Top Banner
7. Continuous Groups Rotations in 2-D : 2 ; 0,2 SO R 1 det 1 T R R R Special Orthogon al Rotations in 3-D : 3 ,, ; ,, 0,2 SO R Rotations in n-D : ; 0,2 ; 1, , 1 /2 i SO n R i nn α SO(n) = Lie group of order n(n1)/2. { R() } = Fundamental representation ( indep. elements in nn SO matrix ) Generalization to complex vector space: = Lie group of order n 2 1. Speci al Unita ry 2 ; 0,2 ; 1, , 1 i SU n U m i n α 1 det 1 U U U ( indep. real parameters in nn SU matrix ) Used in classification of elementary particles
35

7.Continuous Groups

Jan 31, 2016

Download

Documents

Roman

7.Continuous Groups. S pecial O rthogonal. Rotations in 2-D :. Rotations in 3-D :. Rotations in n -D :. ( indep. elements in n  n SO matrix ). SO( n ) = Lie group of order n ( n 1)/2. { R (  ) } = Fundamental representation. Generalization to complex vector space:. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 7.Continuous Groups

7. Continuous Groups

Rotations in 2-D : 2 ; 0,2SO R 1

det 1T

R

R RSpecialOrthogonal

Rotations in 3-D : 3 , , ; , , 0,2SO R

Rotations in n-D : ; 0,2 ; 1, , 1 / 2iSO n R i n n α

SO(n) = Lie group of order n(n1)/2.

{ R() } = Fundamental representation

( indep. elements in nn SO matrix )

Generalization to complex vector space:

= Lie group of order n21.

SpecialUnitary 2; 0,2 ; 1, , 1iSU n U m i n α 1

det 1

U

U U

( indep. real parameters in nn SU matrix )

Used in classification of elementary particles

Page 2: 7.Continuous Groups

For elements close to I, Sj = generators

Lie Groups & Their Generators

Lie group of order n = group that is also an n-D differentiable manifold.

( group elements have local 1-1 map to region in Rn.)

~ group with continuous parameters over finite n-D region(s).

1

n

j jj

I i

U φ S

1

lim

Nn

jjN

j

I iN

U φ Sj

j N

1

expn

j jj

i

U φ S

& jj

i

φ 0

US

for the identity component of G.

sign chosen to make S = L

Page 3: 7.Continuous Groups

Example 17.7.1. SO(2) Generator

Rotations about a fixed axis : cos sin

sin cos

U active point of view.( eq.17.38 is the passive version )

x

y

r U r

cos sin

sin cos

x

y

cos sin

sin cos

x y

x y

1

1

U0 1

1 0I

1

n

j jj

I i

U φ S

1

expn

j jj

i

U φ S

0 1

1 0i

S 2σ

2exp i U σ exp cos sink ki i σ I σ

§ 2.2, Euler identity :

cos sin

sin cos

sin cos

cos sin

U

0

0 1

1 0

U2i σ i S

Page 4: 7.Continuous Groups

SO(n) & SU(n) 1

n

j jj

I i

U φ S 1

expn

j jj

i

U φ S

1

1

expn

j jj

i

U φ S

1

expn

j jj

i

U φ S

j jS S Sj are hermitianU unitary

det ii

U

Let i be the eigenvalues of U :

exp ln ii

exp lnTr U

1

expn

j jj

Tr i

S

det 1 j U 0jTr S Sj are traceless

1

expn

j jj

i Tr

S

exp ln ii

Page 5: 7.Continuous Groups

Set

Let expj j j ji U S 2 2 31

2j j j jI i O S S

2 2 2 2 31

2k j k k j j k k j j k j k jI i O U U S S S S S S

j kl

j k lj k

f

&

1 1 3,k j k j j k j kI O U U U U S S

1

n

j jj

I i

U φ S

1 1 2 2 2 2 31

2k j k k j j k k j j k j k jI i O U U S S S S S S

1 expj j j ji U S 2 2 31

2j j j jI i O S S

multiplication is closed 2

1

njk j k

l ll

I i O

U θ S

1

,n

j k jk l ll

i f

S S Sf j k l = structure constants

P

jk lP jk lf f ( f j k l is antisymmetric in its indices.)

Can be used to define “identity component” of G.

Page 6: 7.Continuous Groups

rank of G = max # of mutually commuting independent generators.

Basis of IRs of G are labelled using the eigenvalues of such set of generators.

E.g., SO(n) & SU(n) ~ generated by generalized angular momenta

rank of G = # of indices needed to label the basis of an IR.

For SO(3), rank = 1 IR label = ML .

For SU(2), rank = 1 IR label = MS .

For SU(3), rank = 2 IR label = ( I3 , Y ) .

Casmir operator = operator that commutes with all generators of G.

For SO(3), L2 is the Casmir operator.

IRs of G are labelled using the eigenvalues of the Casmir operator(s).

Page 7: 7.Continuous Groups

§16.4 : see next page

SO(2) & SO(3)

For SO(2) 2

0

0

i

i

S σ

For SO(3) 3

0 0

0 0

0 0 0

i

i

S 3

cos sin 0

sin cos 0

0 0 1

U

1

1 0 0

0 cos sin

0 sin cos

U 1

1

0

0 0 0

0 0

0 0

di i

i

US

2

cos 0 sin

0 1 0

sin 0 cos

U 2

0 0

0 0 0

0 0

i

i

S

,j k j k l li S S S i iK S

Page 8: 7.Continuous Groups

Alternatively,

Basis { x, y }

x

y

r U r

cos sin

sin cos

x

y

cos sin

sin cos

x y

x y

Using functions { x, y } as basis :(passive point of view)

cos sin, ,

sin cosx y x y

Basis = { i , j }(active point of view)

,x y V

generator for V is 2exp i V σ 1 U0 1

1 0i

S 2σ

zL i x yy x

, ,z zL x L y i y ix 0,

0

ix y

i

2

0

0z

i

i

L σ

1R f f r U r

exp zi V L

V f r exp zi L f r

f y x fx y

r r 1 0 1

1 0

U I

S

QM rotation op. ( = 1 )

Page 9: 7.Continuous Groups

Orthonormality :

Example 17.7.2. Generators Depend on Basis

SO(3) with Y1m (Cartesian rep) as basis :

1 1, ,

2 2x i y z x i y

ψ 3

4i j i j i jx x d x x

xL i y zz y

, , 0 , ,x x xL x L y L z iz i y

1 2 3, ,x x x xL L L L ψ 1 1, ,

2 2z i y z

1 2 3

10 0

21 1

, , 02 2

10 0

2

3 1

1

2x 3 1

2

iy 2z

0 1 0

11 0 1

20 1 0

xL

Similarly:

0 01

02

0 0y

i

L i i

i

1 0 01

0 0 02

0 0 1zL

Page 10: 7.Continuous Groups

SU(2) & SU(2)-SO(3) Homomorphism

# of generators: SO(3) = 3 SU(2) = 3 SU(3) = 8

complex matrices general H / SU H & tr=0

# of indep. elements n2 n (n+1) / 2

n = 2 4 3

n = 3 9 6

# of indep. real params. 2n2 n2 1

n = 2 8 4 3

n = 3 18 9 8

# of independent real parameters for nn complex matrices :

SU(2) :1

1,2,32i i i S σ ,j k j k l li S S S

expj j j ji U SRotation operator (passive) : cos sin2 2

j jji

I σ

Page 11: 7.Continuous Groups

SO(3) SU(2)

Generators { Lx ,Ly , Lz } { sx , sy , sz }

Basis { Ylm , m=l,...,l } spinors

Dim. of IR 2l+1 ; l = 0,1,2,... 2s+1 ; s = 0, ½, 1, ...

U ( ,, [0,2) ) single -valued double -valued

cos sin2 2

j jj j ji

U I σ

2j U I 4j U I 0j U I j ji U σ

SU(2) SO(3) is a 2-1 homomorphism.

Page 12: 7.Continuous Groups

SU(3)

p - n behaves nearly identically in strong interaction.

Heisenberg : p - n is a doublet [ 2-D IR of SU(2) ] (approximate symmetry )

Isospin : 1,2,3j j j τ σ 3

1 / 2

1 / 2

pI

n

Gell-Mann : is an octet [ 8-D rep of SU(3) ] 0 0, , , , , , ,n p

m (MeV) Y I3 S

1321 1 1/2 2

0 1315 1 +1/2 2

1197 0 1 1

0 1193 0 0 1

+ 1189 0 +1 1

0 1116 0 0 1

N n 940 1 1/2 0

p 938 1 +1/2 0

Y = 2 ( Q I3 ) = Hypercharge

S = (ns ns ) = Strangeness

ns = # of strange quarks

ns = # of strange antiquarks

Pre-quark def:S = +1 for anti-partcleS = 1 for partcle

Page 13: 7.Continuous Groups

SU(3) : order = # of generators = 8, rank = IR labels = 2

11, ,8

2i i i S λ i = Gell-Mann matrices

1

0 1 0

1 0 0

0 0 0

λ 2

0 0

0 0

0 0 0

i

i

λ

7

0 0 0

0 0

0 0

i

i

λ

3

1 0 0

0 1 0

0 0 0

λ

4

0 0 1

0 0 0

1 0 0

λ 5

0 0

0 0 0

0 0

i

i

λ

8

1 0 01

0 1 03

0 0 2

λ6

0 0 0

0 0 1

0 1 0

λ

GMMs for SU(2) subgroup:

{ 1 , 2 , 3}, { 6 , 7 , 3 }, { 4 , 5 , 3 }.

3 8 3

0 0 0

3 0 1 0

0 0 1

λ λ λ 3 8 3

1 0 0

3 0 0 0

0 0 1

λ λ λ

I3 Y

eigen-

values of S3 ( 2 /3 ) S8

Page 14: 7.Continuous Groups

Example 17.7.3.Quantum Numbers of Quarks

3 3

1 0 01 1

0 1 02 2

0 0 0

S λ 8 8

1 0 02 1 1

0 1 033 3

0 0 2

S λ

Quark model :

Basis : { u, d, s } quarks

I3 Y = 2 ( Q I3 )

eigen-

values of S3 ( 2 /3 ) S8

3

1 0 0

0 1 0

0 0 0

λ 8

1 0 01

0 1 03

0 0 2

λ

I3 Y Q = I3 + Y/2

u 1/2 1/3 2/3

d 1/2 1/3 1/3

s 0 2/3 1/3

Page 15: 7.Continuous Groups

Commutation Rules

1 1

0 1 01

1 0 02

0 0 0

S I

2 2

0 01

0 02

0 0 0

i

i

S I 7 2

0 0 01

0 02

0 0

i

i

S U

3

1 0 01

0 1 02

0 0 0

S4 1

0 0 11

0 0 02

1 0 0

S V

5 2

0 01

0 0 02

0 0

i

i

S V 8

1 0 02 1

0 1 033

0 0 2

S

6 1

0 0 01

0 0 12

0 1 0

S U

Ladder operators : 1 2i X X X , , orX I U V

3 , S I I 3

1,

2 S U U 3

1,

2 S V V

8 , S I 0 8

3,

2 S U U 8

3,

2 S V V

Mathematica

8 3 8 3 3

3, , , ,

2I Y I Y Y I Y S U S U U

3 3 3 3, ,I Y I I Y S 8 3 3

3, ,

2I Y Y I Y S

3

3,

2I Y U

8 3 3

3, 1 ,

2I Y Y I Y S U U

Page 16: 7.Continuous Groups

3 , S I I 3

1,

2 S U U 3

1,

2 S V V

8 , S I 0 8

3,

2 S U U 8

3,

2 S V V

3 3 3 3, ,I Y I I Y S

8 3 3

3, ,

2I Y Y I Y S

8 3 3

3, 1 ,

2I Y Y I Y S U U

3 3 3 3 3 3, , , ,I Y I Y I I Y S U S U U

3 3 3 3

1, ,

2I Y I I Y

S U U

3

1,

2I Y U

3 3

1, , 1

2UI Y C I Y

U

Similarly : 3 3, 1 ,II Y C I Y I

3 3

1, , 1

2VI Y C I Y

V

Y

I3

I+

U+ V+

Page 17: 7.Continuous Groups

Example 17.7.4. Quark LaddersI3 Y

u 1/2 1/3

d 1/2 1/3

s 0 2/3

Mathematica

11 1

, 02 3

0

u

01 1

, 12 3

0

d

02

0 , 03

1

s

0 1 0

0 0 0

0 0 0

I

0 0 1

0 0 0

0 0 0

U

0 0 0

1 0 0

0 0 0

I

0 0 0

0 0 1

0 0 0

V

0 0 0

0 0 0

1 0 0

U

0 0 0

0 0 0

0 1 0

V

I+ I U+ U V+ V

u 0 d 0 0 0 s

d u 0 0 s 0 0

s 0 0 d 0 u 0

3 3

1, , 1

2UI Y C I Y

U

3 3, 1 ,II Y C I Y I

3 3

1, , 1

2VI Y C I Y

V

Page 18: 7.Continuous Groups

I3 Y

u 1/2 1/3

d 1/2 1/3

s 0 2/3

I+ I U+ U V+ V

u 0 d 0 0 0 s

d u 0 0 s 0 0

s 0 0 d 0 u 0

u (1/2 , 1/3 )

s ( 0 , 2/3 )

d (1/2 , 1/3 )

V

V+

I

I+

U

U+

Y

I3

I+I

V+

V

U+

U

(1/2 , 1 )

(1/2 , 1 )

(1/2 , 1 )

(1/2 , 1 )

(1 , 0 ) (1 , 0 )

Root Diagram :Effects of operators

Conversion between quarks

Page 19: 7.Continuous Groups

Baryons

Quark model: Each baryon consists of 3 quarks.

# of basis functions = 3 3 3 = 27

Decomposing into IR bases : 27 = 10 + 8 + 8 + 1

3 3 3 10 8 10 1

Standard tool for the task is the Young tableaux (see Tung).

3 3 3 10 8 8 1Short hand :

Rep :

Here, we’ll use the ladder operators ( see root diagram ).

Page 20: 7.Continuous Groups

Example 17.7.5. Generators for Direct Products

Group operation on products of basis functions :

1 2 1 2i j i jR U R U R

1 21 2i S i Si je e

1 2 1 2i S S

i je

1 21 2 i S Si S i Se e e i.e.,

e.g., 1 2 3 I I I I

group elements generators

Lie group Lie algebra

1 2 3 1 2 3 1 2 3 1 2 3u u u C d u u u d u u u d I

uuu C duu udu uud IShort hand :

Page 21: 7.Continuous Groups

3 3 3 31 2 3 1 2 3 1 2 3 1 2 3u u u u u u u u u u u u S S S S

31 2 3

2u u u

3

1 0 01

0 1 02

0 0 0

S

shorthand: 3

3

2u u u u u uS

8

1 0 02 1

0 1 033

0 0 2

S

3

1 1 1

2 2 2u u d u u d

I

1

2u u d

uuu has I3 = 3/2.

uud has I3 = 1/2.

8

2 1 2 2

3 3 33d s s d s s

S d s s dss has Y = 1.

Page 22: 7.Continuous Groups

Example 17.7.6. Decomposition of Baryon Multiplets

( I3 , Y ) values of the 27 possible 3-quark products :

( 3/2 , 1 ) ( 1/2 , 1 ) ( 1/2 , 1 ) ( 3/2 , 1 )

uuu uud , udu, duu udd , dud, ddu ddd

( 1 , 0 ) ( 0 , 0 ) ( 1 , 0 )

uus , usu , suu uds , dus , usd , dsu , sud , sdu

dds , dsd , sdd

( 1/2 , 1 ) ( 1/2 , 1 )

uss , sus , ssu dss , sds , ssd

( 0 , 2 )

sss

Page 23: 7.Continuous Groups

( 3/2 , 1 ) ( 1/2 , 1 ) ( 1/2 , 1 ) ( 3/2 , 1 )

uuu uud , udu, duu udd , dud, ddu ddd

( 1 , 0 ) ( 0 , 0 ) ( 1 , 0 )

uus , usu , suu uds , dus , usd , dsu , sud , sdu

dds , dsd , sdd( 1/2 , 1 ) ( 1/2 , 1 )

uss , sus , ssu dss , sds , ssd

( 0 , 2 )

sss

Baryon decuplet : generated from uuu. Baryon Octet : generated from [duu].

Mathematica

[...] means appropriate symmetrized linear combination of ... .

Page 24: 7.Continuous Groups

Mass SplittingParticles in a multiplet actually have slightly different masses ( SU(3) symmetry only approximate ).

This is caused by the weak & EM forces that break the symmetry of the strong force.

Page 25: 7.Continuous Groups

8. Lorentz Group

Physical laws should be the same for all observers.

Mathematically, this means equations of physical laws must be covariant, i.e.,

General relativity : Their forms are unchanged under any space-time coordinate (observer) transformations.

Special relativity : Their forms are unchanged under any transformations between moving inertial space-time coordinate systems (observers).

( Lorentz transformations ; Lorentz group )

Galilean relativity : Their forms are unchanged under any spatial coordinate transformations between moving inertial systems (observers)

Inertial system: System travelling with constant velocity w.r.t. a standard reference system (the distant stars).

Transformations between stationary inertial systems:

Translational invariance Conservation of (linear) momentum

Rotational invariance Conservation of angular momentum

Page 26: 7.Continuous Groups

Homogeneous Lorentz Group

Lorentz transformations : Transformations of space-time coordinatesbetween moving inertial systems.

Space-time is homogeneous & isotropic symmetries in coordinate transformations

Lorentz transformations ~ (homogeneous) Lorentz group

Lorentz transformations + space-time translations

Inhomogeneous Lorentz group( Poincare group )~

Page 27: 7.Continuous Groups

Special relativity : Space-time = linear 4-D space with Minkowski metric.( This makes velocity of light = c for all inertial observers )

1 2 3, , , ,x ct ct x x x x 0,1,2,3

2 2 22d dx d x c d t d x

Lorentz group : All transformations that keep 2 2d d

event interval

Let x be moving in +z direction with small velocity v :

z z vt

2

1a

c

1 2 3, , , ,x ct ct x x x x Same event as recorded by observer travelling with velocity v

t t avz a indep of v.

2 2 2 22 2c dt dz c dt avdz dz vdt 2 22 2 22 1c dt dz v ac O v

vct ct z

c

1

1

ct ct

z z

v

c

small v only

1 2 3, , , ,x ct ct x x x x

Page 28: 7.Continuous Groups

Comparing with the actual z-boost :

1

1

ct ct

z z

z

ct cti

z z

I S 0 1

1 0z i

S 1i σ

expz zi U S 1cos sini i i σ 1exp i i σ

cos sinkike i σ σ

1cosh sinh σ

cosh sinh

sinh coshz

U

Generator for z-boost

Operator for z-boost

2

z z vt

vzt t

c

tanhv

c

2 2

1

1 /v c

cosh sinh

= rapidity

Page 29: 7.Continuous Groups

Successive Boosts cosh sinh

sinh coshz

Utanh

v

c

cosh sinh cosh sinh

sinh cosh sinh coshz z

U U

cosh cosh sinh sinh sinh cosh cosh sinh

sinh cosh cosh sinh cosh cosh sinh sinh

cosh sinh

sinh cosh

z z z U U U z z U U, not , is the group parameter

Successive boosts in different directions give boost + rotation Thomas precession ( crucial in SO coupling )

11 1 1 1e e e e e σσ σ σ σ

Page 30: 7.Continuous Groups

Example 17.8.1.Addition of Collinear Velocities

tanhv

c

Successive z-boosts:

Resultant velocity: tanh tanh tanh

1 tanh tanh

1

0 , 1 , 0 & finite 0 1

1 1

11

Page 31: 7.Continuous Groups

Minkowski Space

Metric tensor :1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

g g

x g x d x g d x

x U x i S x

Boost

Page 32: 7.Continuous Groups

9. Lorentz Covariance of Maxwell’s Equations

Let B At

A

E SI units

,Ac

A F A A x

,

c t

0F

0 1ii iA

Fc t c

F F

1iiA

c t c

1 iEc

j ii j

i j

A AF

x x

i j k kB

1 2 3

1 3 2

2 3 1

3 2 1

0

010

0

E E E

E cB cBF

E cB cBc

E cB cB

F

i i j kii j k

EF cdt dx B dx dx

c

iiB B

see E.g.4.6.2

Page 33: 7.Continuous Groups

Lorentz Transformation of E & B

cosh sinh

sinh coshz

U

1 2 3

1 3 2

2 3 1

3 2 1

0

010

0

E E E

E cB cB

E cB cBc

E cB cB

F

cosh sinh

0 0

0 1 0 0

0 0 1 0

0 0

zU

U

F U U F

TF U F U U F U T U U

1 2 2 1 3

1 2 3 2 1

1 2 3 1 2

3 2 1 1 2

0

010

0

E cB E cB E

E cB cB cB E

E cB cB cB Ec

E cB E cB E

F

Mathematica

E E v B

2

1

c

B B v E

/ / / / E E

/ / / / B B

Page 34: 7.Continuous Groups

Example 17.9.1. Transformation to Bring Charge to Rest

Charge q moving with velocity v is at rest in frame boosted by v.

In boosted frame q F E

In original frame q F E v B

q E v B Lorentz force

Page 35: 7.Continuous Groups

10. Space Groups

Perfect crystal = basis of atoms / molecules placed on each point of a Bravais lattice.

Bravais lattice = points given by1

d

i ii

n

b h all integersin dimension

of space

d

hi = unit lattice vectors

For d = 3 , there’re

14 possible Bravais lattices, &

32 compatible crystallographic point groups,

which give rise to 230 space groups.