Top Banner
1 RECRYSTALLIZATION IN METALS FLORENT LEFEVRE-SCHLICK and DAVID EMBURY Department of Materials Science and Engineering McMaster University, Hamilton, ON, Canada
35
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 702 florent lefevre-schlick_november_2005

1

RECRYSTALLIZATION IN METALS

FLORENT LEFEVRE-SCHLICK and DAVID EMBURY

Department of Materials Science and EngineeringMcMaster University, Hamilton, ON, Canada

Page 2: 702 florent lefevre-schlick_november_2005

2

OUTLINE

RecrystallizationWhat is it?How is it usually treated?Importance of local misorientation/strain gradients on “nucleation”First stages of recrystallization; how can we investigate the “nucleation”?

Rapid heat treatmentsWhat are they?What can we expect from them?Recrystallization in metals

Modeling

Conclusions-Future work

Page 3: 702 florent lefevre-schlick_november_2005

3

What is it?Fe

E =Estored=~100J/mol

Deformation

Heat

Recovery (rearrangement of dislocations in sub grains)

Recrystallization (development of new strain free grains)

Recrystallization

Page 4: 702 florent lefevre-schlick_november_2005

4

Recrystallization

HOW DOES RECRYSTALLIZATION START?

“nucleation”

Strain Induced Boundary Migration

∆Θ1∆Θ2

∆Θ3

∆Θ4

∆Θ1

∆Θ3

∆Θ4

Θ1

Θ2

Θ1

Θ2

Θ2

E 1 E 2>

Coalescence and growth of subgrains

Migration of a boundary

In simple systems: small number of “nuclei” lead to recrystallized grains

Page 5: 702 florent lefevre-schlick_november_2005

5

Improving the mechanical properties of materials

How does recrystallization proceed? How to control recrystallization? How to achieve an important grain refinement? Can we control more than just the scale?

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10d-1/2 (µm-1/2)

σY (

MPa

)

CuFeAl

Recrystallization

Grain refinement strengthening

Page 6: 702 florent lefevre-schlick_november_2005

6

Johnson, Mehl, Avrami, Kolmogorov approach

1 exp( )nX Bt= − −

0

1

recr

ysta

llize

d fr

action

X

time

Random distribution of nucleation sites Constant rate of nucleation and growth n=4 Site saturation n=3

Recrystallization

Page 7: 702 florent lefevre-schlick_november_2005

7

Johnson, Mehl, Avrami, Kolmogorov approach

Recrystallization

Is n misleading?

<1Fe-Mn-C

1.7Aluminium+ small amount of copper, 40% cold rolled

4Fined grained Aluminium, low strain

4/3/2Constant nucleation rate 3d/2d/1d

3/2/1Site saturation 3d/2d/1d

Page 8: 702 florent lefevre-schlick_november_2005

8

“NUCLEATION” OF RECRYSTALLIZATION

Recrystallization

Hu et al. (1966) Adcock et al. (1922)

Large orientation gradient(transition bands)

Strain heterogeneities(shear bands)

Fe-Si system Cu

Page 9: 702 florent lefevre-schlick_november_2005

9

Particle Stimulated Nucleation

Leslie et al. (1963) Humphreys et al. (1977)Oxide inclusions in Fe Al-Si system Cluster of SiO2 in Ni

Recrystallization originates at pre-existing subgrains within the deformation zone

Nucleation is affected by particle size and particle distribution

“NUCLEATION” OF RECRYSTALLIZATION

Recrystallization

Page 10: 702 florent lefevre-schlick_november_2005

10

INVESTIGATING THE “NUCLEATION” EVENT

Injecting nucleation sites to increase N:

• Local misorientation (twins)

• Local strain gradient (high deformation)

Recrystallization

o

Impeding growth of recrystallized grains

• Rapid heat treatments

Page 11: 702 florent lefevre-schlick_november_2005

11

What are rapid heat treatments?

T

time

•“Slow” heat treatment (salt bath)

•“Rapid” heat treatment (spot welding machine)

•“Ultra-fast” heat treatment (pulsed laser)

T

timeT

time

seconds

mseconds

nano/pico/femtoseconds

Rapid heat treatments

Page 12: 702 florent lefevre-schlick_november_2005

12

“Slow” heat treatment: Salt bathTim e/Tem perature profile during salt bath

heat treatm ent

0

100

200

300

400

500

600

700

0 5 10 15Time (sec)

Tem

pera

ture

(C)

Duration of the heat treatment: 5 seconds.

Temperature range: 500oC to 650oC.

Heating rate ~300C/sec

Cooling rate ~1000C/sec

Salt bath

Page 13: 702 florent lefevre-schlick_november_2005

13

“NUCLEATION” IN IRONFe deformed by impact at 77K

50 µm B=[011]

01-1 -21-1

-200

21-1

-2-11

2-22(-2-11)

(1-11)

graintwinTwinning plane {112}

Shear direction 111

Production of deformation twins to promote a variety of potential nucleation sites for recrystallization, either at twin/grain boundary or twin/twin intersections

4 µm

Salt bath

Page 14: 702 florent lefevre-schlick_november_2005

14

ZA=[011]

ZA=[113] ZA=[113]

ZA=[113]200

0-11

22-2 21-1

ZA=[133]

-110

0-31

12-1 -301

21-1

-110

0-31

12-1-301

21-1

-110

0-31

12-1 -301

21-1

Kikuchi patterns of the parent grain, a twin and a cell of dislocations. Shift of about 0.5 deg in the ZA between the grain (green circle) and the cell (red circle).

-301-310

5 seconds at 500oC

BF images of a nuclei along a deformed twin.

Salt bath

“NUCLEATION” IN IRON

Page 15: 702 florent lefevre-schlick_november_2005

15

“NUCLEATION” IN COPPER

50 µm

1 µm 4 µm

25 µm

Cu 60% cold rolled Cu ~ 2% recrystallized5 seconds at 250oC

No noticeable effect of annealing twins on nucleation

Salt bath

Page 16: 702 florent lefevre-schlick_november_2005

16

45% cold rolled @ 77K

100µm

Stainless steel 316L

Cooperation with X. Wang

Salt bath

“NUCLEATION” IN STAINLESS STEEL

Page 17: 702 florent lefevre-schlick_november_2005

17

2 min @ 950C

25µm

Stainless steel 316L

Average grain size: 7µm

Salt bath

“NUCLEATION” IN STAINLESS STEEL

Page 18: 702 florent lefevre-schlick_november_2005

18

25µm

2 min @ 900C

Stainless steel 316L

Average grain size: 5µm

Salt bath

“NUCLEATION” IN STAINLESS STEEL

Page 19: 702 florent lefevre-schlick_november_2005

19

Stainless steel 316L

25µm

2 min @ 850C

Average grain size: 3µm

Salt bath

“NUCLEATION” IN STAINLESS STEEL

Page 20: 702 florent lefevre-schlick_november_2005

20

1 min @ 800C

10µm

Role of annealing, deformation twins and phases on nucleation and growth?

Stainless steel 316L

Salt bath

“NUCLEATION” IN STAINLESS STEEL

Page 21: 702 florent lefevre-schlick_november_2005

21

DF image (austenite)

DF image (austenite + martensite)

DF image (Twin)

BF image

Salt bath

1 min @ 800CStainless steel 316L

Fine and complex deformed microstructure Over a range of possible growing grains, only a few seem to grow

“NUCLEATION” IN STAINLESS STEEL

Page 22: 702 florent lefevre-schlick_november_2005

22

Salt bath

Stainless steel 316L, 2 min @ 850C

25µm

RECRYSTALLIZATION AS A WAY TO CONTROL THE NATURE OF GRAIN BOUNDARIES?

10o 20o 30o 40o 50o 60o

0%

30%

~30% of Σ3 boundaries (rotation 60o, axis <111>)

Page 23: 702 florent lefevre-schlick_november_2005

23

“RAPID” HEAT TREATMENT: SPOT WELDING MACHINE

3mm

250 µm

Fe annealed (thickness = 500 µm)Fe 60% cold rolled (thickness = 200 µm)

Electrode of Cu

Pulse discharge width: 1 msecEnergy output: 100 J to 1 JEstimated heating rate ~105K/sec

Spot welding machine

Page 24: 702 florent lefevre-schlick_november_2005

24

PHASE TRANSITION IN IRON

50 µm 50 µm

40 J 20 JMelted zoneHeated zone

Refinement of the microstructure via phase transitions

Distribution in grain size from 40 µm down to less than 1 µm

Spot welding machine

Page 25: 702 florent lefevre-schlick_november_2005

25

RECRYSTALLIZATION AND PHASE TRANSITION IN IRON

40 J

50 µm100 µm

Refinement of the microstructure via phase transitions and recrystallization

Distribution in grain size from 100 µm down to less than 1 µm

Spot welding machine

Fe 60% cold rolled

Page 26: 702 florent lefevre-schlick_november_2005

26

20 J

50 µm

Localized event along specific grain boundaries

Spot welding machine

RECRYSTALLIZATION AND PHASE TRANSITION IN IRON

Fe 60% cold rolled

Page 27: 702 florent lefevre-schlick_november_2005

27

Laser pulse: Energy (nJ to µJ) Time (fsec to nsec) Beam size (µm to mm)

Small volume on the surface Rapid heating and cooling (104 to 1012 K/sec) Increase in pressure (up to TPa) Shock wave.

“ULTRA FAST” HEAT TREATMENT: PULSE LASER IRRADIATION(nano/pico/femtosecond)

Cooperation with Preston/Haugen group

~100 nmto mm

Pulse lasers

Page 28: 702 florent lefevre-schlick_november_2005

28

λ = 800 nm

The beam has a Gaussian profile with a radius ω0

E0: full energy pulse (~10 µJ)

τp: duration of the pulse (~ 10 nsec/ 100psec/ 150 fsec)

φ: fluence or energy per unit area (J/cm2)

φth: threshold fluence (J/cm2) fluence required to transform the surface

Pulse lasers

“ULTRA FAST” HEAT TREATMENT: PULSE LASER IRRADIATION(nano/pico/femtosecond)

Page 29: 702 florent lefevre-schlick_november_2005

29

WHY PULSED LASERS?

Pulse lasers

Page 30: 702 florent lefevre-schlick_november_2005

30

SINGLE PULSE ABLATION OF FEE = 9.2 µJ

10 µm

5 µm

E = 1.0 µJ

10 µm

E = 3.2 µJ

5 µm

E = 0.2 µJ

What is the temperature profile? How to characterise the irradiated volume?

Pulse lasers

Page 31: 702 florent lefevre-schlick_november_2005

31

Si substrate

SiO2 isolant layer

Platinum2 mm

2 mm 100 µm25 nm2 µm

resistor connector

TEMPERATURE MEASUREMENT DEVICE

Summer work of B. Iqbar

Measuring the changes in resistivity of Pt estimating the temperature

Pulse lasers

Page 32: 702 florent lefevre-schlick_november_2005

32

Fe annealed, 1 grainCorrected harmonic contact stiffness: 1.106 N/m

0

10

20

30

200 400 600 800 1000 1200

Load On Sample (mN)

Displacement Into Surface (nm)

12345[6]

U

HD

I

E

M HN

L

0

100

200

300

400

200 400 600 800 1000 1200

Reduced Modulus (GPa)

Displacement Into Surface (nm)

12345[6]

IM HN

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000

Hardness (GPa)

Displacement Into Surface (nm)

12345[6]

IM

HN

INSTRUMENTED INDENTATIONPulse lasers

0

10

20

30

40

200 400 600 800 1000 1200

Load On Sample (mN)

Displacement Into Surface (nm)

[2]34

U

HDI

EM HN

L

Fe annealed, 3 different grains

0

100

200

300

400

200 400 600 800 1000 1200

Reduced Modulus (GPa)

Displacement Into Surface (nm)

[2]34

IMHN

0

2

4

6

8

10

12

14

16

200 400 600 800 1000 1200

Hardness (GPa)

Displacement Into Surface (nm)

[2]34

IM HN

Page 33: 702 florent lefevre-schlick_november_2005

33

1 2 3

12 11 10

-1

0

1

2

3

4

5

6

7

100 200 300 400

Load On Sample (mN)

Displacement Into Surface (nm)

12345678[9]101112S

U

HDI EM HN

L

-2

0

2

4

6

8

10

12

14

16

18

20

100 200 300 400

Hardness (GPa)

Displacement Into Surface (nm)

12345678[9]101112IM HN

INSTRUMENTED INDENTATIONPulse lasers

Softening of the deformed material? Is there local melting/solidification or local heating?

Page 34: 702 florent lefevre-schlick_november_2005

34

SGGrain IGrain II nucleus

Grain IGrain II

)(2)(tr

tG γ>

Modeling

ZUROB’S MODEL FOR RECRYSTALLIZATION

Needs input on local misorientations

Page 35: 702 florent lefevre-schlick_november_2005

35

CONCLUSIONS – FUTURE WORK

Investigation of the first stage of recrystallization by:

o Designing microstructures to promote No Using rapid heat treatments to allow nucleation but not G

o

o

Characterize the heat treatment in terms of time/temperature profile

Characterize the “nucleation” event in terms of local misorientation, local strain gradient (EBSD)

Introduce the data on misorientation into Zurob’s model