Top Banner
Structural Timber Design Course – IEM Dec 2003 by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 1 TIMBER TRUSS DESIGN PROCEDURE 1. Determine the dead and live loads acting on the truss 2. Compute the stresses 3. Determine the required sizes 4. Design the joints Example : Standard Truss 7 m Slope 22.5º Spacing of truss 600 mm c/c SG 5, Std Grade, Dry Timber
15

47580809 Timber Truss Design Procedure

Oct 30, 2014

Download

Documents

Anand Kumar
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 1

TIMBER TRUSS DESIGN PROCEDURE

1. Determine the dead and live loads acting on the truss

2. Compute the stresses

3. Determine the required sizes

4. Design the joints

Example : Standard Truss

7 m

Slope 22.5º

Spacing of truss 600 mm c/c

SG 5, Std Grade, Dry Timber

Page 2: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 2

Load Determination

Dead Load - Long Term

On rafter : 0.7 kN/m2 on slope

On plan : 0.7 / cos 22.5º = 0.76 kN/m2

On ceiling tie : 0.25 kN/m2

Live Load - BS6399

On rafter - 0.75 kN/m2 on plan ( medium term )

On ceiling tie : 1. 0.25 kN/m2 ( consider as long term )

2. 0.9 kN point load ( short term )

# Assume wind load on rafter as less severe than live load in the design

of the members.

Wind Load ( very short term )

Taking design wind speed , V = 33 m/s

For conservative approach ,

Cpi = 0.2 and Cpe = 0.9 CP3 Chap. V

- Rafter Wind Load = 0.613 x 10-3 x 332 x 0.9

= 0.6 kN/m2 ( -ve )

- Ceiling Tie Wind Load = 0.613 x 10-3 x 332 x 0.2

= 0.134 kN/m2 ( -ve )

Page 3: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 3

Stress Computation

3 conditions of loading are required to calculate the member stresses :

1. Long Term ( only long term loads )

2. Medium Term ( long term + medium term loads )

3. Short Term ( all loads )

LONG TERM LOADING

On rafter = 0.76 kN/m2 x 0.6m x 7m

4 bays

= 0.798 kN

On ceiling = ( 0.25 + 0.25 ) x 0.6 x 7

3 bays

= 0.7 kN LONG TERM

2.646 4.6 3.0

4.9

4.4

1.7

0.8

0.7 0.7 2.646

0.749

0.798

0.798

0.798

0.749

( 0.76 + 0.75 ) x 0.6 x 7 / 4 bays

Page 4: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 4

MEDIUM TERM VERY SHORT TERM Rafter = ( 0.76 + 0.75 – 0.36 ) x 0.6 x 0.7 = 1.21 kN 4 Ceiling Joist = ( 0.25 + 0.25 – 0.134 ) x 0.6 x 0.7 = 0.51 kN 3

4.25 7.4 5.0

8.0

7.0

2.4

1.5

0.7 0.7 4.25

1.145

1.59

1.59

1.59

1.145

( 0.25 + 0.25 ) x 0.6 x 7 / 3 bays

1.21

1.21

0.86 0.86

0.51

0.51+ 0.9

1.21

Page 5: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 5

SHORT TERM

Grade Stresses (SG 5) .

σ m,g = 9.5 N/mm2

σ t,g = 5.7 N/mm2

σ c,g = 8.5 N/mm2

Emean = 9100 N/mm2

Emin = 6300 N/mm2

4.83 8.9 5.7 8.2

8.0

7.0 7.9

8.9 3.6

1.5 1.6 2.4

0.7 + 0.9 = 1.6

0.7 4.53

1.145

1.59

1.59

1.59

1.145

Normally (critical) only check

for :

Medium term

( DL + IL )

Short term

( DL + IL + PL)

Page 6: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 6

Example : Assume member size 38 x 100

Finished Size 35 x 97

From table of Properties :

Zxx = 54900 mm3

ίxx = 28 mm

ίyy = 10.1 mm

A = 3400 mm2

RAFTER DESIGN Consider medium term load

Check for combine bending and axial force.

Rafter analysis :

Heel apex

0.75L

L = 1.9 m L = 1.9 m

0.125 wL2

0.0703 wL2

3.5

3.8 apex

22.5o

w kN /m

Page 7: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 7

Consider lower portion of rafter :

w = ( 0.76 + 0.75 ) x 0.6 = 0.906 kN/m

L = 1.9 m

M = 0.0703 x 0.906 x 1.92 = 0.23 kNm

Applied bending stress,

σ m,a = M

Z

= 0.23 x 106 = 4.19 N/mm 54900

Under medium term , axial compressive force = 8.0 kN

Applied compressive stress,

σ c,a = P

A = 8000 = 2.35 N/mm2

3400

Effective length = 3 x 1.75 = 1.42 m

4 cos 22.5 o

Rafter is fully restrained by tiling battens in the less stiff direction.

Page 8: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 8

Slenderress ratio , λ = Le = 1420 = 50.7 Ίxx 28

σ c// = 8.5 x 1.25 ( medium term )

= 10.625 N/mm2

E min = 6300 = 592.94 σ c// 10.625

From table 10 ( MS 544 )

K8 = 0.682

σ c, adm = 8.5 x 1.25 x 1.1 x 0.682 = 7.97 N/mm2

σ m, adm = 9.5 x 1.25 x 1.1 = 13.0 N/mm2

σe = 2 E = 2 (6300) = 24.19 λ2 (50.7)2

Combine Compression and Bending ( Clause 12.6 )

σ m,a + σ c,a < 1

σ m, adm 1 - 1.5 σ c,a K8 σ c, adm σe

3.55 + 2.35 = 0.598 < 1

13 1 - 1.5 X 2.35 X 0.682 7.97 24.19

Therefore it is satisfactory

Page 9: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 9

Consider portion over node point.

M = 0.125 wL2 = 0.125 x 0.906 x 1.752 = 0.347 kNm

Applied bending stress,

σ m,a = M

Z

= 0.347 x 106 = 6.32 N/mm 54900

Axial Compressive force ( Average lower and upper chord )

8 + 7 = 7.5 kN 2

Applied compressive stress,

σ c,a = P

A = 7500 = 2.21 N/mm2

3400

Page 10: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 10

At node point , λ < 5.0 , rafter is designed as short column.

σ c, adm = 8.5 x 1.25 x 1.1 = 11.69 N/mm2

Combine Stress calculation for short column

σ m,a + σ c,a σ m, adm σ c, adm

= 6.32 + 2.21

13.0 11.69

= 0.68 < 0.9

The upper chord need not be checked because axial compressive force is

7kN < 8 kN for lower chord.

Whole rafter is satisfactory

Page 11: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 11

DESIGN OF CEILING TIE

Ceiling tie – combined bending and tension.

Under long term – Loads 0.25 + 0.25

The BMD for UDL :

Check Outer Bay

W = ( 0.25 + 0.25 ) x 0.6 = 0.3 kN/m

L = 7/3 = 2.33

M = 0.08wL 2

= 0.08 x 0.3 x ( 2.33 ) 2

= 0.13 kNm

L= 2.33 L L

+ + +

0.1WL2 ,

W / unit length

0.08wL2 0.025w L2

Page 12: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 12

σ m, a = M / Z

= 0.13 x 10 6

54900

= 2.39 N / mm2

Axial tensile force ( long term stress ) = 4.6 kN

σ t, a = 4600

3400

= 1.355 N / mm2

σ m, adm = 9.5 x 1 x 1.1 = 10.45 N /mm2

σ t, adm = 5.7 x 1 x 1.1 = 6.27 N / mm2

Combination :

= 2.39 + 1.355

10.45 6.27

= 0.45 < 1.0

*Satisfactory

At support , M = 0.1wL2

= 0.1 x 0.3 x 2.33 2

= 0.163 kNm

σ m,a + σ t,a < 1 σ m, adm σ t, adm

Page 13: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 13

Axial tensile force = 4.6 + 3.0 = 3.8 kN

2

σ m, a = 0.163 x 10 6

54900

= 2.97 N / mm2

σ t, m = 3800 = 1.12 N / mm 2

3400

Combination : 2.97 + 1.12 = 0.46 < 1

10.45 6.27

* Satisfactory

Under short term - Loads = point load 0.9 kN + UDL

M at center of ceiling tie due to UDL ,

M = 0.025 wL 2

= 0.025 x 0.3 x 2.33 2

= 0.041 kNm

P

0.075 PL

0.175PL

2.33 2.33 2.33

Page 14: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 14

M due to point load 0.9 kN ,

M = 0.175 PL

= 0.175 x 0.9 x 2.33

= 0.367 kNm

* ∑ M = 0.408 kNm

σ m, a = 0.408 x 10 6 = 7.43 N / mm 2

54900

Axial tensile force , ( max ) = 8.9 kN

σ t, a = 8900 = 2.62 N / mm 2

3400

Permissible stresses :

σ m, adm = 9.5 x 1.5 x 1.1 = 15.68 N / mm2

σ t, adm = 5.7 x 1.5 x 1.1 = 9.41 N / mm2

Combination : 7.43 + 2.62 = 0.75 < 1

15.68 9.41

Satisfactory

Page 15: 47580809 Timber Truss Design Procedure

Structural Timber Design Course – IEM Dec 2003

by David Yeoh of Kolej Universiti Teknologi Tun Hussein Onn 15

At support ,

M for UDL , M = 0.1wL2

= 0.1 x 0.3 x 2.332

= 0.163 kNm

M for point load , M = 0.075 PL

= 0.075 x 0.9 x 2.33

= 0.157 kNm

*∑ M = 0.321 kNm

σ m, a = 0.321 x 106 = 5.85 N / mm2

54900

Axial tensile force = 8.9 + 5.7 = 7.3 kN

2

σ t, a = 7300 = 2.15 N / mm2

3400

Combination , 5.85 + 2.15 = 0.60 < 1

15.68 9.41

* Satisfactory