Top Banner
Ch. 4 연립상미분방정식. 상평면 및 정성법 1 Ch. 4 연립상미분방정식. 상평면 및 정성법 (Systems of ODEs. Phase Plane. Qualitative Methods) 내용 : 행렬과 벡터를 이용한 선형연립방정식의 해법
38

연립상미분방정식

Nov 10, 2014

Download

Documents

jamesyblee

Math Ordinary differential equation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

Ch. 4 .

Ch. 4 . (Systems of ODEs. Phase Plane.Qualitative Methods)z :

1

Ch. 4 .

4.0

4.0 (Basics of Matrices and Vectors)z ( , Systems of Differential Equations) : Ex.

y1 ' = a11 y1 + a12 y2 , y2 ' = a21 y1 + a22 y2 ,

y2 ' = a21 y1 + a22 y2 + L + a2 n yn , M

y1 ' = a11 y1 + a12 y2 + L + a1n yn ,

yn ' = an1 y1 + an 2 y2 + L + ann yn ,

z : ( ) ( ) . Ex.

y (t ) y (t ) = 1 y2 (t ) y1 ' = a11 y1 + a12 y2 ,

y ' (t ) y ' (t ) = 1 y2 ' (t ) a y y ' a y ' = 1 = Ay = 11 12 1 y2 ' a21 a22 y2

Ex.

y2 ' = a21 y1 + a22 y2 ,

2

Ch. 4 .

4.0

z (Eigenvalue), (Eigenvector)

A = a jk n n , x 0 Ax = x (Eigenvalue) , x (Eigenvector) .

[ ]

x = 0 Ax = x . Ax = x

Ax x = 0

(A I )x = 0

n x1 ,L, xn ( x ) 1 Ax = x x 0 A I

.

det (A I ) = 0

3

Ch. 4 .

4.0

Ex.

a A = 11 a21

a12 a22 a11 a21 a12 a22 = (a11 )(a22 ) a12 a21 = 2 (a11 + a22 ) + a11a22 a12 a21

det (A I ) =

z (Characteristic Equation) : 2 (a11 + a22 ) + a11a22 a12 a21 = 0

A : x A k 0 kx

4

Ch. 4 .

4.1

4.1 (Systems of ODEs as Models)Ex. 1 2 ( 1 ) T1 : 100 T2 : 100 + 150 2 .

(1 gallon = 3.785 liter, 1 lb = 0.45 kg)

y1 : T1 , ? Step 1

y2 : T2

T1 T2

y1 ' = - = y2 ' = - =

2 2 y2 y1 100 100 2 2 y1 y2 100 100

( T1 ) ( T2 )

y1 ' = 0.02 y1 + 0.02 y2 y2 ' = 0.02 y1 0.02 y2

y ' = Ay,

0.02 0.02 A= 0.02 0.02

5

Ch. 4 .

4.1

Step 2 Idea : t

y = xet :

y ' = xet = Axet det (A I ) =

Ax = x

A

0.02 0.02

0.02 2 = ( 0.02 ) 0.022 = ( + 0.04 ) = 0 0.02 (1) 1 (2 ) 1 : x = , x = 1 1

: 1 = 0, 2 = 0.04

1 1 y = c1x(1)e1t + c2 x(2 )e2 t = c1 + c2 e 0.04t 1 1Step 3 : y1 (0 ) = 0,

(c1 c1 )

y2 (0 ) = 150

1 1 c + c 0 1 1 y (0 ) = c1 + c2 = 1 2 = c1 = 75, c2 = 75 y = 75 75 e 0.04t 1 1 c1 c2 150 1 1

Step 4 T1 50 , T1 T2 y1 = 75 75e 0.04t = 50 e 0.04t = 1 3 t = ln 3 0.04 = 27.5

6

Ch. 4 .

4.1

Ex. 2 I1 (t ) I 2 (t ) . t = 0 0 .

Step 1 : Kirchhoff : I1 ' = 4 I1 + 4 I 2 + 12 : 6 I 2 + 4(I 2 I1 ) + 4 I 2 dt = 0 I 2 '0.4 I1 '+0.4 I 2 = 0 I 2 ' = 1.6 I1 + 1.2 I 2 + 4.8 J ' = AJ + g, I 4.0 4.0 12.0 , J = 1 , A = g = 4.8 1.6 1.2 I2

7

Ch. 4 .

4.1

Step 2 J ' = AJ J = xet Ax = x A (1) 2 1 = 2 , x = ; 1 = 0.8 , 1

1 x (2 ) = 0.8

:

2 1 J h = c1 e 2t + c2 e 0.8t 1 0.8

0 a J p ' = J p = 1 , 0 a2

a A 1 + g = 0 a2 a1 = 3, a2 = 0 3 Jp = 0

4.0a1 + 4.0a2 + 12.0 = 0 1.6a1 + 1.2a2 + 4.8 = 0

:

2 1 3 J = c1 e 2t + c2 e 0.8t + 1 0.8 0

I1 = 2c1e 2t + c2e 0.8t + 3 I 2 = c1e 2t + 0.8c2e 0.8t

8

Ch. 4 .

4.1

I1 (0 ) = 2c1 + c2 + 3 = 0 I 2 (0 ) = c1 + 0.8c2 = 0

c1 = 4, c2 = 5

I1 = 8e 2t + 5e 0.8t + 3 I 2 = 4e 2t + 4e 0.8t

79a I1 (t ) I 2 (t ) 79b I1I 2

[I1 (t ), I 2 (t )]

t (parameter)

I1I 2 plane)

(A I )x = 0 (, phase

(Trajectory) .

9

Ch. 4 .

4.1

z n 1 n : y (n ) = F t , y, y' ,L, y (n1) 1 y1 ' = y2 y1 = y, y2 = y ' , y3 = y ' ' ,L, yn = y(n 1)

(

)

yn 1 ' = yn yn ' = F (t , y1, y2 ,L, yn )

y2 ' = y3 M

Ex. 3

y1 = y, y2 = y '

my ' '+ cy '+ ky = 0 det (A I ) = k m

y1 ' = y2 k c y2 ' = y1 y2 m m

y y = 1 y2

0 y ' = Ay = k m

1 y c 1 y m 2

1 c k c = 2 + + = 0 m m m

2.4

10

Ch. 4 .

4.2

4.2 (Basic Theory of Systems of ODEs)

z y2 ' = f 2 (t , y1,L, yn ) yn ' = f n (t , y1,L, yn )z (Solution Vector)

y1 ' = f1 (t , y1,L, yn ) M

y1 f1 y = M , f = M yn fn

y ' = f (t , y )

: z

a < t < b n

y1 = h1 (t ), L, y1 (t0 ) = K1 ,

yn = hn (t ) . yn (t0 ) = K n K1 y (t0 ) = K = M Kn

y2 (t0 ) = K 2 ,

L,

11

Ch. 4 .

4.2

z f1 , L, f n (t0 , K1 , L, K n ) f1 , L, f1 , L, fn R , y1 yn yn . t0 < t < t0 + .

12

Ch. 4 .

4.2

z (Linear System)

y1 ' = a11(t ) y1 + L + a1n (t ) yn + g1 (t ) M yn ' = an1 (t ) y1 + L + ann (t ) yn + gn (t )z : y ' = Ay z : y ' = Ay + g, g 0

a11 L a1n y1 g1 A = M O M , y = M , g = M an1 L ann yn g2

y ' = Ay + g

z

a jk g j t = t0 < t <

t

.

.z

y (1) y (2 ) , y = c1y (1) + c2 y (2 ) .

13

Ch. 4 .

4.2

z (Basis) (Fundamental System)(1) (n ) : J n y , L, y

z (General Solution)(1) (n ) : y = c1y + L + cn y

(c1, L,

cn

)

y ' = Ay a jk (t ) J , y ' = Ay

. y ' = Ay J , . z (Fundamental Matrix) : n y (1) , L, y (n ) n n z Wronskian :

14

Ch. 4 .

4.3 .

4.3 . (Constant-Coefficient Systems. Phase Plane Method)

z : y ' = Ay, A = [a jk ], a jk

Idea

y = xet

y ' = xet = Ay = Axetz

Ax = x ( )

n y (1) = x(1)e t , L, y (n ) = x(n )e t y (1) , L, y (n ) 1 n

,

y = c1x(1)e t + L + cn x (n )e t .1 n

15

Ch. 4 .

4.3 .

z y1 ' = a11 y1 + a12 y2 y1 (t ) y ' = Ay y = y (t ) y2 ' = a21 y1 + a22 y2 2 y1 (t ) y2 (t ) t . t (, ) : y1 y 2 .z

(Trajectory, (Orbit), (Path) : y1 y 2 (Phase Plane) : y1 y 2 (Phase Portrait) : y ' = Ay

16

Ch. 4 .

4.3 .

Ex. 1 () y1 ' = 3 y1 + y2 y2 ' = y1 3 y2

3 1 y ' = Ay = y 1 3

det (A I ) =

3 1

1 = 2 + 6 + 8 = 0 3 1 x (1) = ; 1 1 x (2 ) = 1

1 = 2 , 2 = 4 ,

:

y 1 1 y = 1 = c1y (1) + c2 y (2 ) = c1 e 2t + c2 e 4t 1 1 y2 c1 = 0 c2 = 0

c1 , c2

17

Ch. 4 .

4.3 .

z (, Critical Point) :Ex.dy2 dy2 dt = y2 ' = a21 y1 + a22 y2 = y1 ' a11 y1 + a12 y2 dy1 dy1 dt

dy2

dy1

P = P0 : (0,0 ) P : ( y1 , y2 ) dy2 dy1 . dy2 0 . P0 dy1 0z

: 5 . (Improper Node) (Proper Node) (Saddle Point) (Center) (Spiral Point)

18

Ch. 4 .

4.3 .

Ex. 1 : .

.

3 1 y ' = Ay = y 1 3(1) 1 x = . 1

( t e 4t

e 2t 0 )

(2 ) 1 x = . 1

19

Ch. 4 .

4.3 .

Ex. 2 : , .

1 0 y' = y, 0 1

y1 ' = y1 y2 ' = y 2

:

1 0 y = c1 et + c2 et 0 1

y1 = c1et y2 = c2et

c1 y2 = c2 y1

20

Ch. 4 .

4.3 .

Ex. 3

: , .

1 0 y' = y, 0 1

y1 ' = y1 y2 ' = y2

:

1 0 y = c1 et + c2 e t 0 1

y1 = c1et y2 = c2e t

y1 y2 =

()

21

Ch. 4 .

4.3 .

Ex. 4 : . 0 1 y' = y, 4 0 y1 ' = y2 y2 ' = 4 y1 1 = 2 + 4 = 0 = 2i 4 1

:

det (A I ) =

1 = 2i , x (1) = ; 2i 1 = 2i , 1 x (2 ) = 2i y1 = c1e 2it + c2e 2it y2 = 2ic1e 2it 2ic2e 2it

:

1 1 2it y = c1 e 2it + c2 e 2 2 i i

y1 ' = y2 , y2 ' = 4 y1 4 y1 y1 ' = y2 y2 ' 2 y12 + 1 2 y2 = 2

22

Ch. 4 .

4.3 .

Ex. 5 : t , ( ) .

1 1 y' = y, 1 1 :

y1 ' = y1 + y2 y2 ' = y1 y2 1 1 1 = 2 + 2 + 2 = 0 = 1 i 1 1

det (A I ) =

(1) 1 = 1 + i , x = i ;

1 = 1 i , x (2 ) =

1 i

:

1 1 y = c1 e(1+ i )t + c2 e(1i )t i i

23

Ch. 4 .

4.3 .

y1 ' = y1 + y2 , y2 ' = y1 y2

y1 y1 '+ y2 y2 ' = y12 + y2 2

(

)

r 2 = y12 + y2 2

1 2 r ' = r 2 2

( )

(r ) ' = 2rr '2

rr ' = r 2

~ r = cet ln r = t + c

24

Ch. 4 .

4.3 .

z . (Degenerate Node)

( akj = a jk ) ( akj = a jk , a jj = 0 ) . n n

A (,

det (A I ) = 0 ) ,

( ) y (1) = xet .

y (1) : y (2 ) = xtet + uet

(y ( ) )' = xe2

t

+ xtet + uet = Axtet + Auet

x + u = Au

(A I )u = x

.

25

Ch. 4 .

4.3 .

Ex. 6 4 1 y' = y 1 2 z

:

det (A I ) =

4 1

1 = 2 6 + 9 = 0 = 3, 2 0 u= 1

1 x= 1

1 y (1) = e3t 1

( 3I )u = :

1 1 1 u = 1 1 1

1 0 3t 1 y = c1 e3t + c2 1t + 1 e 1

z (1) c1y

4 2

c1 > 0 c1 < 0

y (2 ) y (2 )

26

Ch. 4 .

4.4 .

4.4 . (Criteria for Critical Points. Stability)

z (Criteria for Types of Critical Points)a a A = 11 12 1 , 2 a21 a22 : det (A I ) =

a11 a21

a12 = 2 (a11 + a22 ) + det A = 0 a22

p = a11 + a22 ( ), q = det A = a11a22 a12 a21 ( ), = p 2 4q( ) : q > 0, 0 : q < 0 : p = 0, q > 0 : p 0, < 0

27

Ch. 4 .

4.4 .

z (Stability) , ( ) t .z

(Stable Critical point) : t = t0 .

z z

(Unstable Critical point) : (Stable and Attractive Critical point)

:

t

28

Ch. 4 .

4.4 .

z : p < 0, q > 0 : p 0, q > 0 : p > 0

q