Top Banner
8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects • Semimetals • Superlattices
37

8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Jan 03, 2016

Download

Documents

Eustacia Watson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

8. Semiconductor Crystals

• Band Gap

• Equations of Motion

• Intrinsic Carrier Concentration

• Impurity Conductivity

• Thermoelectric Effects

• Semimetals

• Superlattices

Page 2: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Transistors, switches, diodes, photovoltaic cells, detectors, thermistors, …

IV: Si, GeIII-V: InSb, GaAsII-VI: ZnS, CdSIV-IV: SiC

Strong T dependence

Insulator: ρ > 1014 Ω cm

III IV V VI

B C N O

Al Si P S

Ga Ge As Se

In Sn Sb Te

Tl Pb Bi Po

SemiC: 109 > ρ > 10–2 Ω cm

Page 3: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Eg = 0.66 eV Eg = 1.11 eV

/g BE k T

in e

Intrinsic temperature range:σ indep of impurities

Page 4: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Band Gap

k k K

gE

k k k k

gE k k

210 eV

Excitons not shown

For γ & e of same energy,210F

e

vk

ck For ph & e of same k,

310ph

F

ph

e

v

v

ph emitted,low T.

Page 5: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

InSb

Another way for determining Eg : σi (T) or ni (T) determined from RH .

Page 6: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

III IV V VI

B C N O

Al Si P S

Ga Ge As Se

In Sn Sb Te

Tl Pb Bi Po

Page 7: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Equations of Motion

• Physical Derivation of k = F

• Holes

• Effective Mass

• Physical Interpretation of the Effective Mass

• Effective Masses in Semiconductors

• Silicon and Germanium

Page 8: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Wave packet: g kv1 k group velocity

Particle subjected to force F: kkg t v F

g k v

d

dt

kF

Lorentz force:1d

qdt c

k

kE B

→ Particles in contant B field move on surface of constant energy perpendicular to B.

Page 9: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Physical Derivation of dk/dt = F

Plane wave expansion: nin

n

C e k G rk r r k k

Electron momentum: el i P k k

* 3

,

1m ni i

m n nn m

C C d e e k G r k G rk k k G rV

2

n nn

C k k G

2

n nn

C k k G

21n

n

C k

2

el n nn

C kP k G k k

2

lat n nn

C kP G k k

tot el lat P P P k t Fd

dt

kF

Page 10: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Holes

h ek kfilled band

k 0

h h k

ε = 0 at top of valence band:

k k

→ e e e e k k

k kno spin-orbit interaction:

h e k

e e h h k k

Inversion symmetry →

hh h hkv k

e e ek k ev

h ev v

Page 11: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

h em m see next section

1hh

de

dt c

kE v B

1ee

de

dt c

kE v B

e moves toward –kx ; so does h

C.B.

V.B.

e ee j v

E E

h hej v

e j v e v e v

Page 12: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Effective Mass1

g kv

1gd d

dt dt

k

v

1 d

dt

k k

k

2

1 k kF

2

1g ij

ji j

dvF

dt k k

2

2

1j

j i j

Fk k

1

* jj i j

Fm

* gd

dt

vm F

2

2

1

* i j i jm k k

= effective mass tensor ( of electrons )

Near zone boundary :

/2/2

21 g

k g KUU

2 2

2k

k

m

2

gk K

2

* 2 2/ /

1

m K

/221

1 g

m U

1

/22*1gm

m U

CBVB

CBVB

m* < 0 near top of VB

1

*gd

dt

vF

m

/22 g

U

band width

band gap

4

U << λg/2

Page 13: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Physical Interpretation of the Effective Mass

0 1

i k G xi k xC e C e

PW k + Bragg reflected k−G(p transferred to lattice)

vice versa

C0 / C−1 = 1 → standing wave

m* < 0

m* > 0

m* < 0

Page 14: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Effective Masses in Semiconductors

m* determined by cyclotron resonance (rf) at low carrier concentration.

*c

q B

m c

2 2

2vhh

khh

m

2 2

2vlh

klh

m

2 2

2vsoh

ksoh

m

1c

Condition for complete orbit without collison:

c Bk T

cyclotron frequency

Landau levels:

1

2n cE n

For m* = 0.1 and ωc = 24GHz,we have B = 852 gauss.

Page 15: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Prob 9.8 → m* Eg for direct-gap crystals

0.015 0.026 0.073, ,

0.23 0.43 1.42c

g

m

m E

For InSb, InAs, InP

0.065, 0.060, 0.051 Eg from Table 1

Page 16: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Silicon and Germanium

2 2 4 2 2 2 2 2 2 23/2 x y y z z xAk B k C k k k k k k k

VB at k=0 : p3/2 + p1/2

21/2 Ak k

Page 17: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

CB of Ge with B in (110).CB edge at L.4 mass spheroids along [111]; 2 of which are equivalent in (110) plane.ml = 1.59 m, mt = 0.082 m.

2 2

2 2

1 cos sin

c t t lm m m m

θ = angle with

longitudinal axis

Page 18: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Si

GaAsDirect-gap

Spheroids along <100>.CB edges on Δ line near point X.ml = 0.92 m, mt = 0.19 m.

A=−6.89, B=−4.5, C=6.2, Δ =0.341

Isotropic mc = 0.067m.

Page 19: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Intrinsic Carrier Concentration

1

1ef

e

1 e 1

Bk T

Near CB edge:2

2ce

E k k km

Isotropic band:2 2

2ce

kE

m k

3/2

2 2

21

2e

e c

mD E

c

e eEn d D f

3/2

2 2

21

2 c

e

E

me d e

3/2

22

2cEem

e

*e cm m

Page 20: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

11

h e

ef f

e

1 e

Near VB edge:2

2vh

E k k km

Isotropic band:2 2

2vh

kE

m k

3/2

2 2

21

2h

h v

mD E

vE

h hp d D f

3/2

22

2vEhm

e

1

1ef

e

1

1e

2

2

1

h i ji jk k

k 0

m

3/2

22

2cEem

n e

→ 3

3/2

2

14

2gE

e hn p m m e

np values at 300K:19 6 26 6 12 62.1 10 2.89 10 6.55 10

Si Ge GaAs

cm cm cm

(independent of doping)

0hm

1

* i j

m

Page 21: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Black body radiation:

d nA T B T n p

dt

A T

B T n pe h

At equilibrium:

A Tn p

B T = const at given T

Intrinsic carrier concentration: 3/2

3/4 /2

2

12

2gE

i i e hn p m m e

Carrier compensation: n+p is reduced by increasing either n or p through doping.

3/2

22

2c iEe

i

mn e

Pure sample:

3/2

22

2i vEh

i

mp e

3/2

2 c vi E Eh

e

me e

m

1 3ln

2 4h

i c v Be

mE E k T

m

Page 22: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Intrinsic Mobility

v EMobility μ of single type of carriers:

0

e hne pe

Electrical conductivity σ of semiconductor:

ee

e

e

m

hh

h

e

m

q

m

E

T /2gE

i in p e μh < μe due to interband scattering

Ionic crystals:h moves by hopping.

Self-trapped via Jahn-Teller effect

Eg small → m* small→ μ large, esp D-G

Page 23: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Impurity Conductivity

• Donor States

• Acceptor States

• Thermal Ionization of Donors and Acceptors

Stoichiometric deficiency → Deficit semiconductorsImpurities → Doped semiconductors

e.g., 10–5 B → σ = 103 σi for Si at 300K

Page 24: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Donor States

Donor = Impurity atom that tends to give up an electron

Bohr model:4

2 22e

d

e mE

2

13.6 emeV

m

Bohr radius:

2

2de

am e

0.53e

mA

m

Valid when ad >> atomic distance.& Ed << Eg .

Anisotropy need be considered for Si & Ge

III IV V VI

B C N O

Al Si P S

Ga Ge As Se

In Sn Sb Te

Tl Pb Bi Po

Page 25: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

20 29.8

5 9.05

isotropic anisotropic

Bohr model

30

80

da A

Si

Ge

Impurity band formed at low impurity concentrations.Mott (metal-insulator) transition.

Conduction in impurity band is by hopping. Occurs at lower concentration in compensated materials.

300 26Bk K meV

Page 26: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Acceptor StatesAcceptor = Impurity atom that tends to capture an electron

III IV V VI

B C N O

Al Si P S

Ga Ge As Se

In Sn Sb Te

Tl Pb Bi Po

Complication:VB degeneracy.

Page 27: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Ultra pure Ge:imp conc < 10–11

active impurities ~ 21010 cm−3

intrinicregion

Electrically inactive impurities in Ge: H, O, Si, C.Can’t be reduced below 1012 – 1014 cm–3 .

13 31.7 10in cm at T = 300K with ρi 43 Ω cm

Page 28: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Thermal Ionization of Donors and Acceptors

/20

dEdn n N e

1dE

3/2

0 22

2h Bm k T

p

/20

aEap p N e

3/2

0 22

2e Bm k T

n

No acceptors present:

1aE

0

c iEin n e

D e D

0dEd

d

n Nn e

N

0

cEn n e

Reminder:

Extrinsic region:

2in p n e h

Page 29: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Thermoelectric Effects

Electrical conductivity: q J E=0T 2

q

q

n q

m

Thermal conductivity: Q T J0q J2 2

3q B

q

n k T

m

Seebeck effect: S T E=

Peltier effect: Q qJ J0T

0q J S = Seebeck coeff.(Thermal power)

b = carrier mobility

qB

B

k T

q k T

cq

v

E efor

E h

q qn q b

Π = Peltier coeff.

Heat current density JQ :

i ii

dU dQ Y dx dN → U Q N J J J Steady state

Q NU J J qq Bk T

q

J

NU J

2

ST Kelvin relation(derived from thermodynamics)

2 2

23Bk

Tq

B AQ I

Page 30: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Thermoelectric Effects: Boltzmann Eq Ref: Haug, IV.B.Kittel, App F

Boltzmann eq.: d ff

dt r pv F

C

f

t

1 p k

1E kv

0

C

f ff

t

Relaxation time

approximation

Linearization: 0

d ff

dt r pv F

C

f

t

00

ff E

E

k k0f

E

v

00

ff T

T

r r

2

1

E

E

Ee

T TT

e

r

0

1

1Ef

e

0f ET

E T T

r

Ee semicond

metals

0f

t

A-current density:

3

0322

A

df f A

kJ v 02 dE E f f A v

Page 31: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

ET

T T

rv F

A-current density:

3

0322

A

df f A

kJ v

30

322

fdA

E

kv

02f E

dE E A TE T T

rv v F

20/ /2 j

j

fK dE E E v

E

For isotropic materials, JA is a linear combination of integrals

00

ff f

E

E

0

C

fE fT

T T E t

rv F 0f f

0f

E

Page 32: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

1 00

q qq

d K K dTJ q K q

d z T d z

E

2

2 1 01 0

2q q qQ q

d K K K dTJ K K q

d z T d z

E

1 0

20 0

1q q qJ K K ddT

q K qK T d z q d z

E

21 0 1 0 2

0 0

qQ q

K K K K K dTJ J

qK K T d z

Electrical conductivity: qJ E0T 20q K

Thermal conductivity: q

dTJ

d z0qJ

20 2 1

0

K K K

K T

Seebeck effect:dT

Sd z

E= 1 0

0

qK KS

qK T

Peltier effect: Q qJ J0T

ST

0qJ Seebeck coeff.(Thermal power)

1 0

0

qK K

qK

Kelvin relation(derived from thermodynamics)

For spherical energy surfaces: ( 1)!

jqj B

n bK j k T

q b = carrier

mobility 2 qB

B

k T

q k T

cq

v

E efor

E h

02 ln qB

q

nk T

q n

Page 33: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Peltier coefficent of Si

Page 34: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Semimetals

2 Group V atoms in primitive cell→ insulator

Band overlap→ semimetal

Page 35: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

SuperlatticesSuperlattice: lattice with long period created by stacking layers of atoms.

Ref: J.Singh,”Physics of Semiconductors & Their Heterostructures”

(GaAs)1 (InAs)1

(GaAs)2 (InAs)2

Page 36: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Bloch Oscillator

Bloch Oscillator:For a collisionless electron accelerated across a Brillouin zone, the motion is periodic.

2G

A

e T E A = superlattice constant along

2B

e A

T

E Bloch frequency

Simple TBM: 0 1 cosk kA

1 dv

d k

0 sin

AkA

z dt v dtdk v

d k 0

0

sink A

dk kAe

E

d ke

dt E

0 cos 1kAe

E0 cos 1

e At

e

EE

0 0z

Page 37: 8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.

Zener Tunneling (field-induced interband tunneling):

Tilting of band by

→ different bands at same ε

→ Zener tunneling (breakdown)

Heavily doped p-n junction

Strong reverse bias→ Zener breakdown

I-V curve