Top Banner
5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks Chathurika Ranaweera 1 , Elaine Wong 1 , Thas A Nirmalathas 1,2 , Chamil Jayasundara 1 , and Christina Lim 1 1 Department of Electrical and Electronic Engineering, The University of Melbourne, Australia 2 Melbourne Networked Society Institute, The University of Melbourne, Australia @nirmalathas
26

5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Apr 13, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

5G C-RAN Architectures: A Comparison of Multiple Optical FronthaulNetworksChathurika Ranaweera 1, Elaine Wong 1, Thas A Nirmalathas 1,2, Chamil Jayasundara 1, and Christina Lim 1

1Department of Electrical and Electronic Engineering, The University of Melbourne, Australia2 Melbourne Networked Society Institute, The University of Melbourne, Australia

@nirmalathas

Page 2: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Why 5G?• The development of the fifth generation (5G) wireless

technology is in progress to address– The increasing demands for high capacity,– Low latency, – Ubiquitous mobile access

• 5G expedited to attain – 1000x higher data volume per unit area– 100x higher connecting devices, – 10x longer battery life and – 5x reduced latency

• Demands will be instigated by next-generation mobile and machine-centric applications.

2

Page 3: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Central Office

Macro cell

Key Feature of 5G :Small cells

Small Cells

Capacity Coverage

small cells create an enormous weight in the transport network as it

needs to carry a significant amount of data with a

minimal delay from thousands of cells.

3

Page 4: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Why C-RAN ? • Observation: the evolution of radio access network needs to be

complimented by an evolution of the transport network. • One architectural evolutionary solution: Centralised/Cloud Radio

Access Network (C-RAN) architecture.– significantly lower cost– greener communication– supporting advanced

wireless technologiesEg. Cooperative Multi-Point

(CoMP)

Base-BandUnit(BBU)RemoteRadioHead(RRH)

4

Page 5: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Challenges in C-RAN• In the current C-RAN

architecture (use in LTE-A): the fronthaul network uses common public radio interface (CPRI) [13] over fiber links.

• Ex: supports 150 Mbps of downlink bandwidth in LTE-A, more than 2 Gbps of optical bandwidth When using CPRI.

• If 5G fronthaul networks use CPRI à

5

Page 6: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Architecture Comparison• Three Fronthaul Network Architectures

– CPRI– Physical Layer Split (PLS)– Analogue Radio over Fibre (ARoF)

CPRIandPLS

ARoF

6

Page 7: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Bandwidth Calculations - CPRI

7

Ns isthenumberofsectorsperRRHNa isthenumberofantennasSf isthesamplingfrequency

Sbw isthesamplingbit-width(I/Q)Be istheratioforthecontrollingoverheadLc isthecodinginducedcapacityincrease

Page 8: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Bandwidth Calculations -PLS

8

T T I the transmission time interval (=1mS)M modulation order (=8 i.e. 64QAM)Nsy number of symbol within a TTI (=12) Nsc number of subcarriers (=12)Nrb number of resource blocks (=500)Nmimo number of MIMO streams (=8)

5ResourceBlocksperusersomaximumof100usersconsidered

Page 9: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Comparison of Bandwidth Requirements

• ARoF: required fronthaul bandwidth depends on the wireless carrier frequency and the bandwidth in use, a typical low-cost transceiver can be used to achieve the 5G targeted data rates when 5G uses the frequency range below 6GHz (IF conversion can be used with very low cost component for higher frequencies).

9

Page 10: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Comparison: Delay, Advanced Wireless Functions and RRH complexityDelay AdvancedWirelessFunctions Complexityof RRH

CPRI Afewhundredsofμsincludingthepropagationdelay,roundtripCPRIprocessingdelay,andtheotherfronthaulequipment

processingdelays.

Facilitateadvancewirelesscooperationtechnologies

Simple.However, forhighertransmissiondatarates,Fronthaul

needshighdatarateopticaltransceivers.

PLS AnadditionalprocessingdelayattheRRHcomparedtotheCPRI: symbollevel

processingimplementedinRRH(however,additionaldelayislessthanfewμs).

WirelesscodingfunctionsandMAClayerfunctionsarecentralizedinthe

BBU:canfacilitateadvancewirelesscooperationtechnologies

RRHrelatedequipmentandsoftwareneedtobeupgraded.Networkfunctionvirtualization(NVF)

paradigmcanbeusedtoovercomethedifficultyinupgrading

ARoF RRHwillbemoredelayefficientcomparedtotheCPRI.

Fronthaul linkrange willbe lowcomparedtootherarchitectures(howeverstillfacilitate

fewkmthatconfirmwith5GBBU-RRHrange).

Facilitateadvancewirelesscooperationtechnologies

allthewirelesssignalsareprocessedcentrallyatthe

BBU

Simplearchitecture

10

Page 11: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Optimization framework finds the cost-optimal deployment of

Fibre Fronthaul + RRHs + BBUs

Deployment Cost comparison

Macro cell

Central Office

BBUs

• Optimal Deployment Cost : ILP-based optimization framework

• The total cost consists of the cost of BBU placement, fronthaul and Deploying RRHs.

11

Page 12: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Optimization FrameworkMinimizethetotaldeploymentcostofCRANdeployment

Subject to a range of constraints imposedbyrequirementsofthenetwork such as,• Population coverage• The maximum number of BBUs in one

central office • The maximum distance from a RRH to its

BBU• Fibre connectivity

min 𝜂& + 𝜂() *𝑥)�

)-.

+ (𝜂0+𝜂12)**𝑐),6�

6-.

)-.

𝑑),6 + 𝜂1&**𝑦),6�

6-.

)-.

𝑑),6 + 𝜂9*𝑥)�

)-.

+ (𝜂2+𝜂2))*𝑍)�

)-.

Equipment&installationcostsofRRHsandFronthaul

Newfibreroutes,andfibrebundles

installationcosts

Fibrepreparation

Fibreconnectionsatthecentralofficeforusingexistingfibrefacility.

CostofBBUsandtheirinstallation

12

Costparameter DescriptionȠs Equipment costofRRHandfronthaulȠri CostofRRHInstallationȠt Fibretrenchingcost/mȠfb Cost ofaFibrebundle/mȠfs CostoffibrepreparationȠe Costofconnectingafibreatexistingfibrefacility

Ƞb Cost ofaBBUȠbi InstallationcostoftheBBUatthefibrefacility

Page 13: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Data Set for Cost Comparison

• 18km2suburbanareainstateofVictoria,Australia

• Population:30,000

13

Page 14: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Cost – Summary of Optimal Solutions

Contributionoffronthaul,RRH,andBBUcostwhenthepopulationcoverageis50%and90%

• ThecostvaluesarenormalizedWRTthetotaldeploymentcostofCPRI-basedC-RANunder90%populationcoveragerequirement.

• Conservativeapproach:CPRIusesa1/2compressiontechniquewithoutanyadditionalcost:CPRIrequire40Gbps transceiversinsteadof100Gbps

• PLSandARoF architecturesuses10Gbps transceivers

NormalizedCostValues*

CPRI:Fronthaul 2912

PLS: Fronthaul 200

ARoF:Fronthaul 200

CPRI:RRH 220

PLS:RRH 300

ARoF:RRH 200

BBU 10000

Fibrebundlecost 1

*Normilized tocostoffiberbundles/m

14

Page 15: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Summary• We investigated the applicability of different optical fronthaul technologies for

CRAN– CPRI, PLS and ARoF

• Comparatively analysed their ability to fulfil requirements of delay, bandwidth,and cost-effectiveness of 5G CRAN, ability to support advanced wirelesscooperation technologies, and complexity of RRH.

• Comparative cost analyses carried out using developed optimization frameworkshowed that cost-effective fronthaul for 5G could be achieved using PLS andARoF architectures

• Overall, our analyses provide insight into how a future proof fronthaul networkcan be realized for 5G C-RAN.

15

Page 17: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Variables

17

Variable Values DescriptionXi 1 Ifith locationisselectedforthe deploymentofaRRH

0 otherwiseZi 1 Ifith fibrefacilityisselectedforthe deploymentofBBU

0 otherwiseCi,j 1 Ifthere isafibreroutefromith nodetojth node

0 otherwiseYi,j integer Numberoffibresinthepathfromith nodetojth nodeBi 1 Ifith householdiscovered

0 otherwise

Page 18: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Antenna Base-Stations• Multiple Sectors, MIMO, Multiple Bands, Carrier Aggregation – leads

to complexities or complex requirements for backhaul/front-haul

CoreNetwork

Interfa

ce

BaseStatio

nCo

ntrol,

Clockand

Managem

ent

Baseband

Processin

gFunctio

ns

DownlinkDigitalIF

TxInterface

RxInterface

UplinkDigitalIF

GainBlocks

GainBlocks Du

plex/Switch

…AntennaSystem

Inter-basestationInterface

Base-bandUnit(BBU) RemoteRadioUnit(RRU)

Backhaul Fronthaul

18

Page 19: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

NetworkingofBase-Stations(BSs)Evolutionbasestationarchitectures

Base-Station

SwitchingCentre/

MobileCore

WirelessBack-haul

WirelessFront-haul(RF)

Base-BandProcessing

Unit

RemoteRadioUnit(RRU)

DistributedAntennaSystems

DigitalFiber Links/NetworksFeedingBase-stations

IndustryApproachhasbeenCommonPublicRadioInterface(CPRI)andOpenBase-StationArchitectureInterface

Smallcellsand/orRemoteAntennaTerminals

CloudofBBUs

19

Page 20: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Optical-WirelessIntegrationIncreaseinBase-

stationdensitiesduetomoresmallerCells

>85/25km2

Increasingshareofpowerconsumptionof

cellularnetworks~60%

Rapidlyrisingbandwidth

requirementsforbackhaul/fronthaul

Increasedfootprintofinstalledfiberand

planneddeployment(>>180Mkm )

MaturingofopticalTransceiver

(10Gbpsandbeyond)

Pathwaysforloweringthecostof

deployment

Whyoptical– wirelessnetworkintegration

makessense

20

Page 21: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Cloud/Virtualisation/Software Defined

FullyCentralisedandVirtualPoolofBBUs PartiallyCentralised

ChinaMobile’sC-RANVirtualNetworkFunction

VirtualisationContainer

21

Page 22: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

4G-5G:ChallengesandOpportunities

CellDensity10x

RFBandwidth10x

SpectralEfficiency20x

Latency1/10

• AntennaArraysinMassiveMIMO?

• Millimeter-wavesorSpectralfarming

• Virtualisable andSoftwaredefined

• Cloudaccessnetwork• Storageinthenetwork• Secure• Criticalservices

• PhotonicSystemsforMassiveMIMOs

• Microwave/Millimeter-wave/Photonicintegration

• JointNetworkPlanningandOptimisation

• SoftwareDefinedOpticalNetworking

22

Page 23: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

5G – Early Demonstrations• Use of 1GHz is useful for coverage (rural and indoor) • above 6GHz is useful for very high data rates and

shorter-range connectivity (15GHz, 28GHz, 60GHz, 70-85GHz)

• Samsung: 1.2Gbps transmission at 110km/h speed using 28GHz frequency. The stationary transmission test is up to 7.5Gbps

• Ericsson: 5 Gbps throughput at 15 GHz

23

Page 24: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Optical Interfaces - CPRICo

reNetwork

Interfa

ce

BaseStatio

nCo

ntrol,

Clockand

Managem

ent

Baseband

Processin

gFunctio

ns

DownlinkDigitalIF

TxInterface

RxInterface

UplinkDigitalIF

GainBlocks

GainBlocks Du

plex/Switch

…AntennaSystem

Inter-basestationInterface

Base-bandUnit(BBU) RemoteRadioUnit(RRU)

Backhaul Fronthaul

Base-BandProcessing

Unit

RemoteRadioUnit(RRU)

CPRI/OBSAIDigitisedIFoverFiber

24

Page 25: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

Digital Interface – CPRI/OBSAI

Totalflow=Data+ControlManagement+SYNC

OBSAI/CPRI

DUC

DDC

CFR/DPD

D_Filter

DAC

ADC

ADC

FilterDUC

DDCD_Filter

Filter

LO_1 LO_2

SampleRateConversion Filter

Filter

FilterFilter

FilterFilter

I/Q

I/Q

I/Q

I/Q

RF_1

RF_2

RF_1

RF_2

SFP+

Base-band

AnalogRFunit

25

Page 26: 5G C-RAN Architectures: A Comparison of Multiple Optical ... · 5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks ChathurikaRanaweera1, Elaine Wong1, ThasA

OBSAI Vs CPRIOBSAI CPRI

8B/10Blinecoding 8B/10Blinecoding

upto6.144/3.072Gbps upto3.072Gbps

FixedIQsampleenvelopesizeat16 Programmable8-20indownlink4-20inuplink

Includetransportandapplicationlayers OnlyPhysicalanddatalinklayers

OBSAI CPRI

UserData(IQ) 80% 93.75%

ControlData(O&M) 4% 6.225%

Synchronization(K-char) 0.25% 0.025%

FixedOverheads 15.75% 0%

OBSAI CPRI

LTE10MHz@12bits 4 6

LTE20MHz@12bits 2 3

LTE10MHz@16bits 4 4

LTE20MHz@16bits 2 2

• OBSAI - higher overheads (+15.75%) for enabling flexibility

• CPRI- capacity advantage (+13.75%) for optimized bandwidth allocation

• OBSAI capacity - independent of sample envelope size;

• CPRI - optimized sample envelope size => more carrier space

26