Top Banner
7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike Montemerlo, Nick Roy, Kai Arras, Patrick Pfaff and others Sebastian Thrun & Alex Teichman Stanford Artificial Intelligence Lab
68

7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-1

Probabilistic Robotics: Kalman Filters

Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike Montemerlo, Nick Roy, Kai Arras, Patrick Pfaff and others

Sebastian Thrun & Alex TeichmanStanford Artificial Intelligence Lab

Page 2: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-2

Bayes Filters in Localization

111 )(),|()|()( tttttttt dxxBelxuxPxzPxBel

Page 3: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

• Prediction

• Measurement Update

Bayes Filter Reminder

111 )(),|()( tttttt dxxbelxuxpxbel

)()|()( tttt xbelxzpxbel

Page 4: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Gaussians

2

2)(

2

1

2

2

1)(

:),(~)(

x

exp

Nxp

-s s

m

Univariate

)()(2

1

2/12/

1

)2(

1)(

:)(~)(

μxΣμx

Σx

Σμx

t

ep

,Νp

d

m

Multivariate

Page 5: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

),(~),(~ 22

2

abaNYbaXY

NX

Properties of Gaussians

22

21

222

21

21

122

21

22

212222

2111 1

,~)()(),(~

),(~

NXpXpNX

NX

Page 6: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

• We stay in the “Gaussian world” as long as we start with Gaussians and perform only linear transformations.

),(~),(~ TAABANY

BAXY

NX

Multivariate Gaussians

X1 ~ N(μ1,Σ1)

X2 ~ N(μ2,Σ2)

⎫ ⎬ ⎭⇒ p(X1) ⋅ p(X2) ~ N

Σ1−1

Σ1−1 + Σ2

−1μ1 +

Σ2−1

Σ1−1 + Σ2

−1μ2,

1

Σ1−1 + Σ2

−1

⎝ ⎜

⎠ ⎟

Page 7: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-7

Discrete Kalman Filter

tttttt uBxAx 1

tttt xCz

Estimates the state x of a discrete-time controlled process that is governed by the linear stochastic difference equation

with a measurement

Page 8: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-8

Components of a Kalman Filter

t

Matrix (nxn) that describes how the state evolves from t to t-1 without controls or noise.

tA

Matrix (nxl) that describes how the control ut changes the state from t to t-1.tB

Matrix (kxn) that describes how to map the state xt to an observation zt.tC

t

Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance Rt and Qt respectively.

Page 9: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-9

Kalman Filter Updates in 1D

Page 10: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-10

Kalman Filter Updates in 1D

1)(with )(

)()(

tTttt

Tttt

tttt

ttttttt QCCCK

CKI

CzKxbel

2,

2

2

22 with )1(

)()(

tobst

tt

ttt

tttttt K

K

zKxbel

Page 11: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Kalman Filter Updates in 1D

tTtttt

tttttt RAA

uBAxbel

1

1)(

2

,2221)(

tactttt

tttttt a

ubaxbel

Page 12: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Kalman Filter Updates

Page 13: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

0000 ,;)( xNxbel

Linear Gaussian Systems: Initialization

• Initial belief is normally distributed:

Page 14: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

• Dynamics are linear function of state and control plus additive noise:

tttttt uBxAx 1

Linear Gaussian Systems: Dynamics

ttttttttt RuBxAxNxuxp ,;),|( 11

1111

111

,;~,;~

)(),|()(

ttttttttt

tttttt

xNRuBxAxN

dxxbelxuxpxbel

Page 15: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Linear Gaussian Systems: Dynamics

tTtttt

tttttt

ttttT

tt

ttttttT

tttttt

ttttttttt

tttttt

RAA

uBAxbel

dxxx

uBxAxRuBxAxxbel

xNRuBxAxN

dxxbelxuxpxbel

1

1

1111111

11

1

1111

111

)(

)()(2

1exp

)()(2

1exp)(

,;~,;~

)(),|()(

Page 16: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

• Observations are linear function of state plus additive noise:

tttt xCz

Linear Gaussian Systems: Observations

tttttt QxCzNxzp ,;)|(

ttttttt

tttt

xNQxCzN

xbelxzpxbel

,;~,;~

)()|()(

Page 17: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Linear Gaussian Systems: Observations

1

11

)(with )(

)()(

)()(2

1exp)()(

2

1exp)(

,;~,;~

)()|()(

tTttt

Tttt

tttt

ttttttt

tttT

ttttttT

tttt

ttttttt

tttt

QCCCKCKI

CzKxbel

xxxCzQxCzxbel

xNQxCzN

xbelxzpxbel

Page 18: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Kalman Filter Algorithm

1. Algorithm Kalman_filter( mt-1, St-1, ut, zt):

2. Prediction:3. 4.

5. Correction:6. 7. 8.

9. Return mt, St

ttttt uBA 1

tTtttt RAA 1

1)( tTttt

Tttt QCCCK

)( tttttt CzK

tttt CKI )(

Page 19: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Kalman Filter Algorithm

Page 20: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Kalman Filter Algorithm

• Prediction• Observation

• Matching• Correction

Page 21: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-21

The Prediction-Correction-Cycle

tTtttt

tttttt RAA

uBAxbel

1

1)(

2

,2221)(

tactttt

tttttt a

ubaxbel

Prediction

Page 22: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-22

The Prediction-Correction-Cycle

1)(,)(

)()(

tTttt

Tttt

tttt

ttttttt QCCCK

CKI

CzKxbel

2,

2

2

22 ,)1(

)()(

tobst

tt

ttt

tttttt K

K

zKxbel

Correction

Page 23: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-23

The Prediction-Correction-Cycle

1)(,)(

)()(

tTttt

Tttt

tttt

ttttttt QCCCK

CKI

CzKxbel

2,

2

2

22 ,)1(

)()(

tobst

tt

ttt

tttttt K

K

zKxbel

tTtttt

tttttt RAA

uBAxbel

1

1)(

2

,2221)(

tactttt

tttttt a

ubaxbel

Correction

Prediction

Page 24: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Kalman Filter Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k2.376 + n2)

• Optimal for linear Gaussian systems!

• Most robotics systems are nonlinear!

Page 25: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Nonlinear Dynamic Systems

• Most realistic robotic problems involve nonlinear functions

),( 1 ttt xugx

)( tt xhz

Page 26: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Linearity Assumption Revisited

Page 27: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Non-linear Function

Page 28: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Linearization (1)

Page 29: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Linearization (2)

Page 30: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Linearization (3)

Page 31: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

• Prediction:

• Correction:

EKF Linearization: First Order Taylor Series Expansion

)(),(),(

)(),(

),(),(

1111

111

111

ttttttt

ttt

tttttt

xGugxug

xx

ugugxug

)()()(

)()(

)()(

ttttt

ttt

ttt

xHhxh

xx

hhxh

Page 32: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Algorithm

1. Extended_Kalman_filter( mt-1, St-1, ut, zt):

2. Prediction:3. 4.

5. Correction:6. 7. 8.

9. Return mt, St

),( 1 ttt ug

tTtttt RGG 1

1)( tTttt

Tttt QHHHK

))(( ttttt hzK

tttt HKI )(

1

1),(

t

ttt x

ugG

t

tt x

hH

)(

ttttt uBA 1

tTtttt RAA 1

1)( tTttt

Tttt QCCCK

)( tttttt CzK

tttt CKI )(

Page 33: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Localization

• Given • Map of the environment.• Sequence of sensor measurements.

• Wanted• Estimate of the robot’s position.

• Problem classes• Position tracking• Global localization• Kidnapped robot problem (recovery)

“Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities.” [Cox ’91]

Page 34: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Landmark-based Localization

Page 35: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

1. EKF_localization ( mt-1, St-1, ut, zt, m):

Prediction:

2.

3.

4. ),( 1 ttt ug

Tttt

Ttttt VMVGG 1

,1,1,1

,1,1,1

,1,1,1

1

1

'''

'''

'''

),(

tytxt

tytxt

tytxt

t

ttt

yyy

xxx

x

ugG

tt

tt

tt

t

ttt

v

y

v

y

x

v

x

u

ugV

''

''

''

),( 1

2

43

221

||||0

0||||

tt

ttt

v

vM

Motion noise

Jacobian of g w.r.t location

Predicted mean

Predicted covariance

Jacobian of g w.r.t control

Page 36: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

1. EKF_localization ( mt-1, St-1, ut, zt, m):

Correction:

2.

3.

4.

5.

6.

)ˆ( ttttt zzK

tttt HKI

,

,

,

,

,

,),(

t

t

t

t

yt

t

yt

t

xt

t

xt

t

t

tt

rrr

x

mhH

,,,

2,

2,

,2atanˆ

txtxyty

ytyxtxt

mm

mmz

tTtttt QHHS

1 tTttt SHK

2

2

0

0

r

rtQ

Predicted measurement mean

Pred. measurement covariance

Kalman gain

Updated mean

Updated covariance

Jacobian of h w.r.t location

Page 37: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Prediction Step

Page 38: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Observation Prediction Step

Page 39: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Correction Step

Page 40: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Estimation Sequence (1)

Page 41: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Estimation Sequence (2)

Page 42: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Comparison to GroundTruth

Page 43: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k2.376 + n2)

• Not optimal!• Can diverge if nonlinearities are large!• Works surprisingly well even when all

assumptions are violated!

Page 44: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Localization Example

• Line and point landmarks

Page 45: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Localization Example

• Line and point landmarks

Page 46: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Localization Example

• Lines only (Swiss National Exhibition Expo.02)

Page 47: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Linearization via Unscented Transform

EKF UKF

Page 48: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

UKF Sigma-Point Estimate (2)

EKF UKF

Page 49: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

UKF Sigma-Point Estimate (3)

EKF UKF

Page 50: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Unscented Transform

nin

wwn

nw

nw

ic

imi

i

cm

2,...,1for )(2

1 )(

)1( 2000

Sigma points Weights

)( ii g

n

i

Tiiic

n

i

iim

w

w

2

0

2

0

))(('

'

Pass sigma points through nonlinear function

Recover mean and covariance

Page 51: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

UKF_localization ( mt-1, St-1, ut, zt, m):

Prediction:

2

43

221

||||0

0||||

tt

ttt

v

vM

2

2

0

0

r

rtQ

TTTt

at 000011

t

t

tat

Q

M

00

00

001

1

at

at

at

at

at

at 111111

xt

utt

xt ug 1,

L

i

T

txtit

xti

ict w

2

0,,

L

i

xti

imt w

2

0,

Motion noise

Measurement noise

Augmented state mean

Augmented covariance

Sigma points

Prediction of sigma points

Predicted mean

Predicted covariance

Page 52: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

UKF_localization ( mt-1, St-1, ut, zt, m):

Correction:

zt

xtt h

L

iti

imt wz

2

0,ˆ

Measurement sigma points

Predicted measurement mean

Pred. measurement covariance

Cross-covariance

Kalman gain

Updated mean

Updated covariance

Ttti

L

itti

ict zzwS ˆˆ ,

2

0,

Ttti

L

it

xti

ic

zxt zw ˆ,

2

0,

,

1, tzx

tt SK

)ˆ( ttttt zzK

Tttttt KSK

Page 53: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

1. EKF_localization ( mt-1, St-1, ut, zt, m):

Correction:

2.

3.

4.

5.

6.

)ˆ( ttttt zzK

tttt HKI

,

,

,

,

,

,),(

t

t

t

t

yt

t

yt

t

xt

t

xt

t

t

tt

rrr

x

mhH

,,,

2,

2,

,2atanˆ

txtxyty

ytyxtxt

mm

mmz

tTtttt QHHS

1 tTttt SHK

2

2

0

0

r

rtQ

Predicted measurement mean

Pred. measurement covariance

Kalman gain

Updated mean

Updated covariance

Jacobian of h w.r.t location

Page 54: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

UKF Prediction Step

Page 55: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

UKF Observation Prediction Step

Page 56: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

UKF Correction Step

Page 57: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

EKF Correction Step

Page 58: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Estimation Sequence

EKF PF UKF

Page 59: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Estimation Sequence

EKF UKF

Page 60: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Prediction Quality

EKF UKF

Page 61: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-61

UKF Summary

• Highly efficient: Same complexity as EKF, with a constant factor slower in typical practical applications

• Better linearization than EKF: Accurate in first two terms of Taylor expansion (EKF only first term)

• Derivative-free: No Jacobians needed

• Still not optimal!

Page 62: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

• [Arras et al. 98]:

• Laser range-finder and vision

• High precision (<1cm accuracy)

Kalman Filter-based System

Courtesy of K. Arras

Page 63: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

Multi-hypothesisTracking

Page 64: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

• Belief is represented by multiple hypotheses

• Each hypothesis is tracked by a Kalman filter

• Additional problems:

• Data association: Which observation

corresponds to which hypothesis?

• Hypothesis management: When to add / delete

hypotheses?

• Huge body of literature on target tracking, motion

correspondence etc.

Localization With MHT

Page 65: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

• Hypotheses are extracted from LRF scans• Each hypothesis has probability of being the correct

one:

• Hypothesis probability is computed using Bayes’ rule

• Hypotheses with low probability are deleted.

• New candidates are extracted from LRF scans.

MHT: Implemented System (1)

)}(,,ˆ{ iiii HPxH

},{ jjj RzC

)(

)()|()|(

sP

HPHsPsHP ii

i

[Jensfelt et al. ’00]

Page 66: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

MHT: Implemented System (2)

Courtesy of P. Jensfelt and S. Kristensen

Page 67: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

MHT: Implemented System (3)Example run

Map and trajectory

# hypotheses

#hypotheses vs. time

P(Hbest)

Courtesy of P. Jensfelt and S. Kristensen

Page 68: 7-1 Probabilistic Robotics: Kalman Filters Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,

7-68

Summary: Kalman Filter

• Gaussian Posterior, Gaussian Noise, efficient when applicable

• KF: Motion, Sensing = linear• EKF: nonlinear, uses Taylor expansion• UKF: nonlinear, uses sampling• MHKF: Combines best of Kalman

Filters and particle filters

• A little challenging to implement