Top Banner

of 14

5328-22203-1-PB

Jun 03, 2018

Download

Documents

Goran Brncic
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 5328-22203-1-PB

    1/14

    CHAPTER124

    ReliabilitybasedoptimaldesignofverticalbreakwatersmodelledasaseriessystemoffailureE.ChristianilH.F.Burcharth2J.DalsgaardS0rensen3

    AbstractReliabilitybaseddesignofmonolithicverticalbreakwatersisconsidered.Probabilisticmodelsofimportantailuremodessuchsslidinganduptureailurenheubblemoundandthesubsoilaredescribed.Characterisationoftherelevantstochasticpara-metersarepresented,andrelevantdesignvariablesareidentifiedandanoptimal systemreliabilityformulationispresented.Anillustrativeexampleisgiven.Keywords:erticalwallbreakwaters,slidingfailure,upturefailure,designoptimisa-tion,reliabilityIntroductionAnumberofbreakwaterfailureshavebeenreportedduringthelast2 0yearsfo rrubblemoundbreakwatersswellsorverticalbreakwaters.g.inesPortugal),Arzew(Algier),Mutsu-OgawaraPortJapan),GelaItaly)andAlgecirasPortSpain).Thishasesultednnewwaysofapproachingthedesignproblemsrelatedtobreakwaters.Probabilisticmethodshavebeenintroducedtosolvebreakwaterdesignproblemsintheearlystageofplanning.ReliabilitybaseddesignofbreakwatershasbeendiscussedbyNielsenet.l.1983),Burcharth(1991),1992a) ,1992b),Burcharthetal.1994)and(1995)andbyTakayama1994) .Inthefollowingacaissonverticalbreakwaterisanalysedwithrespecttoprobabilityoffailurefo rsinglefailuremodes.Emphasisisputonthefoundationfailuremodesandtheirrelativeimportance.IdentificationofthefailuremodesSlidinganduptureailurenheubblemoundoundationandnhesubsoilareusuallythemostcriticalfailuremodesorverticalbreakwaters.therailuremodesexist.g.ettlementofthecaisson,seawardsliding,scouratheoesubsoiland/orrubblemound),instabilityofthearmourstonesinthefoundation,and structuralfailureofthecaisson.

    'Ph.D.-student,HydraulicsandCoastalEng.Lab.,Dept.fCivilEng.,AalborgUniversity2Prof.dr.techn.,HydraulicsandCoastalEng.Lab.,Dept.fCivilEng.,AalborgUniversity3Assoc.Prof.Ph.D.,Dept.fBuildingTechnologyandStructuralEngineering,AalborgUniversity1589

  • 8/12/2019 5328-22203-1-PB

    2/14

    1590 COASTALENGINEERING996

    Ninefoundationfailuremechanismsincludingslidingareidentifiedcf.igure.Over-turningisarelevantfailuremodeonlyinthecasesofmonolithicstructuresplacedonverystrongfoundationsoilsorrock.Thedesignsconsideredcoververticalbreakwatersplacedonloworhighrubblemoundsandsandorclaysubsoils.

    (T) Slidingfailure2)Failureintherubble (3)ailureintherubblemoundmoundlidinginclayorsandsubsoilSlipfailureplane v-~1 - ^ - ^ --^ ^5*t s ^~**C\Rubblemouri

    T\Failumou reintid heubble

    Claysandorrock

    /eNFailureintherubble /*?\^^ moundandsand ^subsoil

    Clayorsand

    Failureintherubblemoundandsandsubsoil

    ?* ?+*,S| M>^ V WAXClayorsa ndorn>< Slipfen < an d i Sand ta-f -y

    (7)Failureintheubbleg)ailureintherubble ftsailureintherubblemoundandsandoundandclaymoundandclaysubsoilsubsoil(rotation)ubsoil(rotation)55(x,z)iTO(x,z)' 'randtlzoneFigure:NinefoundationrupturefailuremechanismsSlidingSliding,.e.orizontaldisplacementofthecaisson,canoccursaslipeitheratheinterfacebetweenhecaissonconcretebaseplateandherubblematerial,orentirelyintherubblematerial.Corresponding tothefirstmentionedcasestabilityagainstslidingexistswhentheratiooftheresultanthorizontalforce,Fg,otheresultantverticalforceisequaltoorlessthantan/i,i.e.

    FH

  • 8/12/2019 5328-22203-1-PB

    3/14

    VERTICALBREAKWATERS 591

    whereFQsheweightofthecaissoneducedorbuoyancy,Fushewavenducedupliftforceonthebaseplate,and/istheangleoffrictionbetweentheconcretebaseplateandheubblemoundorhebeddingayer.eferencesgivenoTakayama(1992)orvaluesoftanfi .Iftheslidingailureakesplaceentirelynheubblematerial,.g .nhebeddinglayer,henj ,mustbesubstitutedbytheeffectiveangleoffrictionip 'ofthematerial.Themostcriticalofthetw ocasesshouldbeconsideredinthedesign.FHandFuareinthispapercalculatedbyusingthewaveloadformulationbyGodaetal.1972)and1974)extendedtoncludeimpulsivepressure,Takahashi1994) .ThedesignwaveheightisadjustedinthesurfzoneasdescribedbyGoda1975).TheresultantoftheforcesFH,QandFusindicatedinFigure2asFR.Rupturefailurenrubble,sandandclaysubsoil cases1 9Toevaluatethestabilityofthefoundation,consistingoftherubblemound,sandorclaysubsoil,heupperboundheoremofgeneralplasticityheorysused.hisheoremcanalsobeappliedinaprobabilisticapproachofdesign.Applicationoftheupperboundtheoremrequiresthathenormalityconditionisul- filled.Experienceshowsthatgoodestimatesofthebearingcapacitycanbeobtainedbyintroductionofareducedeffectiveangleoffriction ,Hansen1979)definedby

    sinip 'co sib .tan

  • 8/12/2019 5328-22203-1-PB

    4/14

    1592 COASTALENGINEERING996

    Figure2 :Rupturenheu b b lemoundandclaysubsoil.Thegeometricallengthsandtheradiusfo rthekinematicallyadmissiblerupturefigurearecf.igure2 .

    he=Bz+Brm+2/i/j hnta,n(ipdl+62) (3 )Asnotedabove,hesliplineABsapproximatedbyastraightine.TheadiusR2thenbecomes

    #2=1BCIsin02FurtherI ADbecomes

    IAD +xhcta,n(ipdl+02) 2 Thecentreofgravityfo rzoneand2isdefinedbythelengthIQ,cf .Figure2

    (IAD-\IBC){\IAD+\IBC hn+\{lBc~2hnlBC+\h2u

    (4 )

    (5 )

    Externalwor done

    MAD+jhc hn(6 )

    TheexternalworkWEonebyhewaveoads,heporepressurealongheruptureboundarylineandtheweightoftheverticalbreakwaterisfo raninfinitesimalrotation5aroundpointD

    WE=SM0 (7 )whereM0isthemomentaroundDofthewaveloads,theporepressureandtheweightofthecaisson.Thewor donedu eoheweightofzones and2sarotationaroundD

    wh2=y sw ) i Di) a 1 n2) 8

  • 8/12/2019 5328-22203-1-PB

    5/14

    VERTICALBREAKWATERS 1593

    wherefliandS ^ 2aretheareasofzoneand2 andI AD 'Gstheperpendicularlengthbetweenhepointofrotationandthecenterofgravityorzoneand.Theworkdonebyheweightofzone szeroasheresultantdisplacementofthecentreofgravityshorizontal.Thenternalworkdonenzone3alongherimoftheruptureboundaryBCs

    z-202W3 = 6B% Cu(0)d0 9)Jowherec^sheundrainedshearstrengthoftheclay.TheimitstateequationforherupturemechanisminFigure shen:

    W Wh2 WE=0 (10)02sheunknownangleobedeterminedbyminimisingtheratiobetweenhestabil-isingworkanddrivingwork.SystemmodeloffailuremodesforrupturefailureandoverturningIndesignofverticalbreakwaters,themain concernissliding,overturning,andrupturefailuresnherubblemoundandnhesubsoil.Theseailuremodescanbemodelledbyaseriessystemsf.igure3.

    9Rubblemoundandsandsubsoil|Slidingfailure^Overturning[|ftf [[fupturefailureofIIRupturefailureofthe rabble Jqthe rabble,Ruptureof the rabbleandsand subsoil 3.u uptureofthe rabblean dsandsubsoil 5. I Iuptureof therabblean dsandsubsoil g,uptureof therabbleandsandsubsoil(rotation).

    b)ubblemoundandclaysubsoil-siidingfailureLfZZTJTRupturefailureofthe rabble 4 ,I 3 Ruptureoftherubblean dclaysubsoil 3, u uptureoftherubblean dclaysubsoil(rotation).n uptureof therubblean dclaysubsoil 9.

    Figure3:eriessystemoffailuremodesforrupturefailureofthesandandclaysubsoil.CharacterisationofthestochasticvariablesAllvariablesarenprinciplestochasticvariablesnaimitstateormulation.omeparameterse.g.eometricalparametershavesmallcoefficientofvariationandmightberegardedasdeterministicvariables.Theparameterswhichhaveasignificantdegreeofuncertaintynbreakwaterdesignwillbediscussednheollowing.tsassumedthatallstochasticvariablesarendependent,unlessotherwisestatednheext.

  • 8/12/2019 5328-22203-1-PB

    6/14

    1594 COASTALENGINEERING996

    ThewaveinducedhorizontalforceandtheupliftforcecanbecalculatedfromequationsgivenbyGodaet.l.1974)andTakahashi1994).Themodeluncertaintyrelatedtotheod awaveoa dismodelledbyanormaldistribution.ThishasbeenclarifiedbyBruining(1994)whocomparedanumberoflaboratorytestsresultswiththeGodafor-mulainordertoevaluatetheuncertaintyrelatedtothehorizontalwaveload,thewaveinducedupliftforce,thehorizontalmomentandthewaveinducedupliftmoment.ThemodeluncertaintiesarerepresentedbyvariablesU p H,UFU,UMHndUMVxpectedvaluesbias)andstandarddeviationsaregiveninTable2 .ThedeepwaterwaveclimatecharacterisedbythesignificantwaveheightHsoisassumedtofollowaWeibulldistribution.ThedistributionfunctionofthemaximumsignificantwaveheightwithinTyearsisgivenby

    FBTH)= exp IHsoBw \\ A )XT

    (11)where sheaveragenumberofHsodatavaluesperyear.w .6 9susuallyregardedasadeterministicparameter.DuetothelimitednumberofdataA andkaresubjecttostatisticaluncertainty.Aandkvaluesaremodelledasnormaldistributedstochasticvariableswithavariancebasedonthemaximumlikelihoodestimates.TheexpectedvalueandthestandarddeviationofAandkarepresentedinTable1.

    standarddeviation,a

    (approximation)

    pA* T l+2/pk)NVr2(i+i/w0 PA( )'

    Table:MeanandstandarddeviationofAandkvaluesinheWeibulldistribution.InTableNshenumberofavailableffso-valuesandTshegammaunction.PA=0-58andp^=1.14andN=30willbeusedintheillustrativeexample,cf.Table2.Asthewaterdepthdecreasesfromdeepwatertoshallowwater,waveransformationwillresultinrefraction(whenwavesarenotheadon),shoalingandfinallywavebreak-ing.Thereforetheuncertaintyofthebreakerheightsshouldbeconsideredindesignindepthlimitedcases.ThedesignwaveheightHdesign=#1/250oDeappliedintheGodaformulaisincaseofnosurf zoneinfrontofthestructuretakenas.8 Hs0.

  • 8/12/2019 5328-22203-1-PB

    7/14

    VERTICALBREAKWATERS 1595

    8 aOSOSi 1,d

    S 8 r3m

    1 1J3f-t

    asi

    3 m

    CNOJO

    C Sa 1 C T > oshOg 33m

    OT-H

    bOB'S'3tHm

    bOaa 3m

    -HbOg 33

    oo>i-H+^S3in3

    Oo>rH

    C/D daCDCOaCD tHa.

    CNOOl

    cda C3

    ao3'Ccos 3. g a oa

    13Soa

    CDa'COo

    13a o 13a oa13a o0

    3 a Hoa13a O

    13a oa3a -4oa

    13a oa13a oa

    13a oa13a oa

    xlXbla. Od00oo

    00CNdCNCOd

    r-H IDdr-4d od

    oi-HdorHd

    orHdorHdod d

    tndrd

    deviton

    l-Hood CNdlO(Md

    rH*d d d od COodCOCOod

    COodod

    lOoda

    Oind od di-H00d

    CNd

    lOrHCN

    od oOdCO

    d oCOd rHCOOOd

    0o'3CDQ

    3c eCDeg3-y co 'C D r5

    IIaC D >C D C C jQ &

    tHCDCD

    So."31

    tHCDCD

    Sa"31 2

    1 3

    3soo 5

    ^8o 5Os

    fD "3.CSfe T3 C DC S C D^ .3o3O3

    s_05 3o3 C DBH.9x .C DcQ C D5

    tHot s a

    _gu

    i f -Si^* d ? 1 1 - ^ 9- ts i = 1 I I CN O w CO t- 00 OJ O I-H CN O ^c" ID

    Table2:tochasticmodelofthestochasticvariables

  • 8/12/2019 5328-22203-1-PB

    8/14

    1596 OASTALENGINEERING99 6

    InaseofasurfzonenrontofthestructurehebreakerheightsakensGoda,1994)Hb=L00.17 l-exp(-1-5 (l+15tan4/36>))) 1 2 )

    where/,shewaterdepthatadistance5HSseawardofthestructure,andL o=HS O/0.035sthedeepwaterwavelength.Consequently,Hdesign=min[HS0,Hi,].Tidalelevation sassumedoollowaosinedistributionunction,eeTakayama(1992).

    *C(0=--arccosf-l)-1 1 3) where(variesbetweenQ=0.75m.Stormurge%shouldbeconsideredwhenhestructuresnshallowwater,dueopossiblechangeinbreakerwaveheightsandbuoyancyofthestructure.orsimplicitythestormsurgeisnottakenintoaccount.Thetotalwaterdepthinfrontthestructureishtot hs+ ,wherehssthemeanseawaterlevelatthefootofthestructure,withoutinfluencefromthestormsurgeortidallevel.Theaveragemassdensityofaconventionalverticalbreakwaterincludingsandballast,reinforcedconcretewallsandconcretecapcanbeassumedobenormaldistributedwithameanvalueintherangepc=2 .15-2 .3t/m3andacoefficientofvariationof5% ,Burcharth1992) .Itisgenerallyacceptedthatthevariabilityoftheeffectivefrictionangleofawellknownsoilsamplessmall,butauthorssuchsNadimetl.1994)andCherubini1992)haveencounteredvariationcoefficientsntherange3%o5% .tsassumedinthispaperthatthengleofdilationandeffectivefrictionanglehaveavariationcoefficientcorrespondingto0%.Thefrictioncoefficientbetweenthe baseplateand rubble isassumednormaldistributedwithameanvaluetan i=0.636andacoefficientofvariation of15%,Takayama(1992) .Evenhomogeneousoilayersexhibitchangenstrengthrompointopoint.heundrainedhearstrengthofclaysanexamplewherespatialvariabilityexists.tsassumedobemodelledbyaog-Gaussianstochasticield{cu(x,z)}wherexshehorizontalcoordinateandzheverticalcoordinate,ee.g.Andersenetl.1992) .Themeanvaluefunctionandcovariancefunctionareinthispaperassumedtobe

    E[cu(x,z)] = J , Cu+az1 4 )Cov[cuxi,zi),cu(x2,z2)] = 1 5)

    ex(-| )exp(-(-1))

  • 8/12/2019 5328-22203-1-PB

    9/14

    VERTICALBREAKWATERS 597

    whereC usinkPaandx,zaretakeninmetreswithorigoa; ,z)=(0,0)equaltopointB,eef.igure,iC usheexpectedvalueoftheundrainedshearstrength,aC usthestandarddeviationoftheundrainedshearstrengthanda=3kPa/misaconstantsignifyingthelinearincreaseoftheundrainedshearstrengthoftheclaysubsoil.MethodofreliabilityanalysisTheuncertaintiesphysical,statisticalandmodel)elatedtoheaboveailuremodescf .igureremodelledsstochasticvariables,andimitstateunctionsorhefailuremodesareformulatedasdescribedabove.ThewaveoadsareestimatedusingtheGodaformula,includingimpulsivepressuremodification)withmodeluncertaintyincluded.Forthefoundationfailuremodesthestrengthoftheclaysubsoilismodelledasastochasticieldandaprobabilisticlimitstateunctionshenormulatedusingkinematicallyadmissiblefailuremechanisms,Christiani(1996).TheprobabilityoffailureofthefailuremodesareestimatedusingFirstOrderReliabil-ityMethods.ystemfailureismodelledbyaseriessystemandthesystemprobabilityoffailurecanbeevaluatedonhebasisoftheFORManalysisofthesingleailuremodes,seeMadsenetal .1986)andBurcharth1992) .LimitstatefunctionsSlidingfailure.Failurecorrespondingtoslidingcanbemodelledbythelimitstatefunction,cf eq.1 ):

    0 failure= 0 limitstate1 6)>0 nofailure

    FoundationfailurenherubbleandclaysubsoilAsmentionedaboveheundrainedshearstrengthofthelaysmodelledsaog- Gaussianstochasticield{cu{x,z)}.hecorrelationengthsor{cu(x,z)}resmallcomparedtotheintegrationintervalsanditfollowsfromthecentrallimittheoremthatthetotalinternalworkin theclaysubsoilcanbeapproximatedbyanormaldistributedstochasticvariableW 3withmeanvalue(j,w 3andstandarddeviationaw 3 -heimitstatefunctioniswritten,seeeq .1 0)

    Qday=E[W]+uwaW3-Wh2 WE 1 7)whereu\ysarealizationofanormaldistributedstochasticvariableUwwithmean0andunitstandarddeviation.TheexpectedvalueofW 3s

    E[W]=8Rl[cu(e)]d0 1 8)Jo

  • 8/12/2019 5328-22203-1-PB

    10/14

    1598 OASTALENGINEERING996

    whereE[cu(6)]istheexpectedvalueofcatthepositiondescribedbytheangle9alongthecircularrupturelineBC.ThevarianceofW zs

    Var[W ]=< 7 J L=< 2/ / CouMflJ.c^OldBide19)7o JowhereCov[cu(6),cu(0i)\sthecovariancefunctionofcuatthepositionscorrespondingto0and0\.SystemsreliabilityoftheseriessystemsnvolvingsandandclaysubsoilsThesingleailuremodesnFigurereegardedsmailurecomponents.tsclearromadeterministicdesignofamonolithicstructurehatfoneoftheailurecomponentsfailthenthesystemfails,i.e.hebreakwaterhasnoloadcarryingcapacityafterthefailureofonecomponent.ThesystemprobabilityoffailurePfcanbewrittenasaprobabilityofunions.

    /Pf=P\\J*(*) =.*(*)

  • 8/12/2019 5328-22203-1-PB

    11/14

    VERTICALBREAKWATERS 1599

    S.WX

    bo=Rubblemoundblocksize

    Harbourside

    Figure4 :Definitionofth edesignariablesforoptimalreliabilitydesign.Iftheobjectivefunction ischosenasthetotalexpectedcostsCTofthestructureduringthelifetime,theoptimaldesigncanbefoundasthesolutiontotheoptimisationproblem

    min CT(b)=C/(b)+CFPf{b)b\

  • 8/12/2019 5328-22203-1-PB

    12/14

  • 8/12/2019 5328-22203-1-PB

    13/14

    VERTICALBREAKWATERS 1601

    Cj{B,hu)=ChWcaisson(B)+C/2Wrubble{hll) (28)whereWcai s s < mstheweightofthecaissonandWrub b i esthecorrespondingweightoftheubble.ThedifferencenpriceperunitweightbetweentheweightoftheubbleandcaissonschosensTP-=.heostofconstructionsminimisedwithupperboundsontheprobabilityoffailureofthesignificantfailuremodes.Optimaldesignsfo rdifferentlevelsoftheacceptableprobabilityoffailurePfwithoutconsideringwaveheightreductioninthesurfzoneispresentedinTable3: ApplyingJapanesedesignguidelines Pi B(sand&clay)hn Bsandkclay),hnH=5.56m, B=17.8m,hn=6m waterdepthatthetoeh,=1 4 m waterdepth,footofthecaissond=8m

    0.1 0.2 0.324.7m),.0m )20.6m),.0m )18.2m),.0m )

    26.5m),.0m )21.6m),.0m )19.0m),.0m )Table3:Optimaldesignfo rdifferentlevelsofacceptableprobabilitywithoutconsider-

    ingshoalingandbreakerheightsinthesurfzone.ConclusionsFoundationfailuremodesforverticalbreakwatersareformulatedsuchthateliabilityanalysescanbeperformed.Thefailuremodesincludeslidingfailureandfailuremodesinvolvingsandandlaysubsoils.tochasticmodelsfo runcertainparametersarede- scribedusingtheinformationfromexperimentaltestsandfromtheliterature.Furtheritismentionedthatfoundation failuremodescanbemodelledascomponentsin aseriessystem.Reliabilitybasedoptimisationformulationsfo rrationaldesignofverticalwallbreak-watersaregiven.Finallyanillustrativeexampleispresented,wherethereliabilityofabreakwateronahighrubblemoundisinvestigatedandoptimaldesignsaredetermined.AcknowledgementsThisworkissupportedbytheDanishresearchprogramMarinTeknik sponsoredbytheDanishTechnicalResearchCouncil.ReferencesAndersen,E.Y.&B.S.Andreasen&P.Ostenfeld-Rosenthat1992) .FoundationRe-liabilityofAnchorBlockforSuspensionBridge.roc.FIPWG7.5,LecturenotesnEng.Vol.6,SpringerVerlag,992pp.31-140 .Bruining,J.W.1994) .aveforcesonverticalreakwaters.eliabilityofdesignfor-mula.elftHydraulicsReportH1903,MASTIIcontractMAS2-CT92-0047.Burcharth,H.F.1991) .ntroductionfpartialoefficientsnheesignfu b b l emoundreakwaters.onf.-nCoastalStructuresandBreakwaters,nst.fCivilEngineering,London.Burcharth,H.F.1992a) .Developmentofapartialcoefficientsystemforth edesignofrubblemoundreakwaters.IANCPTCIIWorkingGroup2 ,SubgroupFreport.Burcharth,H.F.1992b).Reliabilityevaluationofastructureatea .roceedingsoftheShortCourseonDesignandReliabilityofCoastalStructures.Venice,ScuoladiS.GiovanniEvangelista,992.3rdInternationalConferenceonCoastalEngineering.

  • 8/12/2019 5328-22203-1-PB

    14/14

    1602 OASTALENGINEERING996

    Burcharth,H.F.&J.D.S0rensen&E.Christiani(1994).nth eEvaluationof FailureProbabilityofMonolithicVerticalWallBreakwaters.roc.WaveBarriersinDeepwa-ter ,PortandHarbourResearchInstitute,Yokosuka,Japan,994,pp.58-46.BurcharthH.F.,J.D.S0rensen& ;E.Christiani(1995):Applicationofreliabilityanalysisforoptimaldesignofmonolithicverticalwallbreakwaters,Proc.COPEDEC995,RiodeJaneiro,Brazil.CherubiniC.&GiasiC.I.1993).hecoefficientofvariationsofsomegeotechnicalparameters.robabilisticmethodsingeotechnical,A.ABalkema1993).Christiani,E.1996).tatisticallyaseddesignmethodsforreakwaters.h.D.,Aal-borgUniversityinprint).Goda,Y.andT.Fukumori1972) .aboratorynvestigationofwavepressuresexertedup onverticalandcompositewalls.oastalEngineeringinJapan,Vol.5.p81-90,1972.Goda,Y.(1974).Anewmethodofwavepressurecalculationforth edesignofcompositebreakwater.roc.4thInt.onf.CoastalEng.,Copenhagen,Denmark.Goda,Y.1975).rregularwavedeformationnhesurfzoneCoastalEngineeringinJapan,JSCE,Vol.18pp.3-16.Hansen,.1979).efinitionnduseffrictionngles.roc.nt.onf.IIECSMFE,Brighton,UK ,979.Nadim,F .&S.Lacasse,andT.R.Cuttormsen1994) .robabilisticfoundationtabil-ityanalysis:Mobilisedfrictionanglesavailablehearstrengthapproach.tructuralSafety&Reliability,994,Balkema,Rotterdam.NielsenS.R.K.andBurcharthH.F.1983).tochasticdesignofrubb lemoundbreakwa-ters.roc.1thIFIPConferenceonsystemmodellingandoptimization,Copenhagen.Madsen,H.O.,S.Krenk&N.C.Lind1986).MethodsofStructuralSafety.rentice-Hall,986.S0rensen,J.D.,H.F.BurcharthandE.Christiani1994) .Reliabilityanalysisandop -timaldesignofmonolithicverticalwallreakwaters.roc.thFIPWG7.5Assissi,Italy.Chapman&Hall.S0rensen,C.S.,Clausen,C.J.F.,Andersen,.,1993).earingapacityAnalysesforhereatBeltEastBridgeAnchorBlocks.imitStateDesignneotechnicalEngineering.SLAD93 ,pp.305-312 Takahashi,S.,Tanimoto,K.,andK .Shimosako(1994).DynamicResponseandSlidingofBreakwaterCaissonagainstImpulsiveBreakingWaveforces.roc.WaveBarriersinDeepwater ,PortandHarbourResearchInstitute,Yokosuka,Japan,994,pp.62 -399.Takayama,T.1992) .EstimationofslidingFailureProbabili tyofpresentBreakwatersforProbabilisticDesign.eportofPortandHarbourResearchInst.,Vol.1 ,No.,1992.