Top Banner

of 117

6. Roof_semi-d(idp)

Jun 03, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 6. Roof_semi-d(idp)

    1/117

    Semi-detached Calculations

    Roof Calculator - Semi-detached

    Roof Dimension

    Roof Number 1:

    Dimension of roof

    (on plan) b = 4700 mm

    l = 8752 mm

    Distance between roof and structure= 1075 mm

    (on slope) b = 4700 mm

    l = 8817.7 mm

    Purlin

    Length of purlin = 4700.0 mm

    Number of space between purlin = 4

    Number of purlin = 5

    Spacing of purlin = 2204 mm

    Rafter

    Length of rafter = 8817.7 mm

    Number of space between rafter = 3Number of rafter = 4

    Spacing of rafter = (4700-1075)/3 mm

    = 1208 mm

    Roof 1

  • 8/12/2019 6. Roof_semi-d(idp)

    2/117

    Semi-detached Calculations

    Roof Number 2:

    Dimension of roof

    (on plan) b = 6627 mm

    l = 3100 mm

    Distance between roof and structure= 1075 mm

    (on slope) b = 6627 mm

    l = 3123.3 mm

    Purlin

    Length of purlin = 6627.0 mm

    Number of space between purlin = 6

    Number of purlin = 7

    Spacing of purlin = 521 mm

    Rafter

    Length of rafter = 3123.3 mm

    Number of space between rafter = 3

    Number of rafter = 4

    Spacing of rafter = (6627-1075)/3

    = 1851 mm

    Roof 2

  • 8/12/2019 6. Roof_semi-d(idp)

    3/117

    Semi-detached Calculations

    Steel Section

    Purlin: C-channel 150x75x18

    Self-weight = 17.9 kg/m

    Width = 75 mm

    Depth of section, h = 150 mm

    Thickness of flange = 10 mm

    (b/t)flange = 7.5 mm

    (d/t)web = 19.3 mm

    ry= 2.4 cm

    u = 0.946

    x = 13.1

    I = 861 cm4

    Plastic modulus, Sx= 132 cm3

    Elastic modulus, Zx= 115 cm3

    Elastic modulus, Zy= 26.6 cm3

    Rafer : I-beam 305x165x54

    Self-weight = 54 kg/m

    Width = 166.9 mm

    Depth of section, h = 310.4 mm

    Thickness of flange = 13.7 mm

    (b/t)flange = 6.09 mm

    (d/t)web = 33.6 mmry= 3.93 cm

    u = 0.889

    x = 23.6

    I = 11700 cm4

    Plastic modulus, Sx= 846 cm3

    Elastic modulus, Zx= 754 cm3

    Roof 5

  • 8/12/2019 6. Roof_semi-d(idp)

    4/117

  • 8/12/2019 6. Roof_semi-d(idp)

    5/117

    Semi-detached Calculations

    # Building size: Class A

    Table 3 H (m) S2

    10 0.78

    10.556 0.791

    15 0.88

    Thus, S2is 0.791

    Clause 5.6 For completed structure; Factor S3= 1

    Clause 5.1 Design Wind Speed, Vs= VxS1xS2xS3

    = 27.69 m/s

    Clause 6 Dynamic Pressure, q = k*(Vs^2)

    k = 0.613 (in SI unit)

    Thus, q = 469.98 N/m2

    = 0.47 kN/m2

    Table 9 Most critical wind load occurs at wind angle 90.

    Roof angle, Wind angle 905 -1.0

    7 -1.0

    10 -1.0

    Appendix E Conditition Cpi

    a) wind normal to permeable face 0.2

    b) wind normal to impermeable face -0.3

    CpeCpe

    CpiCpi

    H side

    L side

    Cp =(Cpe- Cpi)Cp=(Cpe- Cpi)

    Roof 7

  • 8/12/2019 6. Roof_semi-d(idp)

    6/117

    Semi-detached Calculations

    Worst case scenario at wind angle, 90 with;

    Cp= -1.2

    Therefore, the worst case pressure coefficient, Cp is -1.2

    Clause 7.2 Pressure on roof, P = Cp*q= (-1.2)(0.47)

    = -0.564 kN/m2

    Wind load, F

    a) Internal Node = -1.502 kN

    b) End Node = -0.751 kN

    Figure 1: Loads Transferred to Purlin

    BS 5950: 1 (i) Purlin Design

    Loads acting on purlin

    1. Zinc + Insulation load

    (on plan) = 0.112 kN/m2

    (on slope) = 0.111 kN/m2

    2. Purlin self-weight = 0.179 kN/m

    Total load on node, Wp= (0.111 x 2.132 x 1.828)+(0.179 x 1.828)

    = 0.51 kN

    Table 27 Section modulus, Zp =

    =

    = 0.34 cm3

    Purlin

    Rafter

    2.132m

    2.132m

    1.828m1.828m

    W L

    1800

    0.93 x 1828

    1800

    Roof 8

  • 8/12/2019 6. Roof_semi-d(idp)

    7/117

    Semi-detached Calculations

    D = L/45

    = 1828/45

    = 27 mm

    B = L/60

    = 1828/60

    = 20 mm

    Try C-channel of section 150x75x18.

    Treated as simply supported;

    loads on purlin = 3.132 kN/m

    reaction = 1.892 kN

    maximum moment = 0.572 kN.m

    3.132 kN/m

    1.208 m

    1.892 kN 1.892 kN

    V(kN)

    1.892

    - 1.892

    M(kN.m)

    0.572 kN.m

    Figure 2: Shear and Moment Diagram for Purlin

    Checking:

    Table 9 1. Thickness of flange, t = 10 mm < 16mm

    Thus, design strenght y= 275 N/mm2 = (y/275) = 1

    Tabele 11 2. Web of a channel d/t = 2.4 < 40 = 40

    Thus, overall class is class 1.

    Roof 9

  • 8/12/2019 6. Roof_semi-d(idp)

    8/117

    Semi-detached Calculations

    3. Biaxial Bending

    Segment length, LLT= 1.208 m

    Table 13 Effective length, LE= 1.2LLT+2D

    = 1.750 m

    Clause 4.3.6.7 Slenderness, = LE/ry= 72.92

    /x = 5.57

    Table 19 /x v7.50 0.720

    5.57 0.797

    8.00 0.700

    Clause 4.3.6.9 Class 1 - plastic: Bw = 1

    Clause 4.3.6.7 Equivalent slenderness, LT = uv Bw= 55.00

    Table 16 LT y = 275 N/mm2

    b65.0 201.0

    55.0 227.0

    70.0 188.0

    Bending strength, b= 227.0 N/mm2

    Clause 4.3.6.4 Class 1-plastic: Mb= bSx= 29.96 kN.m > Mmax 0.572 kN.m

    # Thus, ok

    Table 26 Equivalent uniform moment factor for = 0.95

    flexural buckling, m

    Table 18 Equivalent uniform moment factor for = 0.925

    lateral-torsional buckling, mLT

    Roof 10

  • 8/12/2019 6. Roof_semi-d(idp)

    9/117

    Semi-detached Calculations

    Biaxial checking formula:

    1

    Mx=

    0.572 kN.mMy = 0.07 kN.m

    =

    = 0.026

  • 8/12/2019 6. Roof_semi-d(idp)

    10/117

    Semi-detached Calculations

    (ii) Rafter Design

    Figure 3: Loads Transferred to Rafter

    Loadings:

    Try I-beam section 305x165x54 for rafter.

    Dead Load:

    Transferred from purlin = 0.51 kN

    Rafter self-weight = 0.540 kN/m

    Imposed Load:

    Qk(on slope) = 0.596 kN/m2

    = 0.720 kN/m

    Wind Load:

    Wk= 0.47 kN/m2

    = 0.568 kN/m

    Purlin

    Rafter

    2.132m

    2.132m

    1.828m1.828m0.60m 1.828m 0.60m

    Roof 12

  • 8/12/2019 6. Roof_semi-d(idp)

    11/117

    Semi-detached Calculations

    Load combinations (on internal node as shown in red dot in Figure 2):

    Case 1:

    Dead + Imposed load = 1.4Gk+1.6Qk

    = 1.4[0.93+(0.54x(2.132)]+1.6(1.327x2.123)

    = 4.922 kN

    Case 2:

    Dead + Wind load = 1.0Gk+1.4Wk

    = 1.0[0.93+(0.54x(2.132)]+1.4(-1.047x2.123)

    = -0.050 kN

    Case 3:

    Dead + Imposed + 1.2 (Gk+Qk+Wk)

    Wind load =

    = 1.2[(0.93+(0.54x(2.132))+(1.327x2.123)+(-1.047x2.123)]

    = 2.445 kN

    Case 1 is used in rafter design because it is the most critical among the three load

    combinations.

    Loads acting on (not including self-weight of rafter):

    a) Internal node = 1.4[(0.111 x 2.132 x 1.828)+(0.179 x 1.828)]+

    1.6[0.596x2.132x1.828]

    = 3.255 kN

    b) End node = 1.4[(0.111 x (2.132/2) x 1.828)+(0.179 x 1.828))]+

    1.6[0.596x(2.132/2)x1.828]

    = 1.779 kN

    1.779 3.255 3.255 3.255 1.779

    0.756 kN/m

    2.204 2.204 2.204 0.704 1.500

    7.95 12.04

    Figure 4: Loads Acted on Rafter

    MA= [RB(2.132+2.132+2.132+0.632)]-[5.825 = 0

    x(2.132+(2.132x2)+(2.132x3)]+(-3.192x8.528) -

    (0.54x(8.5282/2))

    RB= 12.04 kN

    RA= RB

    =kN kN

    Roof 13

  • 8/12/2019 6. Roof_semi-d(idp)

    12/117

    Semi-detached Calculations

    MB= [-RA(2.132+2.132+2.132+0.632)]+[5.825 = 0

    x((2.132+2.132+0.632)+(2.132+0.632)+0.632]+

    (-3.192x1.5)+(3.192x7.028)

    RA= 7.95 kN

    V(kN)

    6.17 4.50

    2.91

    1.25 1.78

    -0.42

    -3.68

    -5.34

    -8.60 -9.13

    M(kN.m)

    3.54

    0

    -11.76 -2.70

    -12.82 -12.64

    Figure 5: Shear and Moment Diagram for Rafter

    BS5950 Checking:

    Table 9 1. Thickness of flange, t = 13.7 mm < 16mm

    Thus, design strenght y= 275 N/mm2

    = (y/275) = 1

    Table 11 Flange b/t = 6.09 < 40 = 40

    Web d/t = 33.6 < 80 = 80Thus, overall class is class 1.

    Roof 14

  • 8/12/2019 6. Roof_semi-d(idp)

    13/117

    Semi-detached Calculations

    2. Section selection

    Mmax= 12.82 kN.m

    M = ySxRearranging; Sx = M/y

    = 46624.15 mm3

    = 46.62 cm3

    Try section 305x165x54.

    Sx= 846 cm3

    Mdesign= ySx

    = 275x(846x103)

    = 232.65 kN.m > Mmax 12.82 kN.m

    Thus, ok

    3. Shear Capacity Check

    Fmax= 9.13 kN

    Pv= 0.6yAv

    = 701.66 kN > Fmax 9.13 kN

    Thus, section is adequate in term of shear capacity.

    Web d/t = 33.6 < 70 = 70Thus, it is not required to check for shear buckling.

    4. Moment Capacity Check

    0.6 Pv= 421.00 kN

    Fv= 9.13 kN < 0.6 Pv (421 kN)

    Therefore, it is low shear.

    Thus, Class 1: Mc = ySx= 232.65 kN.m > Mmax 12.82 kN.m

    Thus, this section is adequate in term of moment capacity.

    Roof 15

  • 8/12/2019 6. Roof_semi-d(idp)

    14/117

    Semi-detached Calculations

    5. Deflection Check

    Point load from purlin;

    a) Internal node = 0.596x2.132x1.828

    = 1.586 kN

    b) End node = 0.596x(2.132/2)x1.828

    = 0.793 kN

    Young's Modulus, E = 2.05E+05 N/mm2

    Moment of Inertia, I = 11700 cm4

    Distance between the end and nodes:

    a1= 0 mm

    a2 = 2204.4 mm

    a3 = 4408.9 mm

    a4 = 6613.3 mm

    a5 = 8817.7 mm

    Deflection, =

    =

    = 0.563 mm

    Table 8 /span = 6.3792E-08 < 1/360

    Therefore, the I-beam of section 305x165x54 is adequate in terms of deflection.

    Roof 16

  • 8/12/2019 6. Roof_semi-d(idp)

    15/117

  • 8/12/2019 6. Roof_semi-d(idp)

    16/117

    Semi-detached Calculations

    Roof 18

  • 8/12/2019 6. Roof_semi-d(idp)

    17/117

    Semi-detached Calculations

    Roof 19

  • 8/12/2019 6. Roof_semi-d(idp)

    18/117

    Semi-detached Calculations

    Roof 20

  • 8/12/2019 6. Roof_semi-d(idp)

    19/117

  • 8/12/2019 6. Roof_semi-d(idp)

    20/117

    Semi-detached Calculations

    Roof 22

  • 8/12/2019 6. Roof_semi-d(idp)

    21/117

    Semi-detached Calculations

    Roof 23

  • 8/12/2019 6. Roof_semi-d(idp)

    22/117

    Semi-detached Calculations

    Roof 24

  • 8/12/2019 6. Roof_semi-d(idp)

    23/117

  • 8/12/2019 6. Roof_semi-d(idp)

    24/117

    Semi-detached Calculations

    Roof 26

  • 8/12/2019 6. Roof_semi-d(idp)

    25/117

    Semi-detached Calculations

    Roof 27

  • 8/12/2019 6. Roof_semi-d(idp)

    26/117

    Semi-detached Calculations

    Roof 28

  • 8/12/2019 6. Roof_semi-d(idp)

    27/117

    Semi-detached Calculations

    Roof 29

  • 8/12/2019 6. Roof_semi-d(idp)

    28/117

  • 8/12/2019 6. Roof_semi-d(idp)

    29/117

  • 8/12/2019 6. Roof_semi-d(idp)

    30/117

    Semi-detached Calculations

    Task Design Roof for Semi-detached Unit Roof 2

    Reference Calculation

    Loadings

    Dead Load

    Structural Self-weight of purlin = 0.179 kN/m

    Sections: to Self-weight of rafter = 0.540 kN/m

    BS4: Part 1 and

    BS 4848:Part 4

    BS 648 Zinc sheeting (0.041in.) = 7.8 kg/m2

    = 0.078 kN/m2

    Insulation (aluminium = 3.4 kg/m2

    sheet 0.048 in.) 0.034 kN/m2

    BS6399 Imposed Load

    : Part 3

    Clause 4.3.1.(c) (on plan) = 0.6 kN/m2

    (on slope) = 0.596 kN/m2

    CP3: Chapter Wind Load

    V-2: 1972= 7 degree

    H = 9.133 m

    h = 8.3 m

    w = 7.7 m

    h/w = 1.08 < 2

    Thus, value of Table 9 from CP3: Chapter V-2: 1972 can be used.

    Basic Wind Speed, V = 35 m/s

    Clause 5.4 Topographic Factor, S1= 1

    Clause 5.5.2 Ground roughness, building size and height above ground factor

    # Ground roughness: (3) Country with many windbreakers: small towns

    , outskirts of large cities

    h

    Hw

    Roof 44

  • 8/12/2019 6. Roof_semi-d(idp)

    31/117

    Semi-detached Calculations

    # Building size: Class A

    Table 3 H (m) S2

    10 0.78

    9.133 0.763

    15 0.88

    Thus, S2is 0.791

    Clause 5.6 For completed structure; Factor S3 1

    Clause 5.1 Design Wind Speed, Vs= VxS1xS2xS3

    = 26.69 m/s

    Clause 6 Dynamic Pressure, q = k*(Vs^2)

    k = 0.613 (in SI unit)

    Thus, q = 436.78 N/m2

    = 0.44 kN/m2

    Table 9 Most critical wind load occurs at wind angle 90.

    Roof angle, Wind angle 90

    5 -1.07 -1.0

    10 -1.0

    Appendix E Conditition Cpi

    a) wind normal to permeable face 0.2

    b) wind normal to impermeable face -0.3

    CpeCpe

    CpiCpi

    H side

    L side

    Cp =(Cpe- Cpi)

    Cp=(Cpe- Cpi)

    Roof 45

  • 8/12/2019 6. Roof_semi-d(idp)

    32/117

    Semi-detached Calculations

    Worst case scenario at wind angle, 90with;

    Cp= -1.2

    Therefore, the worst case pressure coefficient, Cp is -1.2

    Clause 7.2 Pressure on roof, P = Cp*q

    = (-1.2)(0.47)= -0.524 kN/m

    2

    Wind load, F

    a) Internal Node = -0.505 kN

    b) End Node = -0.252 kN

    Figure 1: Loads Transferred to Purlin

    BS 5950: 1 (i) Purlin Design

    Loads acting on purlin

    1. Zinc + Insulation load

    (on plan) = 0.112 kN/m2

    (on slope) = 0.111 kN/m2

    2. Purlin self-weight = 0.179 kN/m

    Total load on node, Wp= (0.111 x 1.033x 2.167)+(0.179 x 2.167)

    = 0.44 kN

    Table 27Section modulus, Zp =

    =

    = 0.45 cm3

    Purlin

    Rafter

    1.033m

    1.033m

    2.167m2.167m

    W L

    1800

    1.13 x 2167

    1800

    Roof 46

  • 8/12/2019 6. Roof_semi-d(idp)

    33/117

    Semi-detached Calculations

    D = L/45

    = 2167/45

    = 27 mm

    B = L/60

    = 2167/60

    = 31 mm

    Try C-channel of section 150x75x18.

    Treated as simply supported;

    loads on purlin = 1.250 kN/m

    reaction = 1.156 kN

    maximum moment = 0.535 kN.m

    1.250 kN/m

    1.851 m

    1.156 kN 1.156 kN

    V(kN)

    1.156

    - 1.156

    M(kN.m)

    0.535 kN.m

    Figure 2: Shear and Moment Diagram for Purlin

    Checking:

    Table 9 1. Thickness of flange, t = 10 mm < 16mm

    Thus, design strenght y= 275 N/mm2

    = (y/275) = 1

    Table 11 2. Web of a channel d/t = 2.4 < 40 = 40

    Thus, overall class is class 1.

    Roof 47

  • 8/12/2019 6. Roof_semi-d(idp)

    34/117

  • 8/12/2019 6. Roof_semi-d(idp)

    35/117

    Semi-detached Calculations

    Biaxial checking formula:

    1

    Mx= 0.535 kN.m

    My = 0.07 kN.m

    =

    = 0.025

  • 8/12/2019 6. Roof_semi-d(idp)

    36/117

    Semi-detached Calculations

    (ii) Rafter Design

    Figure 3: Loads Transferred to Rafter

    Loadings:

    Try I-beam section 305x165x54 for rafter.

    Dead Load:

    Transferred from purlin = 0.44 kN

    Rafter self-weight = 0.540 kN/m

    Imposed Load:

    Qk(on slope) = 0.596 kN/m2

    = 1.102 kN/m

    Wind Load:

    Wk= 0.44 kN/m2

    = 0.808 kN/m

    Purlin

    Rafter

    1.033m

    1.033m

    2.167m2.167m0.60m

    1.033m

    1.033m

    2.167m 0.60m

    Roof 50

  • 8/12/2019 6. Roof_semi-d(idp)

    37/117

    Semi-detached Calculations

    Load combinations (on internal node as shown in red dot in Figure 2):

    Case 1:

    Dead + Imposed load = 1.4Gk+1.6Qk

    = 1.4[0.75+(0.54x(1.033)]+1.6(1.529x1.033)

    = 1.925 kN

    Case 2:

    Dead + Wind load = 1.0Gk+1.4Wk

    = 1.0[0.75+(0.54x(1.033)]+1.4(-1.121x1.033)

    = 0.130 kN

    Case 3:

    Dead + Imposed 1.2 (Gk+Qk+Wk)

    + Wind load =

    = 1.2[(0.75+(0.54x(1.033))+(1.529x1.033)+(-1.121x1.033)]

    = 1.047 kN

    Case 1 is used in rafter design because it is the most critical among the three load

    combinations.

    Loads acting on (not including self-weight of rafter):

    a) Internal node = 1.4[(0.111 x 1.033 x 2.167)+(0.179 x 2.167)]+

    1.6[0.596x1.033x2.167]

    = 1.532 kN

    b) End node = 1.4[(0.111 x (1.033/2) x 2.228)+(0.179 x 2.167))]+

    1.6[0.596x(1.033/2)x2.167]

    = 0.998 kN

    0.998 1.532 1.532 1.532 0.998

    0.756 kN/m

    0.521 0.521 0.521 -0.129 0.650

    2.23 5.93

    Figure 4: Loads Acted on Rafter

    MA= [RB(1.033+1.033+1.033+0.383)]-[5.825 = 0

    x(1.033+(1.033x2)+ (1.033x3)]+(-2.112x4.131) -

    (0.54x(4.1312/2))

    RB= 5.93 kN

    RA= R

    B=kN kN

    Roof 51

  • 8/12/2019 6. Roof_semi-d(idp)

    38/117

    Semi-detached Calculations

    MB= [-RA(1.033+1.033+1.033+0.383)]+[5.825x = 0

    ((1.033+1.033+0.383)+(1.033+0.383)+0.383]+

    (-2.112x0.65)+(2.112x3.482)

    RA= 2.23 kN

    V(kN)

    1.23 0.84

    1.49

    -0.69 1.00

    -1.09

    -2.62 -3.01

    -4.54 -4.45

    M(kN.m)

    1.40

    1

    -0.54 0.51 1.98

    0.05

    Figure 5: Shear and Moment Diagram for Rafter

    BS5950 Checking:

    Table 9 1. Thickness of fla 13.7 mm < 16mm

    Thus, design strenght y= 275 N/mm2

    = (y/275) = 1

    Table 11 Flange b/t = 6.09 < 40 = 40

    Web d/t = 33.6 < 80 = 80

    Thus, overall class is class 1.

    2. Section selection

    Roof 52

  • 8/12/2019 6. Roof_semi-d(idp)

    39/117

    Semi-detached Calculations

    Mmax= -0.05 kN.m

    M = ySxRearranging; Sx = M/y

    = -192.77 mm3

    = -0.19 cm3

    Try section 305x165x54.

    Sx= 846 cm3

    Mdesign= ySx

    = 275x(846x103)

    = 232.65 kN.m > Mmax -0.05 kN.m

    Thus, ok

    3. Shear Capacity Check

    Fmax= 4.45 kN

    Pv= 0.6yAv

    = 701.66 kN > Fmax 4.45 kN

    Thus, section is adequate in term of shear capacity.

    Web d/t = 33.6 < 70 = 70Thus, it is not required to check for shear buckling.

    4. Moment Capacity Check

    0.6 Pv= 421.00 kN

    Fv= 4.45 kN < 0.6 Pv (421 kN)

    Therefore, it is low shear.

    Class 1: Mc = ySx= 232.65 kN.m > Mmax -0.05 kN.m

    Thus, this section is adequate in term of moment capacity.

    5. Deflection Check

    Roof 53

  • 8/12/2019 6. Roof_semi-d(idp)

    40/117

    Semi-detached Calculations

    Point load from purlin;

    a) Internal node = 0.596x1.033x2.167

    = 0.574 kN

    b) End node = 0.596x(1.033/2)x2.167

    = 0.287 kN

    Young's Modulus, E = 2.05E+05 N/mm2

    Moment of Inertia, I = 11700 cm4

    Distance between the end and nodes:

    a1= 0 mm

    a2 = 520.55 mm

    a3 = 1041.09 mm

    a4 = 1561.64 mm

    a5 = 2082.19 mm

    Deflection, =

    =

    = 1 mm

    Table 8 /span = 3.20176E-07 < 1/360

    Therefore, the I-beam of section 305x165x54 is adequate in terms of deflection.

    Roof 54

  • 8/12/2019 6. Roof_semi-d(idp)

    41/117

    Semi-detached Calculations

    Roof 55

  • 8/12/2019 6. Roof_semi-d(idp)

    42/117

    Semi-detached Calculations

    Roof 56

  • 8/12/2019 6. Roof_semi-d(idp)

    43/117

    Semi-detached Calculations

    Roof 57

  • 8/12/2019 6. Roof_semi-d(idp)

    44/117

    Semi-detached Calculations

    Roof 58

  • 8/12/2019 6. Roof_semi-d(idp)

    45/117

    Semi-detached Calculations

    Roof 59

  • 8/12/2019 6. Roof_semi-d(idp)

    46/117

    Semi-detached Calculations

    Roof 60

  • 8/12/2019 6. Roof_semi-d(idp)

    47/117

    Semi-detached Calculations

    Roof 61

  • 8/12/2019 6. Roof_semi-d(idp)

    48/117

    Semi-detached Calculations

    Roof 62

  • 8/12/2019 6. Roof_semi-d(idp)

    49/117

    Semi-detached Calculations

    Roof 63

  • 8/12/2019 6. Roof_semi-d(idp)

    50/117

    Semi-detached Calculations

    Roof 64

  • 8/12/2019 6. Roof_semi-d(idp)

    51/117

    Semi-detached Calculations

    Roof 65

  • 8/12/2019 6. Roof_semi-d(idp)

    52/117

    Semi-detached Calculations

    Roof 66

  • 8/12/2019 6. Roof_semi-d(idp)

    53/117

    Semi-detached Calculations

    (iii) Roof Beam Design

    The roof beam selected for design the beam sustain most critical load from the roof.

    Most critical roof beam for semi-detached unit is roof 1 with dimension on plan of

    6685 x 8465mm.

    Figure 1: Roof Beam Position for Roof 1

    Details:

    Concrete unit weight = 24 kN/m3

    Beam breath = 0.18 m

    Beam depth = 0.2 m

    Loadings:

    Self-weight of beam = 0.864 kN/m

    The most critical load is chosen for design:

    At point C from Roof 1 with load of 12.04

    Load from roof = 15.79 x cos5

    = 11.95 kN

    2.208m2.208m 2.208m

    Purlin

    Rafter

    Roof Beam6.965

    1.50m

    3.850m 1.635m

    0.60m 0.60m

    kN

    Roof 79

  • 8/12/2019 6. Roof_semi-d(idp)

    54/117

    Semi-detached Calculations

    11.95 11.95 11.95 11.95

    1.208 1.208 -0.427 1.635

    0.864 kN/m

    3.850 1.635

    Figure 2: Loadings Acted on Roof Beam

    Stiffness,

    KAB= 4EI/L KBC= 4EI/L

    = 4EI/3.850 = 4EI/1.635

    = 1.04EI = 2.45EI

    Distribution Factor,

    DFAB= KAB/KAB DFBA= KBA/(KAB+KBC)

    = 1.04EI/1.04EI = 1.04EI/(1.04EI + 2.45EI)

    = 1 = 0.3

    DFBC= KBC/(KAB+KBC) DFCB= KBC/KBC

    = 2.45EI/(1.04EI + 2.45EI) = 2.45EI/2.45EI

    = 0.7 = 1

    Fixed End Moment,

    FEMAB= (Pb2a)/(l

    2)+(Pb

    2a)/(l

    2)+(wl

    2/12)+(Pb

    2a)/(l2)

    = {-[(15.67x2.0212x1.828)/(3.85

    2)]+[(0.864x3.85

    2)/12]+

    [(15.67x0.1932

    x3.656)/(3.852

    )]}= -2.02 kN.m

    FEMBA= (Pa2b)/(l

    2)+(Pa

    2b)/(l

    2)+(wl

    2/12)

    = [(15.67x1.8282x2.021)/(3.85

    2)]+[(0.864x3.85

    2)/12]+

    [(15.67x3.6562x0.193)/(3.85

    2)]

    = -0.02 kN.m

    FEMBC= (wl2/12)+(Pa

    2b)/(l2)

    = {-[(0.864x3.3052

    )/12]+0}= -0.19 kN.m

    FEMCB= (wl2/12)

    = [(0.864x3.3052)/12]+0

    = 0.19 kN.m

    kN kN kN kN

    m m m

    mm

    A B C

    m

    Roof 80

  • 8/12/2019 6. Roof_semi-d(idp)

    55/117

    Semi-detached Calculations

    Joint A C

    Member AB BA BC CB

    DF 1 0.3 0.7 1

    FEM -2.017 -0.022 -0.192 0.192

    Dist. 2.017 0.064 0.150 -0.192

    0.032 1.009 -0.096 0.075

    -0.032 -0.274 -0.639 -0.075

    -0.137 -0.016 -0.038 -0.319

    0.137 0.016 0.038 0.319

    0.008 0.068 0.160 0.019

    -0.008 -0.068 -0.160 -0.019

    M 0.000 0.777 -0.777 0.000

    11.954 11.95 11.95

    0.864 kN/m

    0.777 kN.m

    1.208 1.208 -0.427

    RA= [-10.937+(0.8640x(3.852/2))+(15.67x2.021)+(15.67x0.193)+

    (15.67x3.85)]/3.85

    = 14.56 kN

    RB= [10.937+(0.8640x(3.852/2))+(15.67x1.828)+(15.67x3.656)]/3.850

    = 23.03 kN

    11.95 kN

    0.864 kN/m

    0.777

    kN.m

    1.635

    RB= [10.937-(0.8640x(1.6352/2))]/1.635

    = 1.18 kN

    RC= [-10.937+(0.8640x(1.6352/2))+(15.67x1.635)]/1.635

    = 12.19 kN

    RA= 14.56 kN

    RB= 24.21 kN

    RC= 12.19 kN

    B

    B C

    RB RC

    kN

    m

    RB

    A B

    RA

    kNkN

    m m m

    Roof 81

  • 8/12/2019 6. Roof_semi-d(idp)

    56/117

    Semi-detached Calculations

    V(kN)

    (+)

    2.60 1.18

    1.56 -0.23

    -10.40

    -11.44 -12.19

    (-)

    -23.40

    -23.03

    M(kN.m)

    (-) 2.51

    4.7E-15

    -10.68

    (+)

    -0.78

    Figure 3: Shear and Moment Diagram for Roof Beam Supporting the Rafter and Purlin

    Task Design Roof Beam for Supporting Roof

    Reference Output

    BS8110:

    Part 1 Design Parameter:

    fcu= 25 N/mm2

    fy= 460 N/mm2

    b

    fyv= 250 N/mm2

    Beam dimension lWidth, b = 180 mm

    Table 3.3 Depth, h = 200 mm

    Nominal cover, c = 25 mm

    Main bar diameter, = 12 mmLink diameter, ' = 8 mm

    Calculation

    Roof 82

  • 8/12/2019 6. Roof_semi-d(idp)

    57/117

    Semi-detached Calculations

    Bending Moment

    Mid Span

    Assume 12mm diameter main bar and 8mm diameter link.

    d= h - c - /2 - '= 200 - 25 - 12/2 - 8

    = 161 mm

    Moment = 2.51 kN.m

    M

    fcubd

    = (12.89x106) /(25x180x161)

    = 0.022 (

  • 8/12/2019 6. Roof_semi-d(idp)

    58/117

  • 8/12/2019 6. Roof_semi-d(idp)

    59/117

    Semi-detached Calculations

    Shear Reinforcement

    Mid Span

    Vmax= 23.40 kN

    v = Vbd

    = 26.66x103/(180x161)

    = 0.807 N/mm

    0.8fcu= 0.8*(25^0.5)= 4 N/mm v

  • 8/12/2019 6. Roof_semi-d(idp)

    60/117

    Semi-detached Calculations

    First Interior Support

    Vmax= 23.03 kN

    v = V

    bd

    = 26.83x103

    /(180x161)= 3.906 N/mm

    0.8fcu= 0.8*(25^0.5)= 4 N/mm v

  • 8/12/2019 6. Roof_semi-d(idp)

    61/117

    Semi-detached Calculations

    Deflection Check

    Mid Span (Most Critical)

    M = 2.51 kN.m

    M/bd2= (12.89x10

    6)/(150x161

    2)

    = 0.54

    Table 3.10 fs= 2fyAs req

    3As prov

    = 2x460x192.8

    3x339

    = 49.68 N/mm2

    Modification factor=

    = 0.55+ {(477-290.1)/[120X(0.9+2.76)]}

    = 3.025

    Table 3.9 Basic span/d ratio = 26

    span/d allowable = 0.975x26

    = 78.66

    span/dactual = 3.395/(161/1000)

    = 23.913

    The span is the most critical span in this beam.Therefore, the beam is satisfactory with respect to deflection.

    Crack Control

    Check for longest span as more steel reinforcement are provided on

    that span.

    Clear Spacing= b-2(cover)-2(link diameter)-no.of bars x bar diameter

    no. of bars -1

    = 39 mm

    Minimum size of coarse agg = 25 mm

    Minimum distanc between bar = hagg + 5mm

    = 30 mm

    Minimum distance between bars(30mm) < Clear Spacing. ok

    Roof 87

  • 8/12/2019 6. Roof_semi-d(idp)

    62/117

  • 8/12/2019 6. Roof_semi-d(idp)

    63/117

    Semi-detached Calculations

    BS8110: Bending Moment

    Part 1

    Table 3.14 Slab condition: Two adjacent adge discontinuous

    Figure 5: Bending Moment Coefficient

    Design for the most critical slab: 4260mm x 1915mm

    Continuous Edges

    Short Span

    Effective depth of outer layer:

    d= 150-25-5= 120 mm

    Msx = Bsxnlx2

    = 0.098 x 7.4 x 1.9152

    = 2.66 kN.m

    Clause K= M

    3.4.4.4 fcubd

    = 2.66x106/ 25x1000x120

    = 0.007 (

  • 8/12/2019 6. Roof_semi-d(idp)

    64/117

    Semi-detached Calculations

    As= M

    0.95fyz

    = 2.66x106/0.95x460x114

    = 53.38 mm

  • 8/12/2019 6. Roof_semi-d(idp)

    65/117

    Semi-detached Calculations

    Provide 10mm diamerter bars at 250mm centres. Provide

    (Asprovided = 262 mm Per m) T10@300

    Mid Span

    Short Span

    Effective depth of outer layer:

    d= 150-25-5

    = 120 mm

    Mx = Bxnlx2

    = 0.074 x 7.4 x 1.9152

    = 2.01 kN.m

    Clause K= M

    3.4.4.4 fcubd

    = 17x106/ 25x1000x119

    = 0.006 (

  • 8/12/2019 6. Roof_semi-d(idp)

    66/117

    Semi-detached Calculations

    Long Span

    Effective depth of inner layer:

    d= 150-25-10-5

    = 110 mm

    Msy = Bsynlx2

    = 0.034 x 7.4 x 1.9152

    = 0.92 kN.m

    Clause K= M

    3.4.4.4 fcubd

    = 0.92x106/ 25x1000x110

    = 0.003 (

  • 8/12/2019 6. Roof_semi-d(idp)

    67/117

    Semi-detached Calculations

    Shear

    Table 3.15 Slab condition: Two adjacent edges discontinuous

    Figure 6: Shear Force Coefficient

    Cotinuous Edge

    Short Span

    Vsx = Bvxnlx

    = 0.626 x 7.4 x 1.915

    = 8.87 kN

    d= 120 mm

    Clause V

    3.5.5.2 bd

    = 8.87x103/(1000x120)

    = 0.074

    100As= 100(53.38)

    bd 1000x120

    = 0.015 1 ok

    Table 3.8 v c = 0.79{100As/(bd)} (400/d)/ m

    = 0.79(0.328)1/3

    (1.826)1/4

    / 1.25

    = 0.213

    v

  • 8/12/2019 6. Roof_semi-d(idp)

    68/117

    Semi-detached Calculations

    Long Span

    Vsx = Bvxnlx

    = 0.418 x 7.4 x 1.915

    = 5.92 kN

    d= 110 mm

    Clause V

    3.5.5.2 bd

    = 0.57x103/(1000x110)

    = 0.054

    100As= 100(18.52)

    bd 1000x110

    = 0.022 1 ok

    Table 3.8 v c = 0.79{100As/(bd)}1/3

    (400/d)1/4 / m

    = 0.79(0.022)1/3

    (3.636)1/4

    / 1.25

    = 0.246

    v

  • 8/12/2019 6. Roof_semi-d(idp)

    69/117

    Semi-detached Calculations

    Table 3.8 v c = 0.79{100As/(bd)}1/3

    (400/d)1/4 / m

    = 0.79(0.034)1/3

    (3.333)1/4

    / 1.25

    = 0.276

    v

  • 8/12/2019 6. Roof_semi-d(idp)

    70/117

    Semi-detached Calculations

    Deflection

    Check using steel at short span of midspan.

    M/bd2= (2.01x10

    6)/(1000x120

    2)

    = 0.139

    fs= 2fyAs req3As prov

    = 2x460x40.31

    3x262

    = 5.48 N/mm

    Modification factor=

    = 0.55+ {(477-5.48)/[120 x (0.9+0.139)]}

    = 4.330

    Table 3.9 basic (span/d) ratio = 26

    (span/d)allowable= 4.33x26

    = 112.586

    (span/d)actual= 6965/120

    = 35.500

    (span/d)allowable> (span/d)actual ok

    The slab is satisfactory with respect to deflection. Deflection

    ok.

    Torsion Steel

    Extend 1/5 x Shorter Span = 1/5 x 1915

    = 383 mm

    Corner X: As = 3/4 x 383 Provide

    = 287 mm2per m T10@250

    Corner Y: As = 1/2 x 383 Provide

    = 144 mm2per m T10@250

    Cracking

    Clause The bar spacing is less than 3d (637.5mm) and for grade of 460 N/mm2steel Cracking

    3.12.11.2.7 reinforcement, with slab depth is less than 200mm, no further cracking ok.

    check is required.

    Roof 96

  • 8/12/2019 6. Roof_semi-d(idp)

    71/117

    Semi-detached Calculations

    Detailing

    6965

    1915

    Figure 7: Detailing for RC Flat Roof

    T10-300

    T10-300 mm

    mm

    Roof 97

  • 8/12/2019 6. Roof_semi-d(idp)

    72/117

    Semi-detached Calculations

    Roof 98

  • 8/12/2019 6. Roof_semi-d(idp)

    73/117

    Semi-detached Calculations

    Roof 99

  • 8/12/2019 6. Roof_semi-d(idp)

    74/117

    Semi-detached Calculations

    Roof 100

  • 8/12/2019 6. Roof_semi-d(idp)

    75/117

    Semi-detached Calculations

    Roof 101

  • 8/12/2019 6. Roof_semi-d(idp)

    76/117

    Semi-detached Calculations

    Roof 102

  • 8/12/2019 6. Roof_semi-d(idp)

    77/117

    Semi-detached Calculations

    Roof 103

  • 8/12/2019 6. Roof_semi-d(idp)

    78/117

    Semi-detached Calculations

    Roof 104

  • 8/12/2019 6. Roof_semi-d(idp)

    79/117

    Semi-detached Calculations

    Roof 105

  • 8/12/2019 6. Roof_semi-d(idp)

    80/117

    Semi-detached Calculations

    Roof 106

  • 8/12/2019 6. Roof_semi-d(idp)

    81/117

    Semi-detached Calculations

    Roof 107

  • 8/12/2019 6. Roof_semi-d(idp)

    82/117

    Semi-detached Calculations

    Roof 108

  • 8/12/2019 6. Roof_semi-d(idp)

    83/117

    Semi-detached Calculations

    Roof 109

  • 8/12/2019 6. Roof_semi-d(idp)

    84/117

    Semi-detached Calculations

    Bar diameter 12 mm

    No. of bars 3

    Roof 110

  • 8/12/2019 6. Roof_semi-d(idp)

    85/117

    Semi-detached Calculations

    Bar diameter 12 mm

    No. of bars 2

    Roof 111

  • 8/12/2019 6. Roof_semi-d(idp)

    86/117

    Semi-detached Calculations

    Roof 112

  • 8/12/2019 6. Roof_semi-d(idp)

    87/117

    Semi-detached Calculations

    Roof 113

  • 8/12/2019 6. Roof_semi-d(idp)

    88/117

    Semi-detached Calculations

    Roof 114

  • 8/12/2019 6. Roof_semi-d(idp)

    89/117

  • 8/12/2019 6. Roof_semi-d(idp)

    90/117

    Semi-detached Calculations

    Bsx= 0.098

    lx= 1915 mmn= 7.4 kN/m

    Bsy= 0.045

    lx= 1915 mm

    n= 7.4 kN/m

    Roof 116

  • 8/12/2019 6. Roof_semi-d(idp)

    91/117

  • 8/12/2019 6. Roof_semi-d(idp)

    92/117

    Semi-detached Calculations

    Bsx= 0.074

    lx= 1915 mm

    n= 7.4 kN/m

    Bsy= 0.034

    lx= 1915 mmn= 7.4 kN/m

    Roof 118

  • 8/12/2019 6. Roof_semi-d(idp)

    93/117

    Semi-detached Calculations

    Roof 119

  • 8/12/2019 6. Roof_semi-d(idp)

    94/117

    Semi-detached Calculations

    Bvx = 0.626

    Roof 120

  • 8/12/2019 6. Roof_semi-d(idp)

    95/117

    Semi-detached Calculations

    Bvy= 0.418

    Bvx = 0.626

    Roof 121

  • 8/12/2019 6. Roof_semi-d(idp)

    96/117

    Semi-detached Calculations

    Bvy= 0.26

    Roof 122

  • 8/12/2019 6. Roof_semi-d(idp)

    97/117

    Task Design of Roof Beam to Support RC Flat Roof

    (v) Roof Beam Supporting RC Flat Roof

    The beam chosen for design is supporting the most critical load.

    2705

    4260

    1915 1915

    Figure 1: Location of Critical Beam

    Details:

    Concrete 24 kN/m3

    Beam breath = 0.15 m

    Beam depth = 0.2 m

    Loadings:

    Self-weig 0.72 kN/m

    Loads from slab = 7.40 kN/m2

    Loading, w = [(10.24 x 1.915) x 2]+0.864

    = 14.89 kN/m

    14.89 kN/m

    4.26 2.705

    Stiffness,

    KAB= 4EI/L KBC= 4EI/L

    = 4EI/4.26 = 4EI/2.705

    m mA B C

    m

    m

    mm

  • 8/12/2019 6. Roof_semi-d(idp)

    98/117

    = 0.94EI = 1.48EI

    Distribution Factor,

    DFAB= KAB/KAB DFBA= KBA/(KAB+KBC)

    = 0.94EI/0.94EI = 0.94EI/(0.94EI + 1.48EI)

    = 1 = 0.39

    DFBC= KBC/(KAB+KBC) DFCB= KBC/KBC

    = 1.48EI/(0.94EI + 1.4 = 1.48EI/1.48EI

    = 0.61 = 1

    Fixed End Moment,

    FEMAB= (wl2/12)

    = [(0.72x3.85^2)/12]= -22.52 kN.m

    FEMBA= (wl2/12)

    = [(0.72x3.3952)/12]

    = 22.52 kN.m

    FEMBC= (wl2/12)

    = (0.72x3.3052)/12

    = -9.08 kN.m

    FEMCB= (wl2/12)

    = (0.72x3.3052)/12

    = 9.08 kN.m

    Joint A C

    Member AB BA BC CB

    DF 1.000 0.390 0.610 1.000FEM -22.520 22.520 -9.080 9.080

    Dist. 22.520 -5.242 -8.198 -9.080

    -2.621 11.260 -4.540 -4.099

    2.621 -2.621 -4.099 4.099

    -1.310 1.310 2.050 -2.050

    1.310 -1.310 -2.050 2.050

    -0.655 0.655 1.025 -1.025

    0.655 -0.655 -1.025 1.025

    B

  • 8/12/2019 6. Roof_semi-d(idp)

    99/117

    -0.328 0.328 0.512 -0.512

    0.328 -0.328 -0.512 0.512

    -0.164 0.164 0.256 -0.256

    0.164 -0.164 -0.256 0.256

    M 0.000 25.917 -25.917 0.000

    14.89 kN/m25.917 kN.m

    4.26

    RA= [-50.581+(0.720x(3.852/2))+(15.79x2.021)+(15.79x0.193)+

    (15.79x3.85)]/3.85

    = 25.63 kN

    RB= [69.513+(39.94x(4.26 /2))]/4.26

    = 37.80 kN

    14.89 kN/m

    25.917

    kN.m

    2.705 m

    RB= [69.513+(39.94x(2.7052/2))]/2.705

    = 29.72 kN

    RC= [-69.513+(39.94x(2.7052/2))]/2.705

    = 10.56 kN

    V(kN)

    (+) 29.72

    25.63 2.539

    1.721 -10.56

    (-)

    -37.80

    M(kN.m)

    B C

    R RC

    RB

    A B

    RA

    m

    m

    m

  • 8/12/2019 6. Roof_semi-d(idp)

    100/117

    (-) 22.06

    0.0

    (+)

    -25.93

    Reference Output

    BS8110:

    Part 1 Design Parameter: b

    fcu= 25 N/mm

    fy= 460 N/mm2

    l

    fyv= 250 N/mm

    2

    First Mid Span

    Beam dimension

    Width, b = 180 mm

    Table 3.3 epth, h = 200 mm

    Nominal cover, c = 25 mm

    Top bar diameter, = 20 mmression bar diameter = 12 mm

    Link diameter, ' = 10 mm

    d= h - c - /2 - '= 200 - 25 - 12/2 - 10

    = 159 mm

    Moment = 22.06 kN.m

    M

    fcubd

    = (22.06x106)/(25x180x159)

    = 0.194 (>0.156) K>K'

    K' = 0.156

    d' = c + /2+ '= 25+6+10

    = 45.0 mm

    K=

    Calculation

  • 8/12/2019 6. Roof_semi-d(idp)

    101/117

    M-Mu

    .95fy(d-d')

    = 86.531 mm2

    Provide

    ovide 2T12bars. (Area prov: 226 mm2) 2T12 Bar

    N

    = 123.53

  • 8/12/2019 6. Roof_semi-d(idp)

    102/117

    Moment = 25.93 kN.m

    M

    fcubd

    = (25.93x106)/(25x180x159)

    = 0.228 (>0.156) K>K'

    K' = 0.156

    d' = c + /2+ '= 45.0 mm

    M-Mu

    .95fy(d-d')

    = 164.276 mm

    2

    Provideovide 2T12bars. (Area prov: 226 mm

    2) 2T12 Bar

    N

    = 123.53

  • 8/12/2019 6. Roof_semi-d(idp)

    103/117

    Second Mid Span

    Beam dimension

    Width, b = 180 mm

    Depth, h = 200 mm

    Nominal cover, c = 25 mm

    ain bar diameter, = 12 mm

    Link diameter, ' = 10 mm

    d= h - c - /2 - '= 200 - 25 - 12/2 - 10

    = 159 mm

    Moment = 4.50 kN.m

    M

    fcubd

    = (4.5x106)/(25x180x159)

    = 0.040 (

  • 8/12/2019 6. Roof_semi-d(idp)

    104/117

    Shear Reinforcement

    First Mid Span

    V = 25.63 kN

    Clause v = V

    3.4.5.2 bd

    = 25.63x103/(180x159)

    = 0.896 N/mm

    0.8fcu= 0.8*(25^0.5)= 4 N/mm v

  • 8/12/2019 6. Roof_semi-d(idp)

    105/117

  • 8/12/2019 6. Roof_semi-d(idp)

    106/117

  • 8/12/2019 6. Roof_semi-d(idp)

    107/117

  • 8/12/2019 6. Roof_semi-d(idp)

    108/117

  • 8/12/2019 6. Roof_semi-d(idp)

    109/117

    diameter 12 mm

    . of bars = 2

  • 8/12/2019 6. Roof_semi-d(idp)

    110/117

    diameter 12 mm

    . of bars = 2

  • 8/12/2019 6. Roof_semi-d(idp)

    111/117

    diameter 12

    . of bars = 2

  • 8/12/2019 6. Roof_semi-d(idp)

    112/117

  • 8/12/2019 6. Roof_semi-d(idp)

    113/117

  • 8/12/2019 6. Roof_semi-d(idp)

    114/117

  • 8/12/2019 6. Roof_semi-d(idp)

    115/117

  • 8/12/2019 6. Roof_semi-d(idp)

    116/117

  • 8/12/2019 6. Roof_semi-d(idp)

    117/117