Top Banner
802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template (Rev. 8.3) Document Number: s802.16e-03/19r2 Date Submitted: 2003-03-11 Source: Russell McKown Voice: 214-893-8909 MacPhy Modems, Inc. Fax: 972-671-1455 1104 Pittsburg Landing E-mail: [email protected] Richardson, TX 75080 Venue: March 2003 802 Plenary, Dallas Texas, 802.16e Mobile Extension Proposals Base Document: “Call for Proposals on IEEE Project 802.16e: Mobility Enhancements to IEEE Standard 802.16/802.16a”, IEEE 802.16e-03/02, 2003-01-16, and “Mobile System and Proposal Evaluation Requirements”, IEEE 802.16e-03/01, 2003-01-16. Purpose: To establish the utility and limitations of the existing 802.16-SCa physical layer specification toward meeting the requirements of the IEEE Project 802.16e. Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16. IEEE 802.16 Patent Policy: The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:[email protected]> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
39

802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

Sep 04, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations

IEEE 802.16 Presentation Submission Template (Rev. 8.3)Document Number:

s802.16e-03/19r2Date Submitted:

2003-03-11Source:

Russell McKown Voice: 214-893-8909MacPhy Modems, Inc. Fax: 972-671-14551104 Pittsburg Landing E-mail: [email protected], TX 75080

Venue:March 2003 802 Plenary, Dallas Texas, 802.16e Mobile Extension Proposals

Base Document:“Call for Proposals on IEEE Project 802.16e: Mobility Enhancements to IEEE Standard 802.16/802.16a”, IEEE 802.16e-03/02, 2003-01-16, and “Mobile System and Proposal Evaluation Requirements”, IEEE 802.16e-03/01, 2003-01-16.

Purpose:To establish the utility and limitations of the existing 802.16-SCa physical layer specification toward meeting the requirementsof the IEEE Project 802.16e.

Notice:This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:[email protected]> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

Page 2: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 2

Link Performance of WirelessMAN-SCa Mobile Subscriber Stations

Single Burst Equalization Overview

WirelessMAN-SCa Mobility Design Concepts

Link Simulation Results

Uplink/Downlink Cell Radii

Conclusions

Uplink/Downlink Budgets for Cell Radii

Page 3: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 3

Single Burst Equalization (SBE)

SBE Baseband ArchitectureTiming recovery (non data aided, feed forward, after delay)

Channel impulse response (CIR) estimation (Unique Word Preamble)

Coefficient computation for equalization filters (Al-Dhahir & Cioffi, 1995)

FFE & FBE filter coefficient selection (from 64 or 256 to less than ~12, each) 1

Sparse filter DFE execution (after delay for the coefficients) 1

SBE PerformanceNear optimal RX with no a priori of channelRobust and efficient Solves problem of multipath spectral nulls

SBE Cycle Time RequirementDerived for fixed WirelessMAN-SCa base stationsReal time for sequential shortest bursts (BW-REQ), multipoint-to-point~47 microseconds for 10 MHz BW / 8 MSps

1 FFE = feed forward equalization, FBE = feed back equalization, DFE = decision feedback equalizer.

Page 4: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 4

SBE Baseband Architecture (Pre-processor)

Analog RX Baseband

I

QADC(2)

O&M FFTR

µ1/T I,Q CAZAC

CIR = RxyCIR MMSE-DFE

Coefficient Algorithm

DelayMacPhyEfficient

DFE

A Few Good Coefficients

IEEE 802.16 StandardPhysical Layer Signal Processing

(Viterbi Demod, Reed Solomon FEC, etc)RX Data Packets to IEEE 802.16-SCa MAC

Analog RX Baseband

I

QADC(2)

O&M FFTR1

4/T Clock

4/T I,Q

µ

CAZACCIR = Rxy

MMSE-DFECoefficient Algorithm2

DelaySparse

DFE

1/T I,Q

A Few Good Coefficients

IEEE 802.16-SCa StandardPhysical Layer Signal Processing

(Viterbi Demod, Reed Solomon FEC, etc)

Z = Post-SBE Signal (Soft Decisions)

RX Data Packets to

*

**

*

****

* ** *

*

* *

**

**

*

****

* ** *

*

* *

*

*

***

***

**

*

* *** **

*

***

**

****

*

*

*

**

** ** *

*

*

* **

*

**

*

*

***

***

**

*

* *** **

*

***

**

****

*

*

*

**

** ** *

*

*

* **

*

**

*

Feed Forward Timing Recovery

Y = Pre-SBE Signal

Filter

Single Burst Equalization (SBE)NCO & RRCF

Increased Effective Signal StrengthDelay

Interpolate

Pre-Equalization Constellation

Post-Equalization Constellation

1 M.Oerder and H. Meyr, “Digital Filter and Square Timing Recovery”, IEEE Trans. Commun. COM-36, 605-611, May 19882 Naofal Al-Dhahir & John M. Cioffi, “Fast Computation of Channel-Estimate Based Equalizers in Packet Data Transmissions” in IEEE Transactions on Signal Processing. pp. 2462-2473, 11, 43 (Nov. 1995).

Page 5: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 5

1/T Soft Decisions to 802.16-SCa PHY

1/T I,Q RX Data

Y-FBE

FFE = Feed Forward Equalization (filter)

4, 16, 64 microsecond delay spread

FBE = Feed Forward Equalization (filter)At 5MHz, CAZAC/CIR/DFE Configures for

Sparse FFE & FBE < ~12 Coefficients

Delay

CIR to DFECoefficient Algorithm

1/T I,Q Z

Y

w_1T

Sparse FBE

Tap Selection Algorithm w_1T (64 Coefs)

CIR = RxyCIRCAZAC

Rxy CIR

Delay Sparse FFE

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0-2 0 0

0

2 0 0

4 0 0P re -E q u a liz a tio n (to p )

Y

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0-5 0 0 0

0

5 0 0 0

Y-F

FE

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0-2 0 0 0

0

2 0 0 0

Y-F

BE

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0-5 0 0 0

0

5 0 0 0

Z

P o s t-E q u a liz a tio n (b o tto m )

Y-FF

EY -

F BE

Y

Pre-Equalization Signal

Post-Equalization Signal

Z

SBE is robust and efficient

b_1T (63 Coefs)

b_1T (0 to 12 Coefs)(1 to 12 Coefs)

Y-FFE

Original TX signal is in red.

Nearly optimal RX with no channel a priori.1

1 Acceptable timing, frequency & amplitude a priori (CAZAC recovery).

Page 6: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 6

SBE solves the problem of multipath spectral nulls

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 3 5

- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

1 / T S i g n a l S p e c t r u m

Pow

er (d

B)

P r e - E q u a li z a t i o n S p e c t r u m ( t o p )

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 3 5

- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

Pow

er(d

B)

P o s t - E q u a li z a t i o n S p e c t r u m ( b o t t o m )

Increased Signal Strength

Post-Equalization (Z) Spectrum 1

Pre-Equalization (Y) Spectrum

Multipath Spectral Nulls (reduces SNR = capacity for OFDM)

Frequency Index {bin width = 1/(256*T) Hz}ETSI Vehicular

Channel A

Pow

er (d

B)

Pow

er (d

B)

Soft Decisions to 802.16-SCa PHY

(or 802.16-OFDM PHYs?)

(1/T = symbol rate)

CIR = RxyCIR

Delay

CAZAC Rxy CIR

CIR to DFECoefficient Algorithm

Delay Sparse FFE1/T I,Q Z

Y

w_1T

Sparse FBE

Tap Selection Algorithm w_1T (64 Coefs)

Y-FFE

Y-FBE

b_1T (63 Coefs)1/T I,Q RX Data

(from timing recovery)b_1T (0 to 12 Coefs)(1 to 12 Coefs)

1 Spectrum = power spectral density obtained using 512 FFT for dual 256 CAZAC preamble, keeping only the odd index bins.

Page 7: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 7

SBE Cycle time for WirelessMAN-SCa FBWA BS

Stay real time while receiving string of shortest SS bursts.

Bandwidth Request Message Bursts [with dual Unique Word Preamble to estimate CIR] :

4-QAM PayloadCAZAC CAZAC

128 184

376 symbols

RxDS CA

64

4-QAM PayloadCAZAC ZAC

128 184

RxDS

64

RxDS CAZAC CAZAC

94 microseconds for 5 MHz BW, 4 MSPS47 microseconds for 10 MHz BW, 8 MSPS

376 microseconds for 1.25 MHz BW, 1 MSPS

23.5 microseconds for 20 MHz BW, 16 MSPS

Unique Word = 64 symbol CAZAC

4-QAM PayloadC C

32 16

D C

32

C

SBE Cycle Time Requirement Drivers

184 Symbol Payload = 8 symbols (Viterbi)+ (1 symbol per bit)*(6 byte PDU + 16 byte RS)*(8 bits per byte)

376 symbols

Unique Word = 16 symbol CAZAC184

232 symbols

D

58 microseconds for 5 MHz BW, 4 MSPS29 microseconds for 10 MHz BW, 8 MSPS

232 microseconds for 1.25 MHz BW, 1 MSPS

14.5 microseconds for 20 MHz BW, 16 MSPS

4-QAM Payload

184 16

D C C

232 symbols

Not Requirement Drivers1

1 The SBE coefficient compute time for 64 symbol CAZAC is ~16 times the SBE coefficient compute time for 16 symbol CAZAC.

Page 8: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 8

WirelessMAN-SCa Mobility Design Concepts

802.16e Base stations (BS) use real time SBE (same as 802.16a)

802.16e Mobile subscriber stations (MS) use real time SBE

Fixed subscriber stations (SS) use whatever (not critical)

MAC inserts additional Pilot Words on MS/BS linksUses existing Pilot Word insertion protocolNot required for 3 kph pedestrianNot required for short burstsAs required to mitigate vehicular DopplerSBE simulations recommended Pilot Word Insertion Intervals

BS ranges MS with unsolicited RNG-RESP (as necessary)BS measures ranging parameters on each RX burstIssues RNG-RESP to keep MS within tolerance

Page 9: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 9

802.16-SCa PHY Mobility Design Concept

Both BS & MS use SBEEstimate CIR from Preamble = Pilot Word = 2 Unique Words

(UW =64 CAZAC, nominally)

Compute (64) FFE & (63) FBE coefficients (“MMSE-DFE” algorithm)Tap selection algorithm sparse FFE/FBE filters in DFE

MAC inserts additional Pilot Words based on link statisticsNone for short bursts (BWREQ, RNG-REQ)At currently allowed intervals, as required, for longer burstsPHY uses Pilot Words to re-compute CIR and FFE/FBE coefficients PHY DFE uses nearest (or interpolated in symbol time) FFE/FBE coefficients

(let “Demod Interval” = maximum symbol distance from Pilot Word1)

Demod Interval <= 384Demod Interval = 192

QAM PayloadCAZAC CAZAC

128 384

Pilot Word Interval = 512 symbols

CAZAC CAZAC RxDS

Demod Interval = 192

128 <= 384

RxDS More QAM Payload

<= 512 symbols

Additional Pilot WordPreamble = Pilot Word

1 The performance of the SBE enabled MS & BS depends on the product of Doppler (Hz) times Demod Interval (seconds).

Page 10: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 10

802.16-SCa PHY Mobility Design Concept (cont.)

MAC inserts additional Pilot Words based on link statisticsAt currently (802.16-SCa) allowed intervals, as required, for longer bursts

PW insertion interval depends on link BW & SNR/Mod (below)Decrease/increase interval based on link errors at SNR/ModMinimum PW interval = 2048/16 = 1024/8 = 512/4 = 128 microseconds

> SBE cycle time = 47 microseconds

4096 (3%) 44096 (3%) 44096 (3%) 34096 (3%) 238

4096 (3%)2048 (6%)1024 (11%)1024 (11%)150

4096 (3%)4096 (3%)2048 (6%)2048 (6%)75

512 (20%)

not required

1.25 MHzBW

512 (20%)

not required

5 MHzBW

2048 (6%)1024 (11%)300

not requirednot required< 30

20 MHz BW

10 MHzBW

Velocity (kph)

Recommended Pilot Word Insertion Interval in symbols.1

Improves link, with acceptable overhead.

1 Table is for 9 < Es/No < 21, e.g, QPSK or 16-QAM, for Es/No > 21 dB or 64 QAM divide insertion interval by 2.2 Percent overhead = (32/(32+insertion interval))*100% for BW = 1.25 MHz with UW = 16 CAZAC.3 Percent overhead = (128/(128+insertion interval))*100% for BW = 5,10, 20 MHz with UW = 64 CAZAC.4 For higher bandwidths (10 & 20 MHz) the symbol rate is faster so the equivalent number of symbols is less sensitive to Doppler. The recommendation is to use the largest PW interval of 4096 if there is any indication of channel impairment with a mobile subscriber. Most bursts are shorter than 4096 symbols.

Page 11: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 11

Link Simulation Results

SNR(Y), Y = SBE input, shows channel effectsSNR of Z = SBE output (input to Viterbi demodulator)

SNR(Z|SOB), Start Of Burst SNR(Z|EOB), End Of Burst = “Demod Interval”

Controls (Perfect channel/AWGN/QPSK SER & familiar SUI channels)

CIRs for ETSI Test EnvironmentsVehicular, Channel A & BOutdoor-to-indoor & Pedestrian, Channel A & BIndoor Office, Channel A & B

SNR degradation estimatesStationary test CIR wrt perfect channel = SNR(Z|SOB)-Es/NoMobile test CIR wrt stationary test CIR = SNR(Z|EOB) - SNR(Z|SOB) Mobile test CIR wrt perfect channel = SNR(Z|EOB)-Es/No

Pilot Word Interval Performance AssessmentDoppler SNR degradation = SNR(Z|EOB) - SNR(Z|SOB)Degradation versus Velocity (constant PW interval)Degradation versus PW interval (constant velocity)

Page 12: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 12

Doppler SNR Degradation = SNR(Z|EOB) – SNR(Z|SOB)

Simulation Concept

QAM PayloadCAZAC CAZAC

128 400 symbols

RxDS RxDS

Preamble = Pilot Word

Demod Interval = 50 (or 100) microseconds

SNR(Z|SOB) SNR(Z|EOB)

Results are equivalent for constant Doppler*Demod Interval.

SNR(Z|SOB) > SNR(Z|EOB) due to channel-DFE mismatch (Doppler).

Test QAM Payload Test QAM Payload

SNR(Z|SOB) = SNR(Z|DFE(n-1))

SNR(Z|EOB) = SNR(Z|DFE(n-2))

Preamble(n) CIR(n) DFE(n)

CAZAC CAZAC CAZAC CAZAC

Preamble(n-1) CIR(n-1) DFE(n-1)

SNR(Z|SOB) = SNR(Z|DFE(n))

SNR(Z|EOB) = SNR(Z|DFE(n-1))

Accumulate SNR(Z|SOB), SNR(Z|EOB) results for performance evaluation.

Test CIR(n)Test CIR(n-1) Test CIR(n+1)

Test CIR(n) is from Doppler channel coefficient simulation sampled at n*50 (or 100) microseconds.

Simulation Procedure

Page 13: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 13

Channel/SBE simulation: perfect channel-AWGN-QPSK control

-2 0 2 4 6 8 10 12 14 16 1810

-5

10-4

10-3

10-2

10-1

100

SNR per bit (dB)

SER & Pe

0 5 10 15 20 25 300

5

10

15

20

25

30

Es/No (dB)

SN

R Y

& Z

(dB

)

SNR Y (black) & Z (red/blue) vs Es/No

RX

SN

R (

dB

)

TX SNR = Es/No (dB)

SNR per bit (dB)

SER & Pe

SBE configuration here solves for 64 FFE taps & 63 FBE taps. Tap selection algorithm output

here is 1 FFE tap & 0 FBE taps. SNR of Y = pre-SBE & Z = SBE-Output fall off from Es/No due to TX/RX filters & arithmetic.

Normally each simulation element is N = 7720 symbol demods at some test configuration.

Page 14: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 14

Channel/ SBE simulation: SUI-3 channel-AWGN-QPSK controlMS velocity = 1500 kph, 5 MHz BW, Demod Interval = 200 symbols = 50 µsec

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-25

-20

-15

-10

-5

0

5 SUI = 13 delays = 0 0.4 0.9 microsecs

abs(

h(de

lays

))

time (ms) Max Doppler = 3614 Hz

0 5 10 15 20 25 300

5

10

15

20

25

30

Es/No (dB)

SN

R Y

& Z

(dB

)

SNR Y (black) & Z (red/blue) vs Es/No

Black = Y pre-SBERed = Z post-SBE @ SOBBlue = Z post-SBE @ EOB

Time ( milliseconds)

Es/No (dB)SNR of Y is multipath ISI limited.

SN

R Y

& Z

(dB)Rel

ativ

e am

plit

ude

(dB)

SUI-3 = 0, .4 .9 microsecondsChannel Coefficients: blue = 1st ray, red = 2nd

ray, magenta = 3rd ray & Doppler = 3614 Hz.

Simulation protocol tested multiple independent random channel

realizations (multiple test sets per realization, with each test set

generating data at 4 values of Es/No for both SOB & EOB). Arithmetic =

12-bit 2’s complement.

Demod Interval = 50 µsec

SOB = start of burstEOB = end of burst (or Demod Interval)

SNR of Z at EOB (blue) falls off from SNR of Z at SOB (red) due to Doppler channel dynamics.

Page 15: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 15

Channel/ SBE simulation: SUI-3 channel-AWGN-QPSK controlMS velocity = 150 kph, 5 MHz BW, Demod Interval = 200 symbols = 50 µsec

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-18

-16

-14

-12

-10

-8

-6

-4

-2

0 SUI = 13 delays = 0 0.4 0.9 microsecs

abs(

h(de

lays

))

time (ms) Max Doppler = 362 Hz

0 5 10 15 20 25 300

5

10

15

20

25

30

Es/No (dB)

SN

R Y

& Z

(dB

)

SNR Y (black) & Z (red/blue) vs Es/No

Black = Y pre-SBERed = Z post-SBE @ SOBBlue = Z post-SBE @ EOB

Time ( milliseconds)

Es/No (dB)SNR of Y is multipath ISI limited.

SN

R Y

& Z

(dB)Rel

ativ

e am

plit

ude

(dB)

SUI-3 = 0, .4 .9 microsecondsChannel dynamics: blue = 1st ray, red = 2nd

ray, magenta = 3rd ray & Doppler = 362 Hz.

Simulation protocol tested multiple independent random channel

realizations (multiple test sets per realization, with each test set

generating data at 4 values of Es/No for both SOB & EOB). Arithmetic =

12-bit 2’s complement.

SOB = start of burstEOB = end of burst (or Demod Interval)

SNR of Z at EOB (blue) does not fall off much from SNR of Z at SOB (red) due to Doppler channel dynamics.

Page 16: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 16

Performance Degradation from Perfect Channel, AWGNSBE for ETSI ITU-R M.1225 Vehicular Test Environment, Channel A

MS velocity = 750 kph , 5 MHz BW, Demod Interval = 400 symbols = 100 µsec

-25 -20 -15 -10 -5 00

20

40

Es/No = 9 dBSBE = -0.9 +/- 1.0 dB (SOB) & -1.1 +/- 1.0 dB (EOB)

SBE SNR Recovery Histograms: SNR(Y or Z) - Es/No

Fc = 2.6 GHz, Doppler = 1807 Hz, N-FFE = 16, N-FBE = 164-QAM, MS velocity = 750 kmph

Burst Interval = 100 microseconds

-25 -20 -15 -10 -5 00

20

40

60Es/No = 15 dB

SBE = -0.6 +/- 0.9 dB (SOB) & -1.2 +/- 1.1 dB (EOB)

-25 -20 -15 -10 -5 00

20

40

Es/No = 21 dBSBE = -1.6 +/- 1.4 dB (SOB) & -3.0 +/- 1.7 dB (EOB)

-25 -20 -15 -10 -5 00

20

40

Es/No = 27 dBSBE = -4.2 +/- 1.9 dB (SOB) & -6.8 +/- 2.2 dB (EOB)

SNR (dB)

Doppler*Demod Interval = (1807 Hz)*(100 microseconds) = .1807

Red = SNR(Z|SOB) and Blue = SNR(Z|EOB) do not superimpose due to 3614 Hz Doppler.

Blue = SNR(Z|EOB)

Red = SNR(Z|SOB)

EOB performance SOB performance for lower Es/No (WGN exceeds Doppler ‘noise’).

Black = SNR(Y) is ISI limited.

Histograms of SNR(Y or Z) – Es/No show SBE SNR recovery toward Es/No.

Page 17: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 17

Performance Degradation from Perfect Channel, AWGNETSI ITU-R M.1225 Vehicular Test Environment, Channel A

MS velocity = 375 kph, 5 MHz BW, Demod Interval = 400 symbols = 100 µsec

-25 -20 -15 -10 -5 00

20

40

Es/No = 9 dBSBE = -0.7 +/- 1.0 dB (SOB) & -0.7 +/- 1.0 dB (EOB)

SBE SNR Recovery Histograms: SNR(Y or Z) - Es/No

Fc = 2.6 GHz, Doppler = 904 Hz, N-FFE = 16, N-FBE = 164-QAM, MS velocity = 375 kmph

Burst Interval = 100 microseconds

-25 -20 -15 -10 -5 00

20

40

60Es/No = 15 dB

SBE = -0.5 +/- 1.1 dB (SOB) & -0.6 +/- 1.1 dB (EOB)

-25 -20 -15 -10 -5 00

20

40

Es/No = 21 dBSBE = -1.4 +/- 1.7 dB (SOB) & -1.6 +/- 1.6 dB (EOB)

-25 -20 -15 -10 -5 00

20

40

Es/No = 27 dBSBE = -4.0 +/- 2.4 dB (SOB) & -4.5 +/- 2.3 dB (EOB)

SNR (dB)

Doppler*Demod Interval = (904 Hz)*(100 microseconds) = .0904

Red = SNR(Z|SOB) and Blue = SNR(Z|EOB) do not superimpose due to 1807 Hz Doppler.

Blue = SNR(Z|E0B)

Red = SNR(Z|SOB)

EOB performance SOB performance as Doppler*Demod Interval 0

Histograms of SNR(Y or Z) – Es/No show SBE SNR recovery toward Es/No.

Page 18: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 18

Performance Degradation from Perfect Channel, AWGNETSI ITU-R M.1225 Vehicular Test Environment, Channel A

MS velocity = 30 kph, 5 MHz BW, Demod Interval = 400 symbols = 100 µsec

-25 -20 -15 -10 -5 00

20

40 Es/No = 9 dBSBE = -0.6 +/- 1.1 dB (SOB) & -0.6 +/- 1.1 dB (EOB)

SBE SNR Recovery Histograms: SNR(Y or Z) - Es/No

Fc = 2.6 GHz, Doppler = 73 Hz, N-FFE = 16, N-FBE = 164-QAM, MS velocity = 30 kmph

Burst Interval = 100 microseconds

-25 -20 -15 -10 -5 00

20

40

60 Es/No = 15 dBSBE = -0.3 +/- 0.8 dB (SOB) & -0.3 +/- 0.8 dB (EOB)

-25 -20 -15 -10 -5 00

10

20

30Es/No = 21 dB

SBE = -1.0 +/- 1.2 dB (SOB) & -1.0 +/- 1.2 dB (EOB)

-25 -20 -15 -10 -5 00

10

20

30Es/No = 27 dB

SBE = -3.5 +/- 1.8 dB (SOB) & -3.5 +/- 1.9 dB (EOB)

SNR (dB)

Doppler* Demod Interval = (73 Hz)*(100 microseconds) = .0073

Red = SNR(Z|SOB) and Blue = SNR(Z|EOB) superimpose since there is only 73 Hz Doppler.

Residual ISI at high Es/No

Histograms of SNR(Y or Z) – Es/No show SBE SNR recovery toward Es/No.

Page 19: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 19

Mobility SNR Degradation vs Velocity ETSI ITU-R M.1225 Vehicular Test Environment Channel A

5 MHz BW, PW Interval = 1024 symbols, Demod Interval = 448 symbols

0 20 40 60 80 100 120 140 160 180 20002468 Es/No = 9 dB

Mobility SNR Degradation (relative to stationary MS)

50 microsecond SBE Cycle Time, 5 MHz BWETSI ITU-R M.1225 Vehicular Test Channel A

dB

0 20 40 60 80 100 120 140 160 180 20002468 Es/No = 15 dB

dB

0 20 40 60 80 100 120 140 160 180 20002468 Es/No = 21 dB

dB

0 20 40 60 80 100 120 140 160 180 20002468 Es/No = 27 dB

dB

Velocity (kmph)

448 symbol Demod Interval, 5 MHz BWETSI ITU-R M.1225 Vehicular Test, Channel A

Es/No = 9 dB

Es/No = 15 dB

Es/No = 21 dB

Es/No = 27 dB

Mean

Mean + 1 Std. Dev.Positive Slope = Mobility SNR Degradation

SNR(Z|SOB) – SNR(Z|EOB)

0 100 200 300 400 500 600 700 800 900 1000

SNR Std. Dev. of SBE Output (channel realizations) ~ 1 dB (w/o Mobility)

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

Page 20: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 20

Mobility SNR Degradation vs Demod Interval ETSI ITU-R M.1225 Vehicular Test Environment Channel A

5 MHz BW, Velocity = 375 kph

0 100 200 300 400 50002468 Es/No = 9 dB

Mobility SNR Degradation (relative to stationary MS)

75 kmph, 5 MHz BWETSI ITU-R M.1225 Vehicular Test Channel A

dB

0 100 200 300 400 50002468 Es/No = 15 dB

dB

0 100 200 300 400 50002468 Es/No = 21 dB

dB

0 100 200 300 400 50002468 Es/No = 27 dB

dB

Pilot Word Interval (symbols)

Es/No = 9 dB

Es/No = 15 dB

Es/No = 21 dB

Es/No = 27 dB

375 kilometers per hour, 5 MHz BWETSI ITU-R M.1225 Vehicular Test, Channel A

SNR(Z|SOB) – SNR(Z|EOB)

Expect MS/BS Pilot Word Interval to be 1024 (as set based on link SNR & statistics)

Demod Interval

Expect the Demod Interval to be 448

0 250 500 750 1000 1250

0 250 500 750 1000 1250

0 250 500 750 1000 1250

0 250 500 750 1000 1250

448

Page 21: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 21

MS Performance for WirelessMAN-SCa (PE16)SBE for ETSI ITU-R M.1225 Vehicular Test Environment, Channel A

5 MHz BW, Demod Interval = 400 symbols = 100 µsec

Mobile MS SNR Delta (relative to stationary MS1)

-2.5 +/- 1.9-.5 +/- 1.70.0 +/- 1.927

-1.3 +/- 1.4-.2 +/- 1.20.0 +/- 1.221

-.5 +/- .9.1 +/- .80.0 +/- .815

-.1 +/- 1.0 dB0.0 +/- 1.0 dB0.0 +/- 1.1 dB9

750 kilometers per hour375 kilometers per hour<30 kilometers per hourEs/No (dB)

SBE mobile MS performance is typically within 1 dB of stationary MS performance.

1Stationary MS or SS SNR delta relative to Es/No (perfect channel, AWGN)

-3.5 +/- 1.8 dB 3-1.0 +/- 1.2 dB-.3 +/- .8 dB 2-.6 +/- 1.1 dB

Es/No = 27 dBEs/No = 21 dBEs/No = 15 dBEs/No = 9 dB

SBE multipath performance for Vehicular Channel A is typically within 1 dB of perfect channel performance.

2 SBE at Es/No = 15 dB is better than at Es/No = 9 dB due to improved CIR estimate (and residual ISI < No).

3 SBE performance at Es/No = 27 dB shows residual ISI in addition to ~1.5 dB fall off due to TX/RX filters, etc.

Page 22: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 22

MS Performance for WirelessMAN-SCa (PE16)SBE for ETSI ITU-R M.1225 Vehicular Test Environment, Channel B

5 MHz BW, Demod Interval = 400 symbols = 100 µsec

Mobile MS SNR Delta (relative to stationary MS1)

-1.8 +/- 2.3-.6 +/- 2.10.0 +/- 2.127

-.7 +/- 1.5-.4 +/- 1.40.0 +/- 1.521

-.4 +/- .9-0.1 +/- .80.0 +/- .815

0.0 +/- .7 dB-0.1 +/- .6 dB0.0 +/- .7 dB9

750 kilometers per hour375 kilometers per hour<30 kilometers per hourEs/No (dB)

SBE mobile MS performance is typically within 1 dB of stationary MS performance.

1Stationary MS or SS SNR delta relative to Es/No (perfect channel, AWGN)

-5.0 +/- 2.1 dB 2-2.2 +/- 1.4 dB-.9 +/- .8 dB-.9 +/- .8 dB

Es/No = 27 dBEs/No = 21 dBEs/No = 15 dBEs/No = 9 dB

2 SBE performance at Es/No = 27 dB shows residual ISI in addition to ~1.5 dB fall off due to TX/RX filters, etc.

SBE multipath performance for Vehicular Channel B is typically within ~2 dB of perfect channel performance.

SBE multipath performance for Vehicular Channel B is typically within 1 dB of Vehicular Channel A performance.

Page 23: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 23

MS Performance for WirelessMAN-SCa (PE15)SBE for ETSI ITU-R M.1225 Outdoor-to-Indoor & Pedestrian, Channel A & B

5 MHz BW

SNR Delta relative to Es/No (perfect channel, AWGN)

-3.2 +/- 1.2 2-4.1 +/- 1.327

-1.4 +/- 1.0-2.9 +/- .821

-0.6 +/- .7 1-1.2 +/- .715

-1.4 +/- .7 dB-.1 +/- .4 dB9

3 kilometers per hourChannel B

3 kilometers per hourChannel A

Es/No (dB)

1 SBE at Es/No = 15 dB is better than at Es/No = 9 dB due to improved CIR estimate (and residual ISI < No).2 SBE performance at Es/No = 27 dB shows residual ISI in addition to ~1.5 dB fall off due to TX/RX filters, etc.

SBE 3 kph pedestrian MS performance is equal to the SBE stationary MS performance.

SBE multipath performance for Out-In Ped Channel A/B is typically within 2 dB of perfect channel.

Page 24: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 24

MS Performance for WirelessMAN-SCa (PE15)SBE for ETSI ITU-R M.1225 Indoor Office, Channel A & B

SNR Delta relative to Es/No (perfect channel, AWGN)

-5.4 +/- 2.8 1-4.9 +/- 3.5 127

-2.9 +/- 1.7-1.9 +/- 2.421

- 1.4 +/- 1.50.0 +/- 1.715

-.7 +/- 1.8 dB0.0 +/- 1.3 dB9

30 kilometers per hourChannel B

30 kilometers per hourChannel A

Es/No (dB)

1 SBE performance at Es/No = 27 dB shows residual ISI in addition to ~1.5 dB fall off due to TX/RX filters, etc.

SBE multipath performance for Indoor Office Channel A/B is typically within 2 dB of perfect channel.

Page 25: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 25

Uplink/Downlink Cell Radii

Target Es/No (ahead of coding) = 10, 17, 23 dB (QPSK,16-QAM,64-QAM)

Vehicular Test EnvironmentPE9 evaluation requirements, 5 MHz, 2.6 GHz Cable/connector loss for BS = 2 dB

SC power back-off advantage for MS = 5, 2.6, 2 dB (QPSK,16-QAM,64-QAM) 1

< 150 kph, channel A or B, Multipath/Doppler SNR degradation = 2 dB 2

SNR Degraded, rate ½ QPSK Cell RadiiDL = 2.3 kilometersUL = 1.1 kilometers

Outdoor-to-Indoor & Pedestrian Test EnvironmentPE8 evaluation requirements, 5 MHz, 2.6 GHz Cable/connector loss for BS = 2 dBSC power back-off advantage for MS = 5, 2.6, 2 dB3 kph, channel A or B, Multipath/Doppler SNR degradation = 2 dB 2

SNR Degraded, rate ½ QPSK Cell RadiiDL = 848 meters (outdoor) / 205 meters (indoor) UL = 448 meters (outdoor) / 109 meters (indoor)

Indoor Office Test EnvironmentPE7 evaluation requirements, 5 MHzSC power back-off advantage for MS = 5, 2.6, 2 dB3 kph, channel A or B, Multipath/Doppler SNR degradation = 2 dB 2

SNR Degraded, rate ½ QPSK Cell RadiiDL = 19 metersUL = 13 meters

1 Based on IEEE 802.16.3c-01/46. 2 Based on SBE simulations.

Page 26: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 26

Vehicular DL Cell Size (PE9)2.6 GHz, 5 MHz BW, rate ½ QPSK

Target Es/No + Fade Margin

Target Es/No

2.6 kilometers

2.3 kilometers

Stationary AWGN Channel

75 kph, Vehicular Channel A or B

4.6 kilometers 5.1 kilometers

Page 27: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 27

Vehicular UL Cell Size (PE9)2.6 GHz, 5 MHz BW, rate ½ QPSK

Target Es/No + Fade Margin

Target Es/No

1.24 kilometers Stationary AWGN Channel

75 kph, Vehicular Channel A or B

1.1 kilometers

2.2 kilometers 2.4 kilometers

Page 28: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 28

Outdoor-to-indoor & Pedestrian DL Cell Size (PE8)2.6 GHz, 5 MHz BW, rate ½ QPSK

Target Es/No + Outdoor Fade Margin

Target Es/No

930 meters

Stationary AWGN Channel

3 kph, Out-In & Ped Channel A or B

Target Es/No + Outdoor-to-Indoor Fade Margin

848 meters

225 meters205 meters

1.54 kilometers 1.68 kilometers

Page 29: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 29

Outdoor-to-indoor & Pedestrian UL Cell Size (PE8)2.6 GHz, 5 MHz BW, rate ½ QPSK

Target Es/No + Outdoor Fade Margin

Target Es/No

490 metersStationary AWGN Channel

3 kph, Out-In & Ped Channel A or B

Target Es/No + Outdoor-to-Indoor Fade Margin

448 meters

119 meters109 meters

810 meters 890 meters

Page 30: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 30

Indoor Office DL Cell Size (PE7)2.6 GHz, 5 MHz BW, rate ½ QPSK

Target Es/No + Fade Margin

Target Es/No22 meters

Stationary AWGN Channel

Indoor Office Channel A or B

19 meters

61 meters 71 meters

Page 31: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 31

Indoor Office UL Cell Size (PE7)2.6 GHz, 5 MHz BW, rate ½ QPSK

Target Es/No + Fade Margin

Target Es/No15 meters

Stationary AWGN Channel

Indoor Office Channel A or B

13 meters

41 meters 48 meters

Page 32: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 32

Conclusions on Mobile WirelessMAN-SCa

Satisfactory NLOS Link Performance for Vehicular Doppler/MultipathSBE capability in BS & MS Pilot Word Insertion as necessary

Not required for short bursts (BW-REQ,RNG-RESP) or low speedsAcceptable overhead for longer burstsUp to 300 kph in 5 MHz BW (up to 20% PW overhead)

SNR Degradation ~2 dB from perfect channel (all test environments)

UL Cell Radius ~ ½ DL Cell Radius?Suggests UL PN Spreading Option for 802.16e WirelessMAN-SCaSpreading Option Analysis & Proposal TBD

BS-MS RangingBS measures ranging parameter for each RX burst BS Issues RNG-RESP to keep MS within tolerance

MAC Integration IssuesPHY requests Pilot Word Insertion (to MAC)?Fixed/mobile robust modulation definition?

Additional Pilot Words (more robust within modulation type)

PN spreading option is UL only (no problem)

Page 33: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 33

Uplink/Downlink Budgets for Cell Radius

Vehicular Test EnvironmentPE9, etc. evaluation parametersStanford B path loss modelPE16 SNR performance degradation (SBE simulations)

Outdoor-to-Indoor & Pedestrian Test EnvironmentPE8, etc. evaluation parametersStanford B path loss modelPE15 SNR performance degradation (SBE simulations)

Indoor Office Test EnvironmentPE7, etc. evaluation parametersETSI Indoor Office path loss model PE14 SNR performance degradation (SBE simulations)

Page 34: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 34

Vehicular DL Cell Size (PE9)

2.3 1.6 1.2 kmInvert PL(d) for SUI Terrain Type B (PE9)Cell Radius for (d) 75 kph Vehicular Channel A/B

-142 -135 -129 dB Required SNR + ∆SNR75 – SNR_no_PL dBAllowed Path Loss PL(d) for 75 kph Vehicular Channel A/B

2 dB 2 75 kph Vehicular Channel A/B SNR Degradation (∆SNR75)

-2 dB2 dBCable, Connector Loss

-144 -137 -131 dB Required SNR – SNR_no_PL dBAllowed Path Loss PL(d)

1.5 meters (PE9) = -.8 dB 1RX Ant. Height (∆PLh)

2.6 GHz (PE3) = -.7 dBRF Frequency (∆PLf)

13 dB13 dB (PE9)Fade Margin

10 17 23 dB10 17 23 dBTarget Es/No (with Coding)

64 dBmEIRP*GRxRX Signal Power excluding PL(d)

3 dB3 dB (PE9)RX Ant. Gain (GRx)

-103 dBm290 degrees KelvinRX Noise Power

4 dB (PE20)RX Noise Figure

61 dBmTXPWR*GTxEIRP

5 MHz (PE1)Bandwidth

46 dBm40 watts (PE9)TX Power

17 dB17 dBi (PE9)TX Ant. Gain (GTx)

30 meters (PE9)TX Ant. Height (hb)

QPSK 16-QAM 64-QAMQPSK 16-QAM 64-QAM Modulation

23 30 36 dBTarget Es/No + MarginRequired SNR

167 dBRX (Signal Power/Noise Power) dBSNR (Es/No) excluding PL(d) (SNR_no_PL)

2.6 1.8 1.3 km

Link Budget

Invert PL(d) for SUI Terrain Type B (PE9)Cell Radius (d) for Stationary AWGN Channel

ValueParameter

1 Based on personal communications with Kirk Griffin, consultant. 2 Based on SBE simulations.

Page 35: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 35

Vehicular UL Cell Size (PE9)

1.1 .7 .48 km Invert PL(d) for SUI Terrain Type B (PE9)Cell Radius (d) for 75 kph Vehicular Channel A

-128 -118.6 -112 dB Required SNR + ∆SNR75 – SNR_no_PL dBAllowed Path Loss PL(d) for 75 kph Vehicular Channel A

2 dB 275 kph Vehicular Channel A SNR Degradation (∆SNR75)

-2 dB2 dBCable, Connector Losses

5 2.6 2 dB5 2.6 2 dBSC Power Back-off Advantage1

-130 -120.6 -114 dB Required SNR – SNR_no_PL dBAllowed Path Loss PL(d)

30 meters (PE9)RX Ant. Height (hb)

2.6 GHz (PE3) = -.7 dBRF Frequency (∆PLf)

13 dB13 dB (PE9)Fade Margin

10 17 23 dB 10 17 23 dBTarget Es/No (with Coding)

50 47.6 47 dBmEIRP*GRxRX Signal Power excluding PL(d)

17 dB17 dBi (PE9)RX Ant. Gain (GRx)

-103 dBm290 degrees KelvinRX Noise Power

4 dB (PE20)RX Noise Figure

35 32.6 32 dBmTXPWR*GTxEIRP

5 MHz (PE1)Bandwidth

27 dBm27 dBm (PE9)TX Power

3 dB3 dB (PE9)TX Ant. Gain (GTx)

1.5 meters (PE9), ∆PLh = -.8 dBTX Ant. Height (h) (∆PLh)

QPSK 16-QAM 64-QAMQPSK 16-QAM 64-QAM Modulation

23 30 36 dBTarget Es/No + MarginRequired SNR

153 150.6 150 dBRX (Signal Power/Noise Power) dBSNR (Es/No) excluding PL(d) (SNR_no_PL)

1.24 .76 .54 km

Link Budget

Invert PL(d) for SUI Terrain Type B (PE9)Cell Radius (d) for Stationary AWGN Channel

ValueParameter

1 Based on IEEE 802.16.3c-01/46. 2 Based on SBE simulations.

Page 36: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 36

Outdoor-to-indoor & Pedestrian DL Cell Size (PE8)

930 675 513 mInvert PL(d) for SUI Terrain Type BCell Radius for Outdoor Ped w Stationary AWGN Channel

13 dB13 dB (PE8)Fade Margin to Outdoor Pedestrian

848 615 468 mInvert PL(d) for SUI Terrain Type B (PE8)Cell Radius for Outdoor 3 kph Ped Channel A/B

205 150 114 mInvert PL(d) for SUI Terrain Type B (PE8)Cell Radius for Indoor 3 kph Ped Channel A/B

2 dB 13 kph Out-to-In & Ped Chan A/B SNR Degradation (∆SNRM)

-2 dB2 dBCable, Connector Loss

-100/131 -93/124 -87/118 dB Required SNR – SNR_no_PL dBAllowed Path Loss PL(d) (Indoor/Outdoor)

1.5 meters (PE8) = -.8 dBRX Ant. Height (∆PLh)

2.6 GHz (PE3) = -.7 dBRF Frequency (∆PLf)

44 dB13 + 20 + 11 = 44 dB (PE8)Fade Margin to Indoor Pedestrian

10 17 23 dB10 17 23 dBTarget Es/No (with Coding)

51 dBmEIRP*GRxRX Signal Power excluding PL(d)

0 dB0 dB (PE8)RX Ant. Gain (GRx)

-103 dBm290 degrees KelvinRX Noise Power

4 dB (PE20)RX Noise Figure

51 dBmTXPWR*GTxEIRP

5 MHz (PE1)Bandwidth

36 dBm4 watts (PE8)TX Power

17 dB17 dBi (PE8)TX Ant. Gain (GTx)

15 meters (PE8)TX Ant. Height (hb)

QPSK 16-QAM 64-QAMQPSK 16-QAM 64-QAM Modulation

54/23 61/30 67/36 dBTarget Es/No + MarginRequired SNR (Indoor/Outdoor)

154 dBRX (Signal Power/Noise Power) dBSNR (Es/No) excluding PL(d) (SNR_no_PL)

225 165 125 m

Link Budget

Invert PL(d) for SUI Terrain Type B (PE8)Cell Radius for Indoor Ped w Stationary AWGN Channel

ValueParameter

1 Based on SBE simulations.

Page 37: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 37

37 34.6 34 dBmEIRP*GRxRX Signal Power excluding PL(d)

-2 dB2 dBCable, Connector Loss

1.5 meters (PE8), ∆PLh = -.8 dBTX Ant. Height (h) (∆PLh)

0 dB0 dB (PE8)TX Ant. Gain (GTx)

5 2.6 2 dB5 2.6 2 dBSC Power Back-off Advantage1

490 325 236 mInvert PL(d) for SUI Terrain Type B (PE8)Cell Radius for Outdoor Ped w Stationary AWGN Channel

13 dB13 dB (PE8)Fade Margin to Outdoor Pedestrian

448 297 216 mInvert PL(d) for SUI Terrain Type B (PE8)Cell Radius for Outdoor Ped w 3 kph Channel A/B

109 72 53 mInvert PL(d) for SUI Terrain Type B (PE8)Cell Radius for Indoor Ped w 3 kph Channel A/B

2 dB 23 kph Out-to-In & Ped Chan A/B SNR Degradation (∆SNRM)

-86/117 -77/108 -70/101 dB Required SNR – SNR_no_PL dBAllowed Path Loss PL(d) (Indoor/Outdoor)

1.5 meters (PE8) = -.8 dBRX Ant. Height (∆PLh)

2.6 GHz (PE3) = -.7 dBRF Frequency (∆PLf)

44 dB13 + 20 + 11 = 44 dB (PE8)Fade Margin to Indoor Pedestrian

10 17 23 dB10 17 23 dBTarget Es/No (with Coding)

17 dB17 dBi (PE8)RX Ant. Gain (GRx)

-103 dBm290 degrees KelvinRX Noise Power

4 dB (PE20)RX Noise Figure

22 19.6 19 dBmTXPWR*GTxEIRP

5 MHz (PE1)Bandwidth

17 dBm17 dBm (PE8)TX Power

QPSK 16-QAM 64-QAMQPSK 16-QAM 64-QAM Modulation

54/23 61/30 67/36 dBTarget Es/No + MarginRequired SNR (Indoor/Outdoor)

140 137.6 137 dBRX (Signal Power/Noise Power) dBSNR (Es/No) excluding PL(d) (SNR_no_PL)

119 79 57 m

Link Budget

Invert PL(d) for SUI Terrain Type B (PE8)Cell Radius for Indoor Ped w Stationary AWGN Channel

ValueParameter

Outdoor-to-indoor & Pedestrian UL Cell Size (PE8)

1 Based on IEEE 802.16.3c-01/46. 2 Based on SBE simulations.

Page 38: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 38

Indoor Office DL Cell Size (PE7)

19.2 11.2 7.1 mInvert L(R) for Indoor Office (PE7)Cell Radius for 3 kph Indoor Office Channel A/B

2 dB 23 kph Indoor Office Channel A/B SNR Degradation (∆SNRM)

-111 -104 -98 dB Required SNR – SNR_no_PL dBAllowed Path Loss L(R)

15 dB15 dB (PE7)Fade Margin

10 17 23 dB10 17 23 dBTarget Es/No (with Coding)

33 dBmEIRP*GRxRX Signal Power excluding L(R)

0 dB0 dB (PE7)RX Ant. Gain (GRx)

-103 dBm290 degrees KelvinRX Noise Power

4 dB (PE20)RX Noise Figure

33 dBmTXPWR*GTxEIRP

5 MHz (PE1)Bandwidth

27 dBm27 dBm (PE7)TX Power

6 dB6 dBi (PE7)TX Ant. Gain (GTx)

QPSK 16-QAM 64-QAMQPSK 16-QAM 64-QAM Modulation

25 32 38 dBTarget Es/No + MarginRequired SNR

136 dBRX (Signal Power/Noise Power) dBSNR (Es/No) excluding L(R) (SNR_no_PL)

22.3 13.1 8.3 m

Link Budget

Invert L(R) for Indoor Office (PE7) 1Cell Radius for Indoor Office w Stationary AWGN Channel

ValueParameter

2 Based on SBE simulations.

1 Path loss model in PE7 described in B.1.4.1.1 of UMTS; Selection Procedures etc, TR 101 112 V3.2.1 (1998-04).

Page 39: 802.16e Proposal: Link Performance of WirelessMAN-SCa ... · 802.16e Proposal: Link Performance of WirelessMAN-SCa Mobile Subscriber Stations IEEE 802.16 Presentation Submission Template

March 6, 2003 802.16e: Link Performance of WirelessMAN-SCa MS 39

Indoor Office UL Cell Size (PE7)

5 2.6 2 dB5 2.6 2 dBSC Power Back-off Advantage1

13 6.4 3.8 mInvert L(R) for Indoor Office (PE7)Cell Radius for 3 kph Indoor Office Channel A/B

2 dB 33 kph Indoor Office Channel A/B SNR Degradation (∆SNRM)

-106 -96.6 -90 dB Required SNR – SNR_no_PL dBAllowed Path Loss L(R)

15 dB15 dB (PE7)Fade Margin

10 17 23 dB10 17 23 dBTarget Es/No (with Coding)

28 25.6 25 dBmEIRP*GRxRX Signal Power excluding L(R)

6 dB6 dBi (PE7)RX Ant. Gain (GRx)

-103 dBm290 degrees KelvinRX Noise Power

4 dB (PE20)RX Noise Figure

22 19.6 19 dBmTXPWR*GTxEIRP

5 MHz (PE1)Bandwidth

17 dBm27 dBm (PE7)TX Power

0 dB0 dB (PE7)TX Ant. Gain (GTx)

QPSK 16-QAM 64-QAMQPSK 16-QAM 64-QAM Modulation

25 32 38 dBTarget Es/No + MarginRequired SNR

131 128.6 128 dBRX (Signal Power/Noise Power) dBSNR (Es/No) excluding L(R) (SNR_no_PL)

15.2 7.4 4.5 m

Link Budget

Invert L(R) for Indoor Office (PE7) 2Cell Radius for Indoor Office w Stationary AWGN Channel

ValueParameter

3 Based on SBE simulations.

2 Path loss model in PE7 and described in B.1.4.1.1 of UMTS; Selection Procedures etc, TR 101 112 V3.2.1 (1998-04).

1 Based on IEEE 802.16.3c-01/46.