Top Banner
5/23/05 IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull
33

5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

Jan 20, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Elasticity and Dynamics of LC Elastomers

Leo RadzihovskyXiangjing XingRanjan MukhopadhyayOlaf Stenull

Page 2: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Outline• Review of Elasticity of Nematic

Elastomers– Soft and Semi-Soft Strain-only theories– Coupling to the director

• Phenomenological Dynamics– Hydrodynamic– Non-hydrodynamic

• Phenomenological Dynamics of NE– Soft hydrodynamic– Semi-soft with non-hydro modes

Page 3: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Strain

Cauchy DeformationTensor(A “tangent plane” vector)

Displacementstrain

Invariances

Displacements

( ) ( )= +R x x ux

1;U V -® ®R R x x

ii i i

Rxa a a

a

d h¶

L = = +¶

i iua ah = ¶, = Ref. Spacei,j = Target space

TCL, Mukhopadhyay, Radzihovsky, Xing, Phys. Rev. E 66, 011702/1-22(2002)

Page 4: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Isotropic and Uniaxial Solid

( )

1

1

2 212

23 2

( ) ( )

( ) ( )

Tr Tr Tr

ff f U V

ff u f V uV

C u DBu u uaa m

-

-

= L = L

= =

= ++ - % %%

13u u uab ab ab ggd= -%

Invariant under

( ) U (V )®R x R x

Isotropic: free energy density f has two harmonic elastic constants

Uniaxial: five harmonic elastic constants Invariant under

uni( ) U (V )®R x R x

Nematic elastomer: uniaxial. Is this enough?

2 21 12 21 2 3

2 24 5 ;

( , )

zz zz

z

z

f C u C u u C u

C u C u

x

nn nn

nt n

a n

= + +

+ +

=x x

Page 5: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Nonlinear strainGreen – Saint Venant strain tensor- Physicists’favorite – invariant under U;

( )

1 12 2

12

( ) ( )T T

k k

u

u u u u uab a b b a a b

d h h= L L - » +

= ¶ +¶ +¶ ¶

2 2 2dR dx u dx dxab a b- =

1

1 1

;

;

U V

U V u V uV

-

- -

® ®

L ® L ®

R R x x

u is a tensor is the reference space, and a scalar in the target space

Page 6: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Spontaneous Symmetry Breaking

Phase transition to anisotropicstate as goes to zero

Direction of n0 isarbitrary

0

0 0 13( )

u u

n n

ab ab

a b abd

=

= Y -

% % 2~uaa Y

( )120 0 0

Tu d= L L -

0 02udL = +

Symmetric-Symmetric-TracelessTracelesspartpart Golubovic, L., and Lubensky, T.C.,, PRL

63, 1082-1085, (1989).

Page 7: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Strain of New Phase

u is the deviation ofthe strain relative to the original reference frame R from u0

u’ is the strain relative to the new state at points x’

u is linearly proportionalto u’( )1 1

2 2' ( )T Tu d h h¢ ¢ ¢ ¢= L L - » +

0( ) ( )

( )

i ij j i

i i

R x u

x u

d= L +

¢ ¢ ¢= +

x x

x

( )0

12 0 0

0 0'

T T

T

u u u

u

d = -

= L L - L L

= L L

0i i k

ij ik kjj jk

xR R

x x x

¢¶¶ ¶¢L = = = L L

¢¶ ¶ ¶

Page 8: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Elasticity of New Phase

Rotation of anisotropy direction costs no energy

C5=0 because ofrotational invariance

This 2nd order expansionis invariant under all U but only infinitesimal V

( )

( )

11 10 0 0 0

1

14 1 1

' ( )

1 cos2 sin2( 1)

sin2 1 cos2

T

r

rr

u V u V u

rq q

q q

-- -= L - L

æ ö- ÷ç ÷ç= - ÷ç ÷- -ç ÷çè ø

( 1)' ~

4xz

ru

rq

-

2

0||20

r^

L=

L

21 12 21 2 3el

54

zz zz

z z

f C u C u u C u u

C u u C u u

nn nn nn

nt nt n n

¢ ¢ ¢ ¢ ¢= + +

¢ ¢ ¢ ¢+ +

Page 9: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Soft Extensional Elasticity

Strain uxx can be converted to a zero energy rotation by developing strains uzz and uxz until uxx =(r-1)/2

( )

1

14 1 1

1 cos2 sin2( 1)

sin2 1 cos2

r

rr

u rq q

q q

æ ö- ÷ç ÷ç= - ÷ç ÷- -ç ÷çè ø

1

1( 1 2 )

2

zz xx

xz xx xx

u ur

u u r ur

= -

= - -

Page 10: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Frozen anisotropy: Semi-soft

( ) ( )hzzf u f u hu= -

( ) ( ) ( 2 )hzz xzf u f u h u uq¢ = - +

System is now uniaxial – why not simply use uniaxial elastic energy? This predicts linear stress-stain curve and misses lowering of energy by reorientation:

2 2 2 21 12 2 51 2 3 4zz zz zf C u C u u C u C u C unn nn nt n= + + + +

Model Uniaxial system:Produces harmonic uniaxial energy for small strain but has nonlinear terms – reduces to isotropic when h=0

f (u) : isotropic

2

2xz xx zz

xx zz xz

u u uu u u

u u uqæ ö- - ÷ç ÷¢® = + ç ÷ç ÷- ÷çè ø

Rotation

Page 11: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Semi-soft stress-strain

2 2 ( ) 2( )

( )0 or

h

xz xz xx zz zz xx xz

xx xzxz xz

xx zzxx

dfhu u u u

dh u

u uu h

s s

ss s

sq

=

= - = - -

-= Þ

-=

+

hfuab

ab

Ward Identity

Second Piola-Kirchoff stress tensor; not the same as the familiar Cauchy stress tensor

Ranjan Mukhopadhyay and TCL: in preparation

Page 12: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Semi-soft Extensions

Not perfectly soft because of residual anisotropy arising from crosslinking in the the nematic phase - semi-soft. length of plateau depends on magnitude of spontaneous anisotropy r.

Warner-Terentjev

Stripes form in real systems: semi-soft, BC

Break rotational symmetry

Finkelmann, et al., J. Phys. II 7, 1059 (1997);Warner, J. Mech. Phys. Solids 47, 1355 (1999)

Note: Semi-softness only visible in nonlinear properties

Page 13: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Soft Biaxial SmA and SmC

2 2 2 21 12 21 2

2 2 2 21

2 21 2

5

2 3

3

3 4

ˆ ˆ (

ˆ

ˆ )

ˆzz

zz z z

z

z

zz z

z

zgu u gu u

f C u C u u C

g

vu u vu u

u

v u u

u u C u

u

C

nt aa n

n aa n nt

nn

n t

t nt

nn nt n

+ +

= + + + +

+

+

+ +

Free energy density for a uniaxial solid (SmA with locked layers)

12u u unt nt nt ssd= -

C4=0: Transition to Biaxial Smectic with soft in-plane elasticityC5=0: Transition to SmC with a complicated soft elasticity

Red: Corrections for transition to biaxial SmAGreen: Corrections for trtansition to SmC

Olaf Stenull, TCL, PRL 94, 081304 (2005)

Page 14: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Coupling to Nematic Order• Strain u transforms like a tensor in the ref. space but as a scalar in the target space.• The director ni and the nematic order parameter Qij

transform as scalars in the ref. space but , respectively, as a vector and a tensor in the target space.• How can they be coupled? – Transform between spaces using the Polar Decomposition Theorem.

T 1/ 2 T 1/ 2

T 1/ 2

T 1/ 2 1/ 2

( ) ( )

( ) Rotation Matrix

( ) (1 2 ) Symmetric

OM

O

M u

-

-

L = L L L L L º

= L L L =

= L L = + =T;i i i in O n n O na a a a= =% %Ref->target Target->ref

Page 15: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Strain and Rotation

L

n% is a reference space vector; it is equal to the

target space vector that is obtained when is

symmetric

Simple ShearSymmetric shear

Rotation

12( )i i i i

i i k k

O u ua a a a

a a

d

d e

» + ¶ - ¶

» - W

Page 16: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Softness with Director

2 2 21 12 21 2 3 4

2 2125 2 1

2 2 21 12 21 2 3 4

2

21

4 214 2

2 21 12 251 2 1 2 1

[ ( / ) ] [ ( / )]

zz zz

z z z

zz zz

zz

z z

n u

gn

f C u C u u C u C u

C u D n n u D n

C u C u u C u C u

D n D D u C D u

u

D

n

n

n n tt

nn nn nt

n n n n

nn nn nt

n n n

l

l

+

+ +

= + + +

+ + +

= + + +

+ + + -

+

%

% %

%

L%% %

22

5 51

10

2R D

C CD

Soft= - = ÞDirector relaxes to zero

( , )zn n n

Nunit vector along uniaxial direction in reference space; layer normal in a locked SmA phase

2 2 21 ( ) ; , etc.zzn N n c u N u N

Red: SmA-SmC transition

Page 17: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Harmonic Free energy with Frank part

3 2 21 12 21 2 3

2 254

3 2 2 21 1 12 2 21 2 3

3 212 1 2

12

[

]

[ ( ) ( ) ( ) ]

[ ]

( )

u n u n

u zz zz

z

n z

u n z

z z

F F F F

F d x C u C u u C u

C u C u

F d x K n K n K n

F d x D n D n u

n n u u

nn aa

nt n

n n nt n t n

n n n

n n n n

e

-

-

= + +

= + +

+ +

= ¶ + ¶ + ¶

= +

= - ¶ - ¶

ò

òò % %

%

Page 18: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

NE: Relaxed elastic energy

eff 3 2 21 12 21 2 3

2 2 2 2 2 21 12 254 1 3

22

5 51

2 2

2 2

1 1

5

3

5

1 1 3

[

( ) ( ) ]

; 2

1 11 ;

0

1

0

4 4

;

u zz zz aa ii

R

R

R Raz a z z aab

R

R R

R

F d x C u C u u C u

C u C u K u K u

DC C

DC

D DK K K

C

KD D

= + +

+ + + ¶ + ¶

= -

æ ö æ ö÷ ÷ç ç÷ ÷= + = -ç ç÷ ÷ç ç÷ ÷ç

= ¹

çè ø è ø

ò

Soft : Semi - Soft :

Uniaxial solid when C5R>0,

including Frank director energy

Page 19: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Slow Dynamics – General Approach• Identify slow variables: Determine static

thermodynamics: F()• Develop dynamics: Poisson-brackets plus

dissipation• Mode Counting (Martin,Pershan, Parodi

72):– One hydrodynamic mode for each conserved

or broken-symmetry variable– Extra Modes for slow non-hydrodynamic– Friction and constraints may reduce number

of hydrodynamics variables

Page 20: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

PreliminariesHarmonic Oscillator: seeds of complete formalism

221; { , } 1

{ , }

2

,

2

{ }

p x

Hp x kx

x

pH kx

m

p x v

Hx p

pp

xm

p mv

=

¶- -

¶¶

-

= +

= - G = - G

= =¶

=

& &

& friction

Poisson bracket

Poisson brackets: mechanical coupling between variables – time-reversal invariant.Dissipative couplings: not time-reversal invariant

Dissipative: time derivative of field (p) to its conjugate field (v)

Page 21: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Fluid Flow – Navier StokesConserved densities:

mass:Energy:

Momentum: gi = vi2

0

0

t

t i i ij i

t i

i i

i

ig v

j

g

pe

r

s h

e

-

¶ + =

¶ = ¶ = + Ñ

¶ +¶ =

212 ( / ) [ ]d dF d x g d xfr r= +ò ò

2

2

2

2(2 modes)

3

(2 modes)

(1 mode)p

cq iq

i q

i qC

hw

rh

wrk

w

= ± -

= -

= -

Page 22: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Crystalline Solid I

Conserved densities:

mass:Energy:

Momentum: gi = vi

Broken-symmetry field:

Phase of mass-density field: u describes displacement of periodic part of density

21 12 2( / ) [ ]d

ii ijkl ij klF d x g f u K u ur r l dré ù= + - +ê úë ûò

( )/ 2ij i j j i

u u u= ¶ +¶

( )ier r r × -® +å G x uG

G

Mass density is periodic

Strain

Free energy

Aside: Nonlinear strain is not the Green Saint-Venant tensor

Page 23: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Crystalline Solid II

2

0

1t

t ii

t i

i i

i

i

ii

Fu

u

g

up

v

g vFd

r

g

d

dd

h

¶ + =

¶ = -

-

+¶ Ñ-¶ =

permeation

Modes:Transverse phonon: 4Long. Phonon: 2Permeation (vacancy diffusion): 1Thermal Diffusion: 1Permeation: independent motion of

mass-density wave and mass: mass motion with static density wave

Aside: full nonlinear theory requires more care

Page 24: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Tethered Solid

/t

dr r

¶ =

= - Ñ ×

u v

u

No permeation :

Density locked :

2 2

it i i

Fu

uvh

dr

d¶ = - + Ñ

( )2 212 2d

ii ijF d x u ul m= +ò

Isotropic elastic free energy

7 hydrodynamic variables: 1 density,3 momenta, 3 displacements, 1 energy + 1 constraint = 8-1=7Classic equations of motion for a Lagrangian solid; use Cauchy-Saint-Venant Strain

2

2

(4)2

2 2 (2)

3

T

L

q i q

q i q

m hw

r r

l m hw

r r

= ± +

+= ± +

+ energy mode (1)

Page 25: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Gel: Tethered Solid in a FluidTethered solid

2 2 ( )s s

iit i ii

Fu u

uu v

dr h

d¶ = - + Ñ - G -& &

2 ( )ii it i i

g p v v uh¶ = - ¶ Ñ -+ - G &Fluid Frictional Coupling

( ) Tst i i j ij

g ur s¶ + = ¶&Total momentum conserved

2( ) ( )s si ii

Fu u

ud

r r h hd

+ = - + + Ñ&& &

1 1 1( )sFi iw t r r- - -= - = - + G

Fast non-hydro mode: but not valid if there are time scales in

1: wt = Effective Tethered Hydro.

Fluid and Solid move together

Friction only for relative motion- Galilean invariance

Page 26: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Nematic Hydrodynamics: Harvard I

212 ( / ) [ , ]d dF d x g d xfr r= +ò ò n

g is the total momentum density: determines angular momentum = ´xl g

( )2 21 2

23

1 1[ , ] ( ) ( )[ ( )]

2 21

( )[ ( )]2

f K K

K

r r r

r

= Ñ × + ×Ñ ´

+ ´ Ñ ´

n n n n

n n

Frank free energy for a nematic

Page 27: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Nematic Hydrodynamics: Harvard II1

t ii

t i

jijk k

j ki ij ijk

j

Fn

n

g p

v

Fn

dg

d

dl

dl s

¶ = -

¢¶ = - ¶ +

æ ö÷ç ÷¶ ç ÷ç ÷¶

è+

ç ø

( ) ( )1 12 2

;ij ijkl kl

T T T Tij j ij jijk k ik k ik

A

n n n n

s h

l d d l d d

¢=

= - + +

( )12

12

ij i j j i

i jijk k

A v v

vw e

= ¶ +¶

= ¶

:1

tw l

g¶ = + +´ n An n h

– fluid vorticity not spin frequency of rods

Symmetric strain rate rotates n

permeation

Stress tensor can be made symmetric

Modes: 2 long sound, 2 “slow” director diffusion.2 “fast” velocity diff.

Page 28: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

NE: Director-displacement dynamics

1

1

t ii

i i

t i

jijk k

j ki

i

ij j j

ki

Fg

F

Fn

n

u g

v

ng

Fu

l

dl

dg d

s

d

d

r

dd

d

æ ö÷ç ÷¶ ç ÷ç ÷çè ø

¶ = -

= =

¢¶ = +¶-

&

1

1f

D iiw

g t= - = -

Director relaxes in a microscopic time to the local shear – nonhydrodynamic mode

Stenull, TCL, PRE 65, 058091 (2004)Tethered anisotropic solid plus nematic

Semi-soft: Hydrodynamic modes same as a uniaxial solid: 3 pairs of sound modes

Note: all variables in target space

Modifications if depends on frequency

Page 29: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Soft Elastomer Hydrodynamicseff

ui jijkl l k

i

Fu v

ud

r hd

= - + ¶ ¶&&

Same mode structure as a discotic liquid crystal: 2 “longitudinal” sound, 2 columnar modes with zero velocity along n, 2 smectic modes with zero velocity along both symmetry directions

Slow and fast diffusive modes along symmetry directions

2

5

25

2

2

s

f

Ki q

i q

wh

hw

r

= -

= -

Page 30: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Beyond Hydrodynamics: ‘Rouse’ Modes

( ) ( )E

G i

2 1

12

1

( ) ( )

( )( )

1, 0

3/ (2 ),

E

N

N

fi

p xf x

p

x

x x

Standard hydrodynamics for E<<1; nonanalytic E>>1

Page 31: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Rouse in NEs22

51

25

2 22 2

1

( )2

[ ( ) ( / 2) ( )]

[1 ( )]1

2 1 ( )n

DG C

D

i

D i

D i

1

2 1 2

5 5

( ) ( )/ ;

( ) ( / ) ( )

( ) ( );

( ) ( )

n

n

n n E

E

D

D D

fi

fi

References: Martinoty, Pleiner, et al.;Stenull & TL; Warner & Terentjev, EPJ 14, (2005)

5

15 2

2

( ) 1

1( ) | | 1 | | ; 1

2

Rn

RnE

G C

DG C D

D

or n nE E

Second plateau in G'n E

“Rouse” Behavior before plateau

Page 32: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Rheology Conclusion: Linear rheology is not a good probe of semi-softness

Page 33: 5/23/05IMA Elasticity and Dynamics of LC Elastomers Leo Radzihovsky Xiangjing Xing Ranjan Mukhopadhyay Olaf Stenull.

5/23/05 IMA

Summary and Prospectives• Ideal nematic elastomers can exhibit soft

elasticity.• Semi-soft elasticity is manifested in

nonlinear phenomena.• Linearized hydrodynamics of soft NE is

same as that of columnar phase, that of a semi-soft NE is the same as that of a uniaxial solid.

• At high frequencies, NE’s will exhibit polymer modes; semisoft can exhibit plateaus for appropriate relaxation times.

• Randomness will affect analysis: random transverse stress, random elastic constants will complicate damping and high-frequency behavior.