. The latter part can be a data (binary number) or the address at which the data is stored. Two ways of addressing are used for all 8051 microcontrollers depending on which part of memory should be accessed:Direct AddressingOn direct addressing, the address of memory location containing data to be read is specified in instruction. The address may contain a number being changed during operation (variable). For example:Since the address is only one byte in size (the largest number is 255), only the first 255 locations of RAM can be accessed this way. The first half of RAM is available for use, while another half is reserved for SFRs.MOV A,33h; Means: move a number from address 33 hex. to accumulatorIndirect AddressingOn indirect addressing, a register containing the address of another register is specified in instruction. Data to be used in the program is stored in the letter register. For example:Indirect addressing is only used for accessing RAM locations available for use (never for accessing SFRs). This is the only way of accessing all the latest versions of the microcontrollers with additional memory block (128 locations of RAM). Simply put, when the program encounters instruction including @ sign and if the specified address is higher than 128 ( 7F hex.), the processor knows that indirect addressing is used and skips memory space reserved for SFRs.MOV A,@R0; Means: Store the value from the register whose address is in the R0 register into accumulatorOn indirect addressing, registers R0, R1 or Stack Pointer are used for specifying 8-bit addresses. Since only 8 bits are avilable, it is possible to access only registers of internal RAM this way (128 locations when speaking of previous models or 256 locations when speaking of latest models of microcontrollers). If an extra memory chip is added then the 16-bit DPTR Register (consisting of the registers DPTRL and DPTRH) is used for specifying address. In this way it is possible to access any location in the range of 64K.2.5 Special Function Registers (SFRs)Special Function Registers (SFRs) are a sort of control table used for running and monitoring the operation of the microcontroller. Each of these registers as well as each bit they include, has its name, address in the scope of RAM and precisely defined purpose such as timer control, interrupt control, serial communication control etc. Even though there are 128 memory locations intended to be occupied by them, the basic core, shared by all types of 8051 microcontrollers, has only 21 such registers. Rest of locations are intensionally left unoccupied in order to enable the manufacturers to further develop microcontrollers keeping them compatible with the previous versions. It also enables programs written a long time ago for microcontrollers which are out of production now to be used today.

A Register (Accumulator)

A register is a general-purpose register used for storing intermediate results obtained during operation. Prior to executing an instruction upon any number or operand it is necessary to store it in the accumulator first. All results obtained from arithmetical operations performed by the ALU are stored in the accumulator. Data to be moved from one register to another must go through the accumulator. In other words, the A register is the most commonly used register and it is impossible to imagine a microcontroller without it. More than half instructions used by the 8051 microcontroller use somehow the accumulator.B RegisterMultiplication and division can be performed only upon numbers stored in the A and B registers. All other instructions in the program can use this register as a spare accumulator (A).

During the process of writing a program, each register is called by its name so that their exact addresses are not of importance for the user. During compilation, their names will be automatically replaced by appropriate addresses.R Registers (R0-R7)

This is a common name for 8 general-purpose registers (R0, R1, R2 ...R7). Even though they are not true SFRs, they deserve to be discussed here because of their purpose. They occupy 4 banks within RAM. Similar to the accumulator, they are used for temporary storing variables and intermediate results during operation. Which one of these banks is to be active depends on two bits of the PSW Register. Active bank is a bank the registers of which are currently used.The following example best illustrates the purpose of these registers. Suppose it is necessary to perform some arithmetical operations upon numbers previously stored in the R registers: (R1+R2) - (R3+R4). Obviously, a register for temporary storing results of addition is needed. This is how it looks in the program:MOV A,R3; Means: move number from R3 into accumulatorADD A,R4; Means: add number from R4 to accumulator (result remains in accumulator)MOV R5,A; Means: temporarily move the result from accumulator into R5MOV A,R1; Means: move number from R1 to accumulatorADD A,R2; Means: add number from R2 to accumulatorSUBB A,R5; Means: subtract number from R5 (there are R3+R4)Program Status Word (PSW) Register

PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag.P - Parity bit.If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication.- Bit 1.This bit is intended to be used in the future versions of microcontrollers.OV Overflowoccurs when the result of an arithmetical operation is larger than 255 and cannot be stored in one register. Overflow condition causes the OV bit to be set (1). Otherwise, it will be cleared (0).RS0, RS1 - Register bank select bits.These two bits are used to select one of four register banks of RAM. By setting and clearing these bits, registers R0-R7 are stored in one of four banks of RAM.RS1RS2SPACE IN RAM

00Bank0 00h-07h

01Bank1 08h-0Fh

10Bank2 10h-17h

11Bank3 18h-1Fh

F0 - Flag 0.This is a general-purpose bit available for use.AC - Auxiliary Carry Flagis used for BCD operations only.CY - Carry Flagis the (ninth) auxiliary bit used for all arithmetical operations and shift instructions.Data Pointer Register (DPTR)DPTR register is not a true one because it doesn't physically exist. It consists of two separate registers: DPH (Data Pointer High) and (Data Pointer Low). For this reason it may be treated as a 16-bit register or as two independent 8-bit registers. Their 16 bits are primarly used for external memory addressing. Besides, the DPTR Register is usually used for storing data and intermediate results.

Stack Pointer (SP) Register

A value stored in the Stack Pointer points to the first free stack address and permits stack availability. Stack pushes increment the value in the Stack Pointer by 1. Likewise, stack pops decrement its value by 1. Upon any reset and power-on, the value 7 is stored in the Stack Pointer, which means that the space of RAM reserved for the stack starts at this location. If another value is written to this register, the entire Stack is moved to the new memory location.P0, P1, P2, P3 - Input/Output Registers

If neither external memory nor serial communication system are used then 4 ports with in total of 32 input/output pins are available for connection to peripheral environment. Each bit within these ports affects the state and performance of appropriate pin of the microcontroller. Thus, bit logic state is reflected on appropriate pin as a voltage (0 or 5 V) and vice versa, voltage on a pin reflects the state of appropriate port bit.As mentioned, port bit state affects performance of port pins, i.e. whether they will be configured as inputs or outputs. If a bit is cleared (0), the appropriate pin will be configured as an output, while if it is set (1), the appropriate pin will be configured as an input. Upon reset and power-on, all port bits are set (1), which means that all appropriate pins will be configured as inputs.

I/O ports are directly connected to the microcontroller pins. Accordingly, logic state of these registers can be checked by voltmeter and vice versa, voltage on the pins can be checked by inspecting their bits!2.6 Counters and TimersAs you already know, the microcontroller oscillator uses quartz crystal for its operation. As the frequency of this oscillator is precisely defined and very stable, pulses it generates are always of the same width, which makes them ideal for time measurement. Such crystals are also used in quartz watches. In order to measure time between two events it is sufficient to count up pulses coming from this oscillator. That is exactly what the timer does. If the timer is properly programmed, the value stored in its register will be incremented (or decremented) with each coming pulse, i.e. once per each machine cycle. A single machine-cycle instruction lasts for 12 quartz oscillator periods, which means that by embedding quartz with oscillator frequency of 12MHz, a number stored in the timer register will be changed million times per second, i.e. each microsecond.The 8051 microcontroller has 2 timers/counters called T0 and T1. As their names suggest, their main purpose is to measure time and count external events. Besides, they can be used for generating clock pulses to be used in serial communication, so called Baud Rate.Timer T0As seen in figure below, the timer T0 consists of two registers TH0 and TL0 representing a low and a high byte of one 16-digit binary number.

Accordingly, if the content of the timer T0 is equal to 0 (T0=0) then both registers it consists of will contain 0. If the timer contains for example number 1000 (decimal), then the TH0 register (high byte) will contain the number 3, while the TL0 register (low byte) will contain decimal number 232.

Formula used to calculate values in these two registers is very simple:TH0 256 + TL0 = TMatching the previous example it would be as follows:3 256 + 232 = 1000

Since the timer T0 is virtually 16-bit register, the largest value it can store is 65 535. In case of exceeding this value, the timer will be automatically cleared and counting starts from 0. This condition is called an overflow. Two registers TMOD and TCON are closely connected to this timer and control its operation.TMOD Register (Timer Mode)The TMOD register selects the operational mode of the timers T0 and T1. As seen in figure below, the low 4 bits (bit0 - bit3) refer to the timer 0, while the high 4 bits (bit4 - bit7) refer to the timer 1. There are 4 operational modes and each of them is described herein.

Bits of this register have the following function: GATE1enables and disables Timer 1 by means of a signal brought to the INT1 pin (P3.3): 1- Timer 1 operates only if the INT1 bit is set. 0- Timer 1 operates regardless of the logic state of the INT1 bit. C/T1selects pulses to be counted up by the timer/counter 1: 1- Timer counts pulses brought to the T1 pin (P3.5). 0- Timer counts pulses from internal oscillator. T1M1,T1M0These two bits select the operational mode of the Timer 1.T1M1T1M0MODEDESCRIPTION

00013-bit timer

01116-bit timer

1028-bit auto-reload

113Split mode

GATE0enables and disables Timer 1 using a signal brought to the INT0 pin (P3.2): 1- Timer 0 operates only if the INT0 bit is set. 0- Timer 0 operates regardless of the logic state of the INT0 bit. C/T0selects pulses to be counted up by the timer/counter 0: 1- Timer counts pulses brought to the T0 pin (P3.4). 0- Timer counts pulses from internal oscillator. T0M1,T0M0These two bits select the oprtaional mode of the Timer 0.T0M1T0M0MODEDESCRIPTION

00013-bit timer

01116-bit timer

1028-bit auto-reload

113Split mode

Timer 0 in mode 0 (13-bit timer)This is one of the rarities being kept only for the purpose of compatibility with the previuos versions of microcontrollers. This mode configures timer 0 as a 13-bit timer which consists of all 8 bits of TH0 and the lower 5 bits of TL0. As a result, the Timer 0 uses only 13 of 16 bits. How does it operate? Each coming pulse causes the lower register bits to change their states. After receiving 32 pulses, this register is loaded and automatically cleared, while the higher byte (TH0) is incremented by 1. This process is repeated until registers count up 8192 pulses. After that, both registers are cleared and counting starts from 0.

Timer 0 in mode 1 (16-bit timer)Mode 1 configures timer 0 as a 16-bit timer comprising all the bits of both registers TH0 and TL0. That's why this is one of the most commonly used modes. Timer operates in the same way as in mode 0, with difference that the registers count up to 65 536 as allowable by the 16 bits.

Timer 0 in mode 2 (Auto-Reload Timer)Mode 2 configures timer 0 as an 8-bit timer. Actually, timer 0 uses only one 8-bit register for counting and never counts from 0, but from an arbitrary value (0-255) stored in another (TH0) register.The following example shows the advantages of this mode. Suppose it is necessary to constantly count up 55 pulses generated by the clock.If mode 1 or mode 0 is used, It is necessary to write the number 200 to the timer registers and constantly check whether an overflow has occured, i.e. whether they reached the value 255. When it happens, it is necessary to rewrite the number 200 and repeat the whole procedure. The same procedure is automatically performed by the microcontroller if set in mode 2. In fact, only the TL0 register operates as a timer, while another (TH0) register stores the value from which the counting starts. When the TL0 register is loaded, instead of being cleared, the contents of TH0 will be reloaded to it. Referring to the previous example, in order to register each 55th pulse, the best solution is to write the number 200 to the TH0 register and configure the timer to operate in mode 2.

Timer 0 in Mode 3 (Split Timer)Mode 3 configures timer 0 so that registers TL0 and TH0 operate as separate 8-bit timers. In other words, the 16-bit timer consisting of two registers TH0 and TL0 is split into two independent 8-bit timers. This mode is provided for applications requiring an additional 8-bit timer or counter. The TL0 timer turns into timer 0, while the TH0 timer turns into timer 1. In addition, all the control bits of 16-bit Timer 1 (consisting of the TH1 and TL1 register), now control the 8-bit Timer 1. Even though the 16-bit Timer 1 can still be configured to operate in any of modes (mode 1, 2 or 3), it is no longer possible to disable it as there is no control bit to do it. Thus, its operation is restricted when timer 0 is in mode 3.

The only application of this mode is when two timers are used and the 16-bit Timer 1 the operation of which is out of control is used as a baud rate generator.Timer Control (TCON) RegisterTCON register is also one of the registers whose bits are directly in control of timer operation.Only 4 bits of this register are used for this purpose, while rest of them is used for interrupt control to be discussed later.

TF1bit is automatically set on the Timer 1 overflow. TR1bit enables the Timer 1. 1- Timer 1 is enabled. 0- Timer 1 is disabled. TF0bit is automatically set on the Timer 0 overflow. TR0bit enables the timer 0. 1- Timer 0 is enabled. 0- Timer 0 is disabled.How to use the Timer 0 ?In order to use timer 0, it is first necessary to select it and configure the mode of its operation. Bits of the TMOD register are in control of it:

Referring to figure above, the timer 0 operates in mode 1 and counts pulses generated by internal clock the frequency of which is equal to 1/12 the quartz frequency.Turn on the timer:

The TR0 bit is set and the timer starts operation. If the quartz crystal with frequency of 12MHz is embedded then its contents will be incremented every microsecond. After 65.536 microseconds, the both registers the timer consists of will be loaded. The microcontroller automatically clears them and the timer keeps on repeating procedure from the beginning until the TR0 bit value is logic zero (0).How to 'read' a timer?Depending on application, it is necessary either to read a number stored in the timer registers or to register the moment they have been cleared.- It is extremely simple to read a timer by using only one register configured in mode 2 or 3. It is sufficient to read its state at any moment. That's all!- It is somehow complicated to read a timer configured to operate in mode 2. Suppose the lower byte is read first (TL0), then the higher byte (TH0). The result is:TH0 = 15 TL0 = 255Everything seems to be ok, but the current state of the register at the moment of reading was:TH0 = 14 TL0 = 255In case of negligence, such an error in counting (255 pulses) may occur for not so obvious but quite logical reason. The lower byte is correctly read (255), but at the moment the program counter was about to read the higher byte TH0, an overflow occurred and the contents of both registers have been changed (TH0: 1415, TL0: 2550). This problem has a simple solution. The higher byte should be read first, then the lower byte and once again the higher byte. If the number stored in the higher byte is different then this sequence should be repeated. It's about a short loop consisting of only 3 instructions in the program.There is another solution as well. It is sufficient to simply turn the timer off while reading is going on (the TR0 bit of the TCON register should be cleared), and turn it on again after reading is finished.Timer 0 Overflow DetectionUsually, there is no need to constantly read timer registers. It is sufficient to register the moment they are cleared, i.e. when counting starts from 0. This condition is called an overflow. When it occurrs, the TF0 bit of the TCON register will be automatically set. The state of this bit can be constantly checked from within the program or by enabling an interrupt which will stop the main program execution when this bit is set. Suppose it is necessary to provide a program delay of 0.05 seconds (50 000 machine cycles), i.e. time when the program seems to be stopped:First a number to be written to the timer registers should be calculated:

Then it should be written to the timer registers TH0 and TL0:

When enabled, the timer will resume counting from this number. The state of the TF0 bit, i.e. whether it is set, is checked from within the program. It happens at the moment of overflow, i.e. after exactly 50.000 machine cycles or 0.05 seconds.How to measure pulse duration?

Suppose it is necessary to measure the duration of an operation, for example how long a device has been turned on? Look again at the figure illustrating the timer and pay attention to the function of the GATE0 bit of the TMOD register. If it is cleared then the state of the P3.2 pin doesn't affect timer operation. If GATE0 = 1 the timer will operate until the pin P3.2 is cleared. Accordingly, if this pin is supplied with 5V through some external switch at the moment the device is being turned on, the timer will measure duration of its operation, which actually was the objective.How to count up pulses?Similarly to the previous example, the answer to this question again lies in the TCON register. This time it's about the C/T0 bit. If the bit is cleared the timer counts pulses generated by the internal oscillator, i.e. measures the time passed. If the bit is set, the timer input is provided with pulses from the P3.4 pin (T0). Since these pulses are not always of the same width, the timer cannot be used for time measurement and is turned into a counter, therefore. The highest frequency that could be measured by such a counter is 1/24 frequency of used quartz-crystal.Timer 1Timer 1 is identical to timer 0, except for mode 3 which is a hold-count mode. It means that they have the same function, their operation is controlled by the same registers TMOD and TCON and both of them can operate in one out of 4 different modes.

2.7 UART (Universal Asynchronous Receiver and Transmitter)One of the microcontroller features making it so powerful is an integrated UART, better known as a serial port. It is a full-duplex port, thus being able to transmit and receive data simultaneously and at different baud rates. Without it, serial data send and receive would be an enormously complicated part of the program in which the pin state is constantly changed and checked at regular intervals. When using UART, all the programmer has to do is to simply select serial port mode and baud rate. When it's done, serial data transmit is nothing but writing to the SBUF register, while data receive represents reading the same register. The microcontroller takes care of not making any error during data transmission.

Serial port must be configured prior to being used. In other words, it is necessary to determine how many bits is contained in one serial word, baud rate and synchronization clock source. The whole process is in control of the bits of the SCON register (Serial Control).Serial Port Control (SCON) Register

SM0- Serial port mode bit 0 is used for serial port mode selection. SM1- Serial port mode bit 1. SM2- Serial port mode 2 bit, also known as multiprocessor communication enable bit. When set, it enables multiprocessor communication in mode 2 and 3, and eventually mode 1. It should be cleared in mode 0. REN- Reception Enable bit enables serial reception when set. When cleared, serial reception is disabled. TB8- Transmitter bit 8. Since all registers are 8-bit wide, this bit solves the problem of transmiting the 9th bit in modes 2 and 3. It is set to transmit a logic 1 in the 9th bit. RB8- Receiver bit 8 or the 9th bit received in modes 2 and 3. Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. TI- Transmit Interrupt flag is automatically set at the moment the last bit of one byte is sent. It's a signal to the processor that the line is available for a new byte transmite. It must be cleared from within the software. RI- Receive Interrupt flag is automatically set upon one byte receive. It signals that byte is received and should be read quickly prior to being replaced by a new data. This bit is also cleared from within the software.As seen, serial port mode is selected by combining the SM0 and SM2 bits:SM0SM1MODEDESCRIPTIONBAUD RATE

0008-bit Shift Register1/12 the quartz frequency

0118-bit UARTDetermined by the timer 1

1029-bit UART1/32 the quartz frequency (1/64 the quartz frequency)

1139-bit UARTDetermined by the timer 1

In mode 0, serial data are transmitted and received through the RXD pin, while the TXD pin output clocks. The bout rate is fixed at 1/12 the oscillator frequency. On transmit, the least significant bit (LSB bit) is sent/received first.TRANSMIT- Data transmit is initiated by writing data to the SBUF register. In fact, this process starts after any instruction being performed upon this register. When all 8 bits have been sent, the TI bit of the SCON register is automatically set.

RECEIVE- Data receive through the RXD pin starts upon the two following conditions are met: bit REN=1 and RI=0 (both of them are stored in the SCON register). When all 8 bits have been received, the RI bit of the SCON register is automatically set indicating that one byte receive is complete.

Since there are no START and STOP bits or any other bit except data sent from the SBUF register in the pulse sequence, this mode is mainly used when the distance between devices is short, noise is minimized and operating speed is of importance. A typical example is I/O port expansion by adding a cheap IC (shift registers 74HC595, 74HC597 and similar).Mode 1

In mode 1, 10 bits are transmitted through the TXD pin or received through the RXD pin in the following manner: a START bit (always 0), 8 data bits (LSB first) and a STOP bit (always 1). The START bit is only used to initiate data receive, while the STOP bit is automatically written to the RB8 bit of the SCON register.TRANSMIT- Data transmit is initiated by writing data to the SBUF register. End of data transmission is indicated by setting the TI bit of the SCON register.

RECEIVE- The START bit (logic zero (0)) on the RXD pin initiates data receive. The following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored in the SCON register. The RI bit is automatically set upon data reception is complete.

The Baud rate in this mode is determined by the timer 1 overflow.Mode 2

In mode 2, 11 bits are transmitted through the TXD pin or received through the RXD pin: a START bit (always 0), 8 data bits (LSB first), a programmable 9th data bit and a STOP bit (always 1). On transmit, the 9th data bit is actually the TB8 bit of the SCON register. This bit usually has a function of parity bit. On receive, the 9th data bit goes into the RB8 bit of the same register (SCON).The baud rate is either 1/32 or 1/64 the oscillator frequency.TRANSMIT- Data transmit is initiated by writing data to the SBUF register. End of data transmission is indicated by setting the TI bit of the SCON register.

RECEIVE- The START bit (logic zero (0)) on the RXD pin initiates data receive. The following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored in the SCON register. The RI bit is automatically set upon data reception is complete.

Mode 3Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is variable.

The parity bit is the P bit of the PSW register. The simplest way to check correctness of the received byte is to add a parity bit to it. Simply, before initiating data transmit, the byte to transmit is stored in the accumulator and the P bit goes into the TB8 bit in order to be a part of the message. The procedure is opposite on receive, received byte is stored in the accumulator and the P bit is compared with the RB8 bit. If they are the same- everything is OK!Baud RateBaud Rate is a number of sent/received bits per second. In case the UART is used, baud rate depends on: selected mode, oscillator frequency and in some cases on the state of the SMOD bit of the SCON register. All the necessary formulas are specified in the table:BAUD RATEBITSMOD

Mode 0Fosc. / 12

Mode 11 Fosc.16 12 (256-TH1)BitSMOD

Mode 2Fosc. / 32Fosc. / 6410

Mode 31 Fosc.16 12 (256-TH1)

Timer 1 as a clock generatorTimer 1 is usually used as a clock generator as it enables various baud rates to be easily set. The whole procedure is simple and is as follows: First, enable Timer 1 overflow interrupt. Configure Timer T1 to operate in auto-reload mode. Depending on needs, select one of the standard values from the table and write it to the TH1 register. That's all.BAUD RATEFOSC. (MHZ)BIT SMOD

11.05921214.74561620

15040 h30 h00 h0

300A0 h98 h80 h75 h52 h0

600D0 hCC hC0 hBB hA9 h0

1200E8 hE6 hE0 hDE hD5 h0

2400F4 hF3 hF0 hEF hEA h0

4800F3 hEF hEF h1

4800FA hF8 hF5 h0

9600FD hFC h0

9600F5 h1

19200FD hFC h1

38400FE h1

76800FF h1

Multiprocessor CommunicationAs you may know, additional 9th data bit is a part of message in mode 2 and 3. It can be used for checking data via parity bit. Another useful application of this bit is in communication between two or more microcontrollers, i.e. multiprocessor communication. This feature is enabled by setting the SM2 bit of the SCON register. As a result, after receiving the STOP bit, indicating end of the message, the serial port interrupt will be generated only if the bit RB8 = 1 (the 9th bit).This is how it looks like in practice:Suppose there are several microcontrollers sharing the same interface. Each of them has its own address. An address byte differs from a data byte because it has the 9th bit set (1), while this bit is cleared (0) in a data byte. When the microcontroller A (master) wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte will generate an interrupt in all slaves so that they can examine the received byte and check whether it matches their address.

Of course, only one of them will match the address and immediately clear the SM2 bit of the SCON register and prepare to receive the data byte to come. Other slaves not being addressed leave their SM2 bit set ignoring the coming data bytes.

2.8 8051 Microcontroller InterruptsThere are five interrupt sources for the 8051, which means that they can recognize 5 different events that can interrupt regular program execution. Each interrupt can be enabled or disabled by setting bits of the IE register. Likewise, the whole interrupt system can be disabled by clearing the EA bit of the same register. Refer to figure below.Now, it is necessary to explain a few details referring to external interrupts- INT0 and INT1. If the IT0 and IT1 bits of the TCON register are set, an interrupt will be generated on high to low transition, i.e. on the falling pulse edge (only in that moment). If these bits are cleared, an interrupt will be continuously executed as far as the pins are held low.IE Register (Interrupt Enable) EA- global interrupt enable/disable: 0 - disables all interrupt requests. 1 - enables all individual interrupt requests. ES- enables or disables serial interrupt: 0 - UART system cannot generate an interrupt. 1 - UART system enables an interrupt. ET1- bit enables or disables Timer 1 interrupt: 0 - Timer 1 cannot generate an interrupt. 1 - Timer 1 enables an interrupt. EX1- bit enables or disables external 1 interrupt: 0 - change of the pin INT0 logic state cannot generate an interrupt. 1 - enables an external interrupt on the pin INT0 state change. ET0- bit enables or disables timer 0 interrupt: 0 - Timer 0 cannot generate an interrupt. 1 - enables timer 0 interrupt. EX0- bit enables or disables external 0 interrupt: 0 - change of the INT1 pin logic state cannot generate an interrupt. 1 - enables an external interrupt on the pin INT1 state change.Interrupt PrioritiesIt is not possible to forseen when an interrupt request will arrive. If several interrupts are enabled, it may happen that while one of them is in progress, another one is requested. In order that the microcontroller knows whether to continue operation or meet a new interrupt request, there is a priority list instructing it what to do.The priority list offers 3 levels of interrupt priority:1. Reset! The apsolute master. When a reset request arrives, everything is stopped and the microcontroller restarts.2. Interrupt priority 1 can be disabled by Reset only.3. Interrupt priority 0 can be disabled by both Reset and interrupt priority 1.The IP Register (Interrupt Priority Register) specifies which one of existing interrupt sources have higher and which one has lower priority. Interrupt priority is usually specified at the beginning of the program. According to that, there are several possibilities: If an interrupt of higher priority arrives while an interrupt is in progress, it will be immediately stopped and the higher priority interrupt will be executed first. If two interrupt requests, at different priority levels, arrive at the same time then the higher priority interrupt is serviced first. If the both interrupt requests, at the same priority level, occur one after another, the one which came later has to wait until routine being in progress ends. If two interrupt requests of equal priority arrive at the same time then the interrupt to be serviced is selected according to the following priority list:1. External interrupt INT02. Timer 0 interrupt3. External Interrupt INT14. Timer 1 interrupt5. Serial Communication InterruptIP Register (Interrupt Priority)The IP register bits specify the priority level of each interrupt (high or low priority).

PS- Serial Port Interrupt priority bit Priority 0 Priority 1 PT1- Timer 1 interrupt priority Priority 0 Priority 1 PX1- External Interrupt INT1 priority Priority 0 Priority 1 PT0- Timer 0 Interrupt Priority Priority 0 Priority 1 PX0- External Interrupt INT0 Priority Priority 0 Priority 1Handling InterruptWhen an interrupt request arrives the following occurs:1. Instruction in progress is ended.2. The address of the next instruction to execute is pushed on the stack.3. Depending on which interrupt is requested, one of 5 vectors (addresses) is written to the program counter in accordance to the table below:4. INTERRUPT SOURCEVECTOR (ADDRESS)

IE03 h

TF0B h

TF11B h

RI, TI23 h

All addresses are in hexadecimal format

5. These addresses store appropriate subroutines processing interrupts. Instead of them, there are usually jump instructions specifying locations on which these subroutines reside.6. When an interrupt routine is executed, the address of the next instruction to execute is poped from the stack to the program counter and interrupted program resumes operation from where it left off.

From the moment an interrupt is enabled, the microcontroller is on alert all the time. When an interrupt request arrives, the program execution is stopped, electronics recognizes the source and the program jumps to the appropriate address (see the table above). This address usually stores a jump instruction specifying the start of appropriate subroutine. Upon its execution, the program resumes operation from where it left off.ResetReset occurs when the RS pin is supplied with a positive pulse in duration of at least 2 machine cycles (24 clock cycles of crystal oscillator). After that, the microcontroller generates an internal reset signal which clears all SFRs, except SBUF registers, Stack Pointer and ports (the state of the first two ports is not defined, while FF value is written to the ports configuring all their pins as inputs). Depending on surrounding and purpose of device, the RS pin is usually connected to a power-on reset push button or circuit or to both of them. Figure below illustrates one of the simplest circuit providing safe power-on reset.

Basically, everything is very simple: after turning the power on, electrical capacitor is being charged for several milliseconds throgh a resistor connected to the ground. The pin is driven high during this process. When the capacitor is charged, power supply voltage is already stable and the pin remains connected to the ground, thus providing normal operation of the microcontroller. Pressing the reset button causes the capacitor to be temporarily discharged and the microcontroller is reset. When released, the whole process is repeatedThrough the program- step by step...Microcontrollers normally operate at very high speed. The use of 12 Mhz quartz crystal enables 1.000.000 instructions to be executed per second. Basically, there is no need for higher operating rate. In case it is needed, it is easy to built in a crystal for high frequency. The problem arises when it is necessary to slow down the operation of the microcontroller. For example during testing in real environment when it is necessary to execute several instructions step by step in order to check I/O pins' logic state.Interrupt system of the 8051 microcontroller practically stops operation of the microcontroller and enables instructions to be executed one after another by pressing the button. Two interrupt features enable that: Interrupt request is ignored if an interrupt of the same priority level is in progress. Upon interrupt routine execution, a new interrupt is not executed until at least one instruction from the main program is executed.In order to use this in practice, the following steps should be done:1. External interrupt sensitive to the signal level should be enabled (for example INT0).2. Three following instructions should be inserted into the program (at the 03hex. address):

What is going on? As soon as the P3.2 pin is cleared (for example, by pressing the button), the microcontroller will stop program execution and jump to the 03hex address will be executed. This address stores a short interrupt routine consisting of 3 instructions.The first instruction is executed until the push button is realised (logic one (1) on the P3.2 pin). The second instruction is executed until the push button is pressed again. Immediately after that, the RETI instruction is executed and the processor resumes operation of the main program. Upon execution of any program instruction, the interrupt INT0 is generated and the whole procedure is repeated (push button is still pressed). In other words, one button press - one instruction.2.9 8051 Microcontroller Power Consumption ControlGenerally speaking, the microcontroller is inactive for the most part and just waits for some external signal in order to takes its role in a show. This can cause some problems in case batteries are used for power supply. In extreme cases, the only solution is to set the whole electronics in sleep mode in order to minimize consumption. A typical example is a TV remote controller: it can be out of use for months but when used again it takes less than a second to send a command to TV receiver. The AT89S53 uses approximately 25mA for regular operation, which doesn't make it a pover-saving microcontroller. Anyway, it doesnt have to be always like that, it can easily switch the operating mode in order to reduce its total consumption to approximately 40uA. Actually, there are two power-saving modes of operation:IdleandPower Down.

Idle modeUpon the IDL bit of the PCON register is set, the microcontroller turns off the greatest power consumer- CPU unit while peripheral units such as serial port, timers and interrupt system continue operating normally consuming 6.5mA. In Idle mode, the state of all registers and I/O ports remains unchanged.In order to exit the Idle mode and make the microcontroller operate normally, it is necessary to enable and execute any interrupt or reset. It will cause the IDL bit to be automatically cleared and the program resumes operation from instruction having set the IDL bit. It is recommended that first three instructions to execute now are NOP instructions. They don't perform any operation but provide some time for the microcontroller to stabilize and prevents undesired changes on the I/O ports.Power Down modeBy setting the PD bit of the PCON register from within the program, the microcontroller is set to Power down mode, thus turning off its internal oscillator and reduces power consumption enormously. The microcontroller can operate using only 2V power supply in power- down mode, while a total power consumption is less than 40uA. The only way to get the microcontroller back to normal mode is by reset.While the microcontroller is in Power Down mode, the state of all SFR registers and I/O ports remains unchanged. By setting it back into the normal mode, the contents of the SFR register is lost, but the content of internal RAM is saved. Reset signal must be long enough, approximately 10mS, to enable stable operation of the quartz oscillator.PCON register

The purpose of the Register PCON bits is: SMOD Baud rate is twice as much higher by setting this bit. GF1 General-purpose bit (available for use). GF1 General-purpose bit (available for use). GF0 General-purpose bit (available for use). PD By setting this bit the microcontroller enters thePower Downmode. IDL By setting this bit the microcontroller enters theIdlemode.Chapter 3 : The 8051 Instruction Set 3.1 Types of instructions 3.2 Description of the 8051 instructionsIntroductionThe process of writing program for the microcontroller mainly consists of giving instructions (commands) in the specific order in which they should be executed in order to carry out a specific task. As electronics cannot understand what for example an instruction if the push button is pressed- turn the light on means, then a certain number of simpler and precisely defined orders that decoder can recognise must be used. All commands are known as INSTRUCTION SET. All microcontrollers compatibile with the 8051 have in total of 255 instructions, i.e. 255 different words available for program writing.At first sight, it is imposing number of odd signs that must be known by heart. However, It is not so complicated as it looks like. Many instructions are considered to be different, even though they perform the same operation, so there are only 111 truly different commands. For example: ADD A,R0, ADD A,R1, ... ADD A,R7 are instructions that perform the same operation (additon of the accumulator and register). Since there are 8 such registers, each instruction is counted separately. Taking into account that all instructions perform only 53 operations (addition, subtraction, copy etc.) and most of them are rarely used in practice, there are actually 20-30 abbreviations to be learned, which is acceptable.3.1 Types of instructionsDepending on operation they perform, all instructions are divided in several groups: Arithmetic Instructions Branch Instructions Data Transfer Instructions Logic Instructions Bit-oriented InstructionsThe first part of each instruction, called MNEMONIC refers to the operation an instruction performs (copy, addition, logic operation etc.). Mnemonics are abbreviations of the name of operation being executed. For example: INC R1- Means: Increment register R1 (increment register R1); LJMP LAB5- Means: Long Jump LAB5 (long jump to the address marked as LAB5); JNZ LOOP- Means: Jump if Not Zero LOOP (if the number in the accumulator is not 0, jump to the address marked as LOOP);The other part of instruction, called OPERAND is separated from mnemonic by at least one whitespace and defines data being processed by instructions. Some of the instructions have no operand, while some of them have one, two or three. If there is more than one operand in an instruction, they are separated by a comma. For example: RET- return from a subroutine; JZ TEMP- if the number in the accumulator is not 0, jump to the address marked as TEMP; ADD A,R3- add R3 and accumulator; CJNE A,#20,LOOP- compare accumulator with 20. If they are not equal, jump to the address marked as LOOP;Arithmetic instructionsArithmetic instructions perform several basic operations such as addition, subtraction, division, multiplication etc. After execution, the result is stored in the first operand. For example:ADD A,R1- The result of addition (A+R1) will be stored in the accumulator.ARITHMETIC INSTRUCTIONS

MnemonicDescriptionByteCycle

ADD A,RnAdds the register to the accumulator11

ADD A,directAdds the direct byte to the accumulator22

ADD A,@RiAdds the indirect RAM to the accumulator12

ADD A,#dataAdds the immediate data to the accumulator22

ADDC A,RnAdds the register to the accumulator with a carry flag11

ADDC A,directAdds the direct byte to the accumulator with a carry flag22

ADDC A,@RiAdds the indirect RAM to the accumulator with a carry flag12

ADDC A,#dataAdds the immediate data to the accumulator with a carry flag22

SUBB A,RnSubtracts the register from the accumulator with a borrow11

SUBB A,directSubtracts the direct byte from the accumulator with a borrow22

SUBB A,@RiSubtracts the indirect RAM from the accumulator with a borrow12

SUBB A,#dataSubtracts the immediate data from the accumulator with a borrow22

INC AIncrements the accumulator by 111

INC RnIncrements the register by 112

INC RxIncrements the direct byte by 123

INC @RiIncrements the indirect RAM by 113

DEC ADecrements the accumulator by 111

DEC RnDecrements the register by 111

DEC RxDecrements the direct byte by 112

DEC @RiDecrements the indirect RAM by 123

INC DPTRIncrements the Data Pointer by 113

MUL ABMultiplies A and B15

DIV ABDivides A by B15

DA ADecimal adjustment of the accumulator according to BCD code11

Branch InstructionsThere are two kinds of branch instructions:Unconditional jump instructions: upon their execution a jump to a new location from where the program continues execution is executed.Conditional jump instructions: a jump to a new program location is executed only if a specified condition is met. Otherwise, the program normally proceeds with the next instruction.BRANCH INSTRUCTIONS

MnemonicDescriptionByteCycle

ACALL addr11Absolute subroutine call26

LCALL addr16Long subroutine call36

RETReturns from subroutine14

RETIReturns from interrupt subroutine14

AJMP addr11Absolute jump23

LJMP addr16Long jump34

SJMP relShort jump (from 128 to +127 locations relative to the following instruction)23

JC relJump if carry flag is set. Short jump.23

JNC relJump if carry flag is not set. Short jump.23

JB bit,relJump if direct bit is set. Short jump.34

JBC bit,relJump if direct bit is set and clears bit. Short jump.34

JMP @A+DPTRJump indirect relative to the DPTR12

JZ relJump if the accumulator is zero. Short jump.23

JNZ relJump if the accumulator is not zero. Short jump.23

CJNE A,direct,relCompares direct byte to the accumulator and jumps if not equal. Short jump.34

CJNE A,#data,relCompares immediate data to the accumulator and jumps if not equal. Short jump.34

CJNE Rn,#data,relCompares immediate data to the register and jumps if not equal. Short jump.34

CJNE @Ri,#data,relCompares immediate data to indirect register and jumps if not equal. Short jump.34

DJNZ Rn,relDecrements register and jumps if not 0. Short jump.23

DJNZ Rx,relDecrements direct byte and jump if not 0. Short jump.34

NOPNo operation11

Data Transfer InstructionsData transfer instructions move the content of one register to another. The register the content of which is moved remains unchanged. If they have the suffix X (MOVX), the data is exchanged with external memory.DATA TRANSFER INSTRUCTIONS

MnemonicDescriptionByteCycle

MOV A,RnMoves the register to the accumulator11

MOV A,directMoves the direct byte to the accumulator22

MOV A,@RiMoves the indirect RAM to the accumulator12

MOV A,#dataMoves the immediate data to the accumulator22

MOV Rn,AMoves the accumulator to the register12

MOV Rn,directMoves the direct byte to the register24

MOV Rn,#dataMoves the immediate data to the register22

MOV direct,AMoves the accumulator to the direct byte23

MOV direct,RnMoves the register to the direct byte23

MOV direct,directMoves the direct byte to the direct byte34

MOV direct,@RiMoves the indirect RAM to the direct byte24

MOV direct,#dataMoves the immediate data to the direct byte33

MOV @Ri,AMoves the accumulator to the indirect RAM13

MOV @Ri,directMoves the direct byte to the indirect RAM25

MOV @Ri,#dataMoves the immediate data to the indirect RAM23

MOV DPTR,#dataMoves a 16-bit data to the data pointer33

MOVC A,@A+DPTRMoves the code byte relative to the DPTR to the accumulator (address=A+DPTR)13

MOVC A,@A+PCMoves the code byte relative to the PC to the accumulator (address=A+PC)13

MOVX A,@RiMoves the external RAM (8-bit address) to the accumulator13-10

MOVX A,@DPTRMoves the external RAM (16-bit address) to the accumulator13-10

MOVX @Ri,AMoves the accumulator to the external RAM (8-bit address)14-11

MOVX @DPTR,AMoves the accumulator to the external RAM (16-bit address)14-11

PUSH directPushes the direct byte onto the stack24

POP directPops the direct byte from the stack/td>23

XCH A,RnExchanges the register with the accumulator12

XCH A,directExchanges the direct byte with the accumulator23

XCH A,@RiExchanges the indirect RAM with the accumulator13

XCHD A,@RiExchanges the low-order nibble indirect RAM with the accumulator13

Logic InstructionsLogic instructions perform logic operations upon corresponding bits of two registers. After execution, the result is stored in the first operand.LOGIC INSTRUCTIONS

MnemonicDescriptionByteCycle

ANL A,RnAND register to accumulator11

ANL A,directAND direct byte to accumulator22

ANL A,@RiAND indirect RAM to accumulator12

ANL A,#dataAND immediate data to accumulator22

ANL direct,AAND accumulator to direct byte23

ANL direct,#dataAND immediae data to direct register34

ORL A,RnOR register to accumulator11

ORL A,directOR direct byte to accumulator22

ORL A,@RiOR indirect RAM to accumulator12

ORL direct,AOR accumulator to direct byte23

ORL direct,#dataOR immediate data to direct byte34

XRL A,RnExclusive OR register to accumulator11

XRL A,directExclusive OR direct byte to accumulator22

XRL A,@RiExclusive OR indirect RAM to accumulator12

XRL A,#dataExclusive OR immediate data to accumulator22

XRL direct,AExclusive OR accumulator to direct byte23

XORL direct,#dataExclusive OR immediate data to direct byte34

CLR AClears the accumulator11

CPL AComplements the accumulator (1=0, 0=1)11

SWAP ASwaps nibbles within the accumulator11

RL ARotates bits in the accumulator left11

RLC ARotates bits in the accumulator left through carry11

RR ARotates bits in the accumulator right11

RRC ARotates bits in the accumulator right through carry11

Bit-oriented InstructionsSimilar to logic instructions, bit-oriented instructions perform logic operations. The difference is that these are performed upon single bits.BIT-ORIENTED INSTRUCTIONS

MnemonicDescriptionByteCycle

CLR CClears the carry flag11

CLR bitClears the direct bit23

SETB CSets the carry flag11

SETB bitSets the direct bit23

CPL CComplements the carry flag11

CPL bitComplements the direct bit23

ANL C,bitAND direct bit to the carry flag22

ANL C,/bitAND complements of direct bit to the carry flag22

ORL C,bitOR direct bit to the carry flag22

ORL C,/bitOR complements of direct bit to the carry flag22

MOV C,bitMoves the direct bit to the carry flag22

MOV bit,CMoves the carry flag to the direct bit23

3.2 Description of all 8051 instructionsHere is a list of the operands and their meanings: A- accumulator;Rn- is one of working registers (R0-R7) in the currently active RAM memory bank; Direct- is any 8-bit address register of RAM. It can be any general-purpose register or a SFR (I/O port, control register etc.); @Ri- is indirect internal or external RAM location addressed by register R0 or R1; #data- is an 8-bit constant included in instruction (0-255); #data16- is a 16-bit constant included as bytes 2 and 3 in instruction (0-65535); addr16- is a 16-bit address. May be anywhere within 64KB of program memory; addr11- is an 11-bit address. May be within the same 2KB page of program memory as the first byte of the following instruction; rel- is the address of a close memory location (from -128 to +127 relative to the first byte of the following instruction). On the basis of it, assembler computes the value to add or subtract from the number currently stored in the program counter; bit- is any bit-addressable I/O pin, control or status bit; and C- is carry flag of the status register (register PSW).ACALL addr11- Absolute subroutine calladdr11:Subroutine addressDescription:Instruction unconditionally calls a subroutine located at the specified code address. Therefore, the current address and the address of called subroutine must be within the same 2K byte block of the program memory, starting from the first byte of the instruction following ACALL.Syntax: ACALL [subroutine name];Bytes: 2 (instruction code, subroutine address);STATUS register flags: No flags are affected.EXAMPLE:

Before execution: PC=0123hAfter execution: PC=0345hADD A,Rn- Adds the register Rn to the accumulatorA: accumulatorRn: any R register (R0-R7)Description: Instruction adds the register Rn (R0-R7) to the accumulator. After addition, the result is stored in the accumulator.Syntax: ADD A,Rn;Byte: 1 (instruction code);STATUS register flags: C, OV and AC;EXAMPLE:

Before execution: A=2Eh (46 dec.) R4=12h (18 dec.)After execution: A=40h (64 dec.) R4=12hADD A,@Ri- Adds the indirect RAM to the accumulatorA: accumulatorRi: Register R0 or R1Description: