Top Banner
Design of Barrage Hydraulic Structures Muhammad Azhar Saleem 2003/II-MS-C-STRU-01 Design of Barrage Input Design Data Maximum Discharge, Q max 500000 cusecs Minimum Discharge, Qmin 12000 cusecs River Bed Level, RBL 582 ft High Flood Level, HFL 600 ft Lowest water level, LWL 587 ft Numbers of canals on left side 1 Numbers of canals on right side 2 Maximum Discharge of one Canal 3500 cusecs Slope of river 1 ft/mile Lacey's Looseness Coefficient, LLC 1.8 1- Minimum Stable Wetted Perimeter Wetted perimeter, Pw = 2.67√ Qmax 1888 ft Width between abutment, Wa = LLC x Pw 3398 ft Number of bays 50 Bay width 60 ft Number of fish ladder 1 Width of one fish ladder 26 ft Number of divide walls 2 Width of on divide wall 15 ft width of one pier 7 ft Total number of piers 47 Total width of bays 3000 ft Total width of piers 329 ft Width between abutment, Wa 3385 ft
81
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Design of Barrage

Input Design DataMaximum Discharge, Q max 500000 cusecsMinimum Discharge, Qmin 12000 cusecsRiver Bed Level, RBL 582 ftHigh Flood Level, HFL 600 ftLowest water level, LWL 587 ftNumbers of canals on left side 1Numbers of canals on right side 2Maximum Discharge of one Canal 3500 cusecsSlope of river 1 ft/mileLacey's Looseness Coefficient, LLC 1.8

1- Minimum Stable Wetted PerimeterWetted perimeter, Pw = 2.67√ Qmax 1888 ftWidth between abutment, Wa = LLC x Pw 3398 ftNumber of bays 50Bay width 60 ftNumber of fish ladder 1Width of one fish ladder 26 ftNumber of divide walls 2Width of on divide wall 15 ftwidth of one pier 7 ftTotal number of piers 47Total width of bays 3000 ftTotal width of piers 329 ftWidth between abutment, Wa 3385 ft

Page 2: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

147.71 cusecs/ft166.67 cusecs/ft

2- Calculation of Lacey's Silt FactorS = (1/1844) x f**5/3 / Q**1/6Lacey's silt factor, f 2.04

3- Fixation of Crest LevelAfflux 3 ftHeight of crest above river bed, P 6 ftScour depth, R = 0.9(qabt**2 / f)**1/3 19.82 ftDepth of water above crest, Ho = R- P 13.82 ftApproach velocity, Vo = qabt / R 7.45 ft/sEnergy head, ho = Vo**2 / 2g 0.86 ftEo = Ho + ho 14.69 ftDo = HFL - RBL 18.00 ftE1 = Do + ho + Afflux 21.86 ftLevel of E1 = RBL + E1 603.86 ftCrest level = Level of E1 - Eo 589.18 ftMaximum d/s water level 600 fth = d/s WL - Crest Level 10.82 ftUsing Gibson Curveh / Eo 0.74C' / C 0.84C 3.8 fpsC' = (C'/C) x C 3.19

Q = C' x W clear x Eo**3/2 538948 cusecs O.K

Discharge between abutments, qabt

Discharge over weir, q weir

Page 3: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

4- Design of Undersluices

Difference between undersluices & main weir 3 ftNumber of undersluices (N1) 2Number of bays for one undersluices (N2) 5Flow through undesluices as % of main weir 120 %Crest level of undersluices 586.18 ftb1 = N1 x Bay width 300 ft

200 cusecs/ftScour depth, R = 0.9(qus**2 / f)**1/3 24.26 ftDo, (may be Do = R) 24.26 ft

8.24 ft/secEnergy head, ho = Vo**2 / 2g 1.06 ftMaximum U/S E.L = HFL + Afflux + ho 604.06 ftEo = U/S E.L - Crest Level 17.88 fth = (U/S E.L - Afflux) - Crest level 14.88 fth / Eo 0.83Using Gibson CurveC' / C 0.76C' = (C'/C) x C 2.89

131000 cusecs431158 cusecs562158 cusecs O.K

%water through undersluices=(Q1+Q3)/Qmain weir*100 30.4 % 1

HenceCrest Level of Undersluices 586.18 ftNumber of Bays on Each Side 5

qus = % flow x q weir

Approach velocity, Vo = qus / R

Q1 & Q3, ( Q = C' x Wclear x Eo**3/2)Q main weir = C' x (Wclear(bays) - Wclear( us) )x Eo**3/2

Total Discharge = Q1 + Q3 + Q main weir

Page 4: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

5- Determination of Water Levels and Energy Levels

5.1 Check for main weir

Q DSWL USWL D Vo ho h Ho Eo h/Eo C'/C C' Q(USWL-RBL) (Vo**2/2g) (DSWL-CL) (USWL-CL) (USWL+ho-CL) (Gibson)

(cusecs) (ft) (ft) (ft) (ft/s) (ft) (ft) (ft) (ft) (cusecs/ft) (cusecs)

For normal state 600000 601.5 604.0 22.0 9.1 1.28 12.32 14.82 16.11 0.765 0.820 3.12 201.4 604304.51 O.K

500000 600 602.5 20.5 8.1 1.03 10.82 13.32 14.35 0.754 0.815 3.10 168.4 505080.27 O.K

250000 597 598.5 16.5 5.1 0.396 7.82 9.32 9.72 0.805 0.780 2.96 89.8 269469.2 O.K

125000 592 594.5 12.5 3.3 0.17 2.82 5.32 5.50 0.514 0.940 3.57 46.0 138093.92 O.K

For retrogressed state600000 595.5 602.0 20.0 10.0 1.55 6.32 12.82 14.38 0.440 0.960 3.65 198.9 596585.232 NOT O.K

500000 596 601.0 19.0 8.8 1.19 6.82 11.82 13.02 0.524 0.930 3.53 166.0 498022.699 NOT O.K

250000 591 597.0 15.0 5.6 0.48 1.82 7.82 8.30 0.220 0.970 3.69 88.2 264578.81 O.K

For accreted state600000 604 606.0 24.0 8.3 1.08 14.82 16.82 17.90 0.828 0.765 2.91 220.2 660591.93 O.K

500000 602.5 604.0 22.0 7.6 0.89 13.32 14.82 15.72 0.848 0.740 2.81 175.2 525555.63 O.K

250000 601.5 602.0 20.0 4.2 0.27 12.32 12.82 13.09 0.941 0.520 1.98 93.6 280866.24 O.K

5.2 Check fo undersluices

Increase in flow 20 %Concentration of flow 157199 cusecs

Q DSWL USWL D Vo ho h Ho Eo h/Eo C'/C C' Q

qclear

qclear/D

qclear

Page 5: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

(USWL-RBL) (Vo**2/2g) (DSWL-CL) (USWL-CL) (USWL+ho-CL) (Gibson)

(cusecs) (ft) (ft) (ft) (ft/s) (ft) (ft) (ft) (ft) (cusecs/ft) (cusecs)

For normal state157199 601.5 603.5 21.5 12.2 2.31 15.32 17.32 19.63 0.781 0.82 3.12 271.00 162602.65 O.K

For Retrogressed state157199 595.5 601.5 19.5 13.4 2.80 9.32 15.32 18.13 0.514 0.94 3.57 275.68 165409 O.K

For accreted state157199 604.0 605.5 23.5 11.1 1.93 17.82 19.32 21.25 0.839 0.77 2.93 286.71 172025 O.K

6- Fixation of d/s Floor Levels and Length of d/s Glacis and d/s Floor

6.1 Fixation of d/s floor levels for normal weir section using blench curves

Q USEL DSEL DSFL(USWL+ho) (DSWL +ho) (USEL-DSEL) (blench curve)

(cusecs) (cusecs/ft) (ft) (ft) (ft) (ft) (ft)

Normal state of river600000 201.4 605.28 602.78 2.50 19.1 583.68500000 168.4 603.53 601.03 2.50 17.3 583.73250000 89.8 598.90 597.40 1.50 11.2 586.20

For Retrogressed state of river600000 198.9 603.55 597.05 6.50 21 576.05500000 166.0 602.19 597.19 5.00 18.3 578.89250000 88.2 597.48 591.48 6.00 13 578.48

For accreted state of river600000 220.2 607.08 605.08 2.00 19.6 585.48500000 175.2 604.89 603.39 1.50 16.6 586.79250000 93.6 602.27 601.77 0.50 10.4 591.37

qclear/D

qclear hL E2

(DSEL - E2)

Page 6: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Hence d/s Floor level 576.00 ft

6.2 Fixation of d/s floor levels for undersluices using blench curves

Q USEL DSEL DSFL(USWL+ho) (DSWL +ho) (USEL-DSEL) (blench curve)

(cusecs) (cusecs/ft) (ft) (ft) (ft) (ft) (ft)

Normal state of river162603 271.00 605.81 603.81 2.00 22.3 581.51

For Retrogressed state of river165409 275.68 604.30 598.30 6.00 25.1 573.20

For accreted state of river172025 286.71 607.43 605.93 1.50 22.6 583.33

Hence d/s Floor level for underslu 573.00 ft

7- Fixation of d/s floor level for normal barrage section usingCrump's method and determination of floor length

Q 500000 cusecsMaximum DSWL 602.5 ftUSWL 604.0 ftUSEL 604.89 ftDSFL 576.00 ftRBL 582 ftCrest level 589.18 ftDpool (Max. DSWL - DSFL) 26.5 ft

qclear hL E2

(DSEL - E2)

Page 7: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

d/s Velocity (Q/(Dpool x Wa) 5.57 ft/sec

0.48 ftDSEL (DSWL + velocity head) 602.98 ftK (USEL - Crest Level ) 15.71 ftL (USEL - DSEL ) 1.91 ftq (Q / Total width of bays) 166.67 cusecs/ft

9.52 ftL/C 0.20(K+F)/C ,(from crumps curve) 1.92F, [(K+F)/C x C - K] 2.56Level of intersection of jump with glacis= Crest level - F 586.61 ft

16.37 ft10.61 ft

Slope of d/s glacis 1: 3Length of glacis d/s of jump, (slope x submergency) 31.84 ft

73.66 ft41.83 ft

Say 42 ft

d/s velocity head (V2/2g)

Critical Depth, C, (q2 / g)1/3

E2, ( DSEL - Level of intersection of jump)Submergency of jump, (Level of intersection of jump - DSFL )

Length of stilling pool, (4.5 x E2)Length of d/s floor, (Length of stilling pool -Length of glacis d/s of jump)

L K

y F x

Page 8: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

b)Q 500000 cusecsMinimum DSWL 596 ftUSWL 601 ftUSEL 602.19 ftDSFL 576 ftRBL 582 ftCrest level 589.18 ftDpool (Min. DSWL - DSFL) 20 ftd/s Velocity (Q/(Dpool x Wa) 7.39 ft/sec

0.85 ftDSEL, (DSWL + velocity head) 596.85 ftK (USEL - Crest Level ) 13.01 ftL (USEL - DSEL ) 5.34 ftq (Q / Total width of bays) 166.67 cusecs/ft

9.52 ftL/C 0.56(K+F)/C ,(from crumps curve) 2.48F, [(K+F)/C x C - K] 10.59 ftLevel of intersection of jump with glacis= Crest level - F 578.58 ft

18.27 ft2.58 ft

Slope of d/s glacis 1: 3

d/s velocity head (V2/2g)

Critical Depth, C, (q2 / g)1/3

E2, ( DSEL - Level of intersection of jump)Submergency of jump, (Level of intersection of jump - DSFL )

Fig:1 Various Parameters for using Crump's Curve

Page 9: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Length of glacis d/s of jump, (slope x submergency) 7.74 ft

82.19 ft74.45 ft

Say 75.00 ft

8 - Fixation of d/s floor length for undersluicesa)

Q 157199 cusecsMaximum DSWL 604 ftUSWL 605.5 ftUSEL 607.43 ftDSFL 573 ftRBL 582 ftCrest level 586.18 ftDpool (Max. DSWL - DSFL) 31 ftd/s Velocity (Q/(Dpool x Wa) 8.5 ft/sec

1.11 ftDSEL (DSWL + velocity head) 605.11 ftK (USEL - Crest Level ) 21.25 ftL (USEL - DSEL ) 2.32 ftq (Q / Total width of bays) 262.0 cusecs/ft

12.87 ftL/C 0.180(K+F)/C ,(from crumps curve) 1.92F, [(K+F)/C x C - K] 3.46 ftLevel of intersection of jump with glacis= Crest level - F 582.72 ft

22.39 ft

Length of stilling pool, (4.5 x E2)Length of d/s floor, (Length of stilling pool -Length of glacis d/s of jump)

d/s velocity head (V2/2g)

Critical Depth, C, (q2 / g)1/3

E2, ( DSEL - Level of intersection of jump)

Page 10: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

9.72 ftSlope of d/s glacis 1: 3Length of glacis d/s of jump, (slope x submergency) 29.16 ft

101 ft71.60 ft

Say 72.00 ftb)

Q 157199 cusecsMinimum DSWL 595.5 ftUSWL 601.5 ftUSEL 604.3 ftDSFL 573 ftRBL 582 ftCrest level 586.18 ftDpool (Min. DSWL - DSFL) 22.5 ftd/s Velocity (Q/(Dpool x Wa) 11.64 ft/sec

2.11 ftDSEL (DSWL + velocity head) 597.61 ftK (USEL - Crest Level ) 18.12 ftL (USEL - DSEL ) 6.69 ftq (Q / Total width of bays) 262.0 cusecs/ft

12.87 ftL/C 0.520(K+F)/C ,(from crumps curve) 2.32F, [(K+F)/C x C - K] 11.73 ftLevel of intersection of jump with glacis= Crest level - F 574.44 ft

23.16 ft

Submergency of jump, (Level of intersection of jump - DSFL )

Length of stilling pool, (4.5 x E2)Length of d/s floor, (Length of stilling pool -Length of glacis d/s of jump)

d/s velocity head (V2/2g)

Critical Depth, C, (q2 / g)1/3

E2, ( DSEL - Level of intersection of jump)

Page 11: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

1.44 ftSlope of d/s glacis 1: 3Length of glacis d/s of jump, (slope x submergency) 4.32 ft

104 ft99.91 ft

Say 100 ft

Hence we shall provide d/s floor length = 100 ft

9- Check for Adequacy for d/s floor levels using conjugate depth method.

9.1 For normal weir section

Ф 1.00Floor level of stilling pool 576.00 ft

Discharge in river, Q (cusecs) 500000 250000

400000 200000max. min. max min

USEL (ft) 604.89 602.19 602.27 597.48DSWL (ft) 602.5 596.0 601.5 591E = USEL - DSFL 28.89 26.19 26.27 21.48

166.67 166.67 83.33 83.33

26.50 20.00 25.50 15.00

1.073 1.243 0.619 0.837

Conjugate depth coefficientsz 0.145 0.170 0.080 0.110z' 0.635 0.671 0.504 0.573

Submergency of jump, (Level of intersection of jump - DSFL )

Length of stilling pool, (4.5 x E2)Length of d/s floor, (Length of stilling pool -Length of glacis d/s of jump)

Discharge through main weir, Q1= 0.8Q (cusecs)

Intensity of flow on d/s floor, q = Q1/width of main weir

Depth in stilling pool, Dpool = DSWL - DSFL

f(z) = q/E3/2

Page 12: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Conjugate depths4.19 4.45 2.10 2.36

18.36 17.57 13.24 12.31

8.14 2.43 12.26 2.69Remarks O.K O.K O.K O.K

9.2 For undersluices section

Ф 1.00Floor level of stilling pool 573.00 ft

Discharge in river, Q (cusecs) 500000Discharge through U.S with 20% concentration, (1.2 x (Q1 + Q2)) 157199

Max. Min.USEL (ft) 607.43 604.30DSWL (ft) 604.00 595.5E = USEL - DSFL (ft) 34.43 31.30

262 262

31.00 22.50

1.30 1.50

Conjugate depth coefficientsz 0.180 0.217z' 0.684 0.695

Conjugate depths6.20 6.79

23.54 21.75

7.46 0.75Remarks O.K O.K

10 - Scour Protection

d1 = z x E

d2 = z' x E

Jump submergency = Dpool - d2

Intensity of flow on d/s floor, q = Q1/Total width of all U/S

Depth in stilling pool, Dpool = DSWL - DSFL

f(z) = q/E3/2

d1 = z x E

d2 = z' x E

Jump submergency = Dpool - d2 (ft)

Page 13: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

For main weirAssume flow concentration 20 %q = Qmax /(total width of bays) x 1.2 200 cusecs/ft

24.26 ft

10.1 - d/s scour protection for main weir

Safety factor for d/s floor critical condition 1.75Depth, R' = safety factor x R 42.46 ft

596 ftd/s appron (floor) level, (DSFL) 576.00 ftDepth of water on apron (Min DSWL - DSFL) 20.00 ftIncrease in depth due to concentration 0.50 ftDepth of water with concentration, D' 20.50 ftDepth of scour below apron = R' - D' 21.96 ftSlope of protection 1: 3

69.44 ftLength of d/s stone apron in horizontal position

= length of apron x (1.25t/1.75t) 50 ft

R = 0.9 (q2/f)1/3

Minimum DSWL for Qmax

Length of apron to cover surface of scour = Sqrt (12+32)x(R'-D')

D

R'

t

1:3

2.5(R-D)Bed Level DSFL

MIN. W.L

Deepest Possible Scour

Page 14: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

10.2 U/s Scour Protection for main weir

Safety factor for u/s floor critical condition 1.25R' = Safety factor x R 30.33 ft

601.00 ftU/s apron level, (RBL) 582 ftDepth of water on apron = USWL -RBL 19.00 ftIncrease in depth due to concentration 0.50 ftTotal depth with concentration, D' 19.50 ftDepth of scour below apron = R' - D' 10.83 ftSlope of protection 1: 3

34.24 ftLength of u/s stone apron in horizontal position

25 ft

For undersluices

Assume flow concentration 20 %

262 cusecs/ft

29.05 ft

10.3 - d/s scour protection for undersluices

Minimum USWL for Qmax

Length of apron to cover surface of scour = Sqrt (12+32)x(R'-D')

= length of apron x (1.25t/1.75t)

q = (Q1+Q3)/Total width of undersluicesx 1.2

R = 0.9 (q2/f)1/3

t

3(R-D)

Deepest Possible Scour

Fig:2 Scour Protection

Page 15: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Safety factor for d/s floor critical condition 1.75Depth, R' = safety factor x R 50.83 ft

595.5 ftd/s appron (floor) level, (DSFL) 573.00 ftDepth of water on apron (Min DSWL - DSFL) 22.50 ftIncrease in depth due to concentration 0.5 ftDepth of water with concentration, D' 23.00 ftDepth of scour below apron = R' - D' 27.83 ftSlope of protection 1: 3

88.02 ftLength of d/s stone apron in horizontal position

63 ft

10.4 U/s Scour Protection for undersluices

Safety factor for u/s floor critical condition 1.25R' = Safety factor x R 36.31 ft

601.5 ftU/s apron level, (RBL) 582 ftDepth of water on apron = USWL -RBL 19.5 ftIncrease in depth due to concentration 0.5 ftTotal depth with concentration, D' 20 ftDepth of scour below apron = R' - D' 16.31 ftSlope of protection 1: 3

51.58 ftLength of u/s stone apron in horizontal position

37 ft

Minimum DSWL for Q1 + Q3

Length of apron to cover surface of scour = Sqrt (12+32)x(R'-D')

= length of apron x (1.25t/1.75t)

Minimum USWL for Q1 + Q3

Length of apron to cover surface of scour = Sqrt (12+32)x(R'-D')

= length of apron x (1.25t/1.75t)

Page 16: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

10.5 - Thickness of Aprons

The following table gives the required valuves of "t" (Fig:2) for protection of various grades of sand and slope of rivers.

Fall in inches/mile 3 9 12 18 24Sand classification Thickness of stone pitching in inches

Very coarse 16 19 22 25 28Coarse 22 25 28 31 34Medium 28 31 34 37 40

Fine 34 37 40 43 46Very fine 40 43 45 49 52

Type of soil Medium sandSlope of river 12 in/mileThickness if stone pitching, t 34 in

5 ftSize of concrete blocks over filter 4 ft cubeSummary

Total Length of d/s stone apron 50 ft4 ft Thick bloke apron = 1/3 x total length 16 ft (block= 4'x4'x4')5 ft Thick stone apron 34 ft

Total length of u/s apron 25 ft4 ft Thick bloke apron = 1/3 x total length 8 ft (block= 4'x4'x4')5 ft Thick stone apron 17 ft

Thickness of stone apron in horizontal position = 1.75xt/slope

Page 17: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

11 - Inverted Filter Design

Size of Concrete blocks 4 ft cubeThickness of shingle (3' - 6") 9 inThickness of coarse shingle (3/4" - 3") 9 inThickness of fine shingle (3/16" - 3/4") 6 inSpacing b/w conc. Blocks filled with fine shingle 2 in

12- Design of guide banks

Concrete Blocks(4'x4'x4')

9" Gravel

9" Coarse sand

6" Sand

Spacing /Jhries (2")

Fig: 3 Inverted Filter

Page 18: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

i) Length of each guid bank measured in straight line along

5078 ft

ii) 677 ft

iii) For the nose of the u/s guide bank and the full length of d/sguide bank use Lacey's depth = 1.75 x R 42.46 ft

For remaining u/s guide bank lacey's depth = 1.25 x R 30.33 ftiv) Possible slope of scour 1: 3v) Free board u/s 7 ft above HFL

Free board d/s 6 ft above HFLThese free boards also include allowance for accretion.

vi) Top of guide bank 10 ftvii) Side slope of guide bank 1: 3viii) Minimum apron thickness 4 ft

Length of barrage, Wa 3385 ftLength of u/s guide bank 5078 ftLength of d/s guide bank 677 ftRadius of u/s curved part 600 ftRadius of d/s curved part 400 ft

Maximum u/s angle protected

Maximum d/s angle protected

12.1 Determination of levels of guide banksMerrimen's backwater formula

the barrage u/s , Lu/s = 1.5 x Wa

Length of each guid bank d/s of barrage, Ld/s = 0.2 x Wa

140o

57o - 80o

L=d1−d2

S+D( 1

S−C2

g )[Φ( d1

D )−Φ ( d2

D )]

Page 19: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

L = length of back water curve

Chezy's Coefficient, C 71 ( max for earthen channels)

Bed slope of river, S 1/ 5000RBL 582 ftD/s HFL with accretion 602.5 ftD = D/s HFL with accretion - RBL 20.5 ftU/s HFL with accretion 604.0 ft

22.0 ft

21.78 ft

1.073

1.062

0.7870

0.8287L 5240 ftLength of guide bank 5078

Comments O.K

d1 = U/s HFL with accretion - RBL

Assume d2 (in between d1 and D)

d1/D

d2/D

Ф (d1/D) (from Bresse back water function table)

Ф (d2/D)

d1d2 D

L

Bresse Backwater Function

S

L=d1−d2

S+D( 1

S−C2

g )[Φ( d1

D )−Φ ( d2

D )]

Page 20: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Rise in RBL = Length of guide bank / slope 1.02 from barrage level

Water level along h/w axis at 5078 ft u/s of barrage= RBL + Rise in RBL + d2 604.80 ft

i) Level at the nose of u/s guide bank = W/L + free board 611.80 ftii) Level at the barrage = HFL + free board 607 ftiii) Water level d/s of barrage 602.5 ft

D/s free board 6 ftLevel of guide bank d/s = W/L + Free board 608.5 ft

13 - Design of Guide Bank Apron

Working on same lines as in section 10,

Length of unlanched horizontal apron = 2.5(R' - D') 27.07 ft

W.L

T=1.07t

2.5 (R' - D')D

RT

t

Deepest Possible Scour

1 :3

Page 21: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Length of launched apron at 1:3 slope = 3.16(R' - D') 34.22 ft34 inches

say 3 ft

Volume of stones in apron = t x length launched apron 102.65Minimum thickness of unlaunched apron = 1.07t 3.2 ftMean thickness of unlaunched apron = volume/ 2.5(R' - D') 3.8 ft

5.0 ft

14 - Design of Marginal Bunds

i) Top width 20 ftii) Top level above estimated HFL after allowing 1.5ft accretion 5 ftiii) 1: 3iv) Back slope to be such as to provide minimum cover of 2 ft,

over hydraulic gradient of 1:6v) U/s water level at nose of guide bank 611.80 ft

Free board of marginal bund 5 ftHence level of marginal bund 616.80 ft

Calculation of length of backwater curve:

Merrimen's equation can be used to calculate backwater length

Thickness of stone apron, t (as calculated previously)

ft3/unit width

Maximum thickness of unlaunched apron = 2tmean - tmin

Front slope of marginal bunds (not pitched)

L=d1−d2

S+D( 1

S−C2

g )[Φ( d1

D )−Φ ( d2

D )]

Page 22: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

604.0 ftRBL 582 ftNormal W.L without weir 600 ft

22.0 ftD = Normal W.L - RBL 18 ftSlope 1: 5000Table for length of backwater curve

D (5)x(10) Lx(1) =(11)+(4)

1 2 3 4 5 6 7 8 9 10 11 12

18 22.0 21.5 2500 4843.4 1.222 1.194 0.3162 0.3397 0.0235 2049 454918 21.5 21.0 2500 4843.4 1.194 1.167 0.3397 0.3636 0.0239 2084 458418 21.0 20.5 2500 4843.4 1.167 1.139 0.3636 0.3908 0.0272 2371 487118 20.5 20.0 2500 4843.4 1.139 1.111 0.3908 0.4198 0.029 2528 502818 20.0 19.5 2500 4843.4 1.111 1.083 0.4198 0.457 0.0372 3243 574318 19.5 19.0 2500 4843.4 1.083 1.056 0.457 0.4993 0.0423 3688 618818 19.0 18.5 2500 4843.4 1.056 1.028 0.4993 0.5511 0.0518 4516 701618 18.5 18.1 2000 4843.4 1.028 1.006 0.5511 0.6207 0.0696 6068 8068

Total 46047 ft8.73 miles

Maximum USWL at Qmax

d1 = Maximum USWL - RBL

d1 d2

d1d2 D

L

Bresse Backwater Function

d1−d2

ST 1=

d1

DT 2=

d2

D Φ1( d1

D ) Φ2( d2

D )1S−C2

gΦ2−Φ1

Page 23: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Hence length of backwater cure = 8.73 miles

Part IIDesign of barrage profile for sub surface flow condition

15 - Fixing of Depth of Sheet Piles

Scour depth, R 19.82 ftDepth of u/s sheet pile from HFL = 1.5 R 30 ft

604.0 ftRL of bottomo fu/s sheet pile = Max. USWL - 1.5R 574.0 ftDepth of d/s sheet pile below HFL = 2R 40 ftRL of bottom of intermediate sheet pile = Max. USWL - 2R 564.0 ftLet RL of bottom of d/s sheet pile 550 ft

604.0 ft

589.18 ft

582.0 1: 4

A K 1: 3

576.00B L N P R

574.0 75.00

M

564.0 Q

1.5H = 48 28.70 6 39.53 550.0

Max. USWL for Qmax

Page 24: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

16 - Calculation of Exit Gradient

Let the water be headed up to Max. accreted level u/s 604.0 ftand no flow d/s.Retogression 4 ftDSFL 576.0 ft

32.0 ft26.0 ft

Total length of concrete floor = b 197.23 ft

α = b/d 7.59form α ~ curve 0.152

Differential head causing seepeage, H = Max. u/s WL - (DSFL - Retrogression)

Depth of d/s sheet pile, d = DSFL - RL of bottom of d/s sheet pile

b

db1

H

E

D

C

α = b/d

Parmeters of Khosla's Curve

GE=Hdx

1π √λ

1π √ λ

1π √ λ

Page 25: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

0.187 SAFE

17 - Calculation of Uplift Pressure After Applying Correction

17.1 U/s pile line:

48 ftTotal length of concrete floor, b 197.23 ftDepth of u/s sheet pile,d 8.0 ft

2.5 ft0.040624.65

0.243

0.757= From khosla's curve 100 - 33 67 %= From khosla's curve 100 - 31 69 %= From khosla's curve 64 %

i) Correction for floor thickness

Correction in 0.938 %

Correction in -ve 0.625 %

ii) Correction for interface of sheet pile

Correction in due to second pile =

GE

Length of concrete floor upto u/s sheet pile, b1

Assume tf u/s floor thickness1/α = d/bα = b/d

b1/b

1 - b1/b

ΦA

ΦB

ΦK

ΦEΦc

ΦD

ΦK=t fd

(ΦB−ΦK )

ΦA=t fd

(ΦA−ΦB )

ΦK 19[ d+Db ]√ D

b'

Page 26: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Depth of u/s sheet pile,d 8.0 ftD = RBL - RL of bottom of second pile 18.0 ftTotal length of concrete floor, b 197.23 ftDistance between two piles, b' 74.23 ftCorrection in +ve 1.23 %

iii) Slope correction for

Correction for

For 1:4 slope, Fs (from slope correction curve) 3.3

74.23 ft28.70 ft

Correction for -1.28Hence Correted 68.375 %Corrected 67 %Corrected 64.895 %

17.2 Intermediate sheet pile at toe of d/s glacis:

Assume floor thickness 10 ftDSFL 576.00 ftRL of intermediate sheet pile 564.00 ftd = DSFL - RL of Intermediate sheet pile 12.00 ftTotal length of concrete floor, b 197.23 ft

122.23 ft

0.620

Distance between two piles, b1

Horizontal projection of u/s glacis, bs = (crest level - RBL) x 1/slope

Length of concrete floor up to sheet pile, b1

b1/b

ΦK

ΦK

ΦK=−FS

bsb1

ΦK

ΦA

ΦB

ΦK

Page 27: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

0.38016.44

From khosla's curve 100 - 55 45 %From khosla's curve 100 - 58 42 %From khosla's curve 36.5 %

i) Correction due to floor thickness

Correction in -2.5 %

Correction in 4.58 %

ii) Correction due to interference of pile

Correction in due to u/s sheet pile

Depth of Intermediate sheet pile,d 12.0 ftD = RBL - RL of bottom of u/s sheet pile 18.00 ftTotal length of concrete floor, b 197.23 ftDistance between two piles, b' 74.23 ft

Correction in = -1.42 %

Correction in due to d/s sheet pile =Depth of Intermediate sheet pile,d 12.00 ftD = DSFL - RL of bottom of d/s sheet pile 26.00 ftTotal length of concrete floor, b 197.23 ftDistance between two piles, b' 75.00 ft

1 - b1/bα = b/dΦL=ΦEΦM=ΦDΦN=Φ

C

ΦL

ΦL=t fd

(Φ L−ΦM )

ΦN=t fd

(ΦM−ΦN )

19[ d+Db ]√ D

b'

ΦL 19[ d+Db ]√ D

b'

ΦN 19[ d+Db ]√ D

b'

ΦN 19[ d+Db ]√ D

b'

Page 28: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Correction in = 2.16 %

iii) Slope correction for

4.5

39.53 ft

74.23 ft

Correction in 2.40 %

Hence Corrected 43.47 %Corrected 42 %Corrected 43.24 %

17.3 D/s sheet pile at the end of impervious floor

Assume floor thickness 7 ftDepth of d/s sheet pile, d 26.00 ftTotal length of concrete floor, b 197.23 ft

0.132From khosla's curve 100 - 68 32 %From khosla's curve 100 - 78 22 %From khosla's curve 0 %

i) Correction due to floor thickness

Correction in -2.69 %

for '1:3 slope, Fs

bs = (crest level - DSFL) x 1/slope

Distance between two piles, b1

1/α = d/b

ΦN 19[ d+Db ]√ D

b'

ΦL

ΦL=F S×bs

b1

ΦLΦM

ΦN

ΦP=ΦE

ΦQ=ΦDΦR=ΦC

ΦP

Page 29: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Correction in 5.92 %

ii) Correction due to interface of piles

Correction in Depth of d/s sheet pile,d 26.00 ftD = DSFL - RL of bottom of intermediate sheet pile 12.00 ftTotal length of concrete floor, b 197.23 ftDistance between two piles, b' 75.00 ft

Correction in = -1.46 %

HenceCorrected 27.84 %Corrected 22 %Corrected 5.92 %

Table: Uplift pressure at E, D, C and along the sheet piles

Symbol used in u/s Pile Intermediate d/s PileKhosla cueve line Line Line

= 68.38% = 43.47% = 27.84%= 67% = 42% = 22%= 64.89% = 43.24% = 5.92%

18 - Calculation For Floor Thickness:

ΦPΦR

ΦP

19[ d+Db ]√ D

b'ΦP

ΦP

ΦR

ΦQ

ΦEΦD

ΦC

ΦA

ΦB

ΦK

ΦL

ΦM

ΦN

ΦP

ΦQ

ΦR

t f=Φ

100 (G−1 )×H

Page 30: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

where

H = Maximum differential head causing seepageG = Specific gravity of concrete 2.4

a) Thickness of floor at A

Assumend thickness 2.5 ftH 32 ftThickness from uplift pressure 15.63 ft

say 16.00 ftb) Thickness of floor at L

Assumend thickness 10 ftThickness from uplift pressure 9.94 ft

say 10.00 ftc) Thickness of floor at N

Assumend thickness 10 ftThickness from uplift pressure 9.88 ft

say 10.00 ftd) Thickness of floor at P

Assumend thickness 7 ftThickness from uplift pressure 6.36 ft

say 7.00 fte) Thickness of floor at crest

tf = Thickness of floor in ft = % Uplift pressure

t f=Φ

100 (G−1 )×H

Φ

Page 31: 44025203 Design of a Barrage MS

Design of Barrage Hydraulic Structures

Muhammad Azhar Saleem2003/II-MS-C-STRU-01

Uplift pressure at crest 54.88 %HenceThickness of floor at crest d/s of gate 12.544 ft

say 13 ft

K

L

Pressure at crest

x

y

=ΦL+ΦK−ΦL

y( x )

ΦK

ΦL

Page 32: 44025203 Design of a Barrage MS

Design of Barrage

Input Design DataMaximum Discharge, Q max 540000 cusecsMinimum Discharge, Qmin 12000 cusecsRiver Bed Level, RBL 582 ftHigh Flood Level, HFL 600 ftLowest water level, LWL 587 ftNumbers of canals on left side 1Numbers of canals on right side 2Maximum Discharge of one Canal 3500 cusecsSlope of river 1 ft/mileLacey's Looseness Coefficient, LLC 1.8

1- Minimum Stable Wetted PerimeterWetted perimeter, Pw = 2.67√ Qmax 1962 ftWidth between abutment, Wa = LLC x Pw 3532 ftNumber of bays 55Bay width 60 ftNumber of fish ladder 1Width of one fish ladder 25 ftNumber of divide walls 2Width of one divide wall 15 ftwidth of one pier 7 ftTotal number of piers 52Total width of bays 3300 ftTotal width of piers 364 ftWidth between abutment, Wa 3719 ft

145.20 cusecs/ft163.64 cusecs/ft

2- Calculation of Lacey's Silt FactorS = (1/1844) x f**5/3 / Q**1/6Lacey's silt factor, f 2.06

3- Fixation of Crest LevelAfflux 3 ftHeight of crest above river bed, P 6 ftScour depth, R = 0.9(qabt**2 / f)**1/3 19.55 ftDepth of water above crest, Ho = R- P 13.55 ftApproach velocity, Vo = qabt / R 7.43 ft/sEnergy head, ho = Vo**2 / 2g 0.86 ftEo = Ho + ho 14.41 ft

Discharge between abutments, qabt

Discharge over weir, q weir

Page 33: 44025203 Design of a Barrage MS

Do = HFL - RBL 18.00 ftE1 = Do + ho + Afflux 21.86 ftLevel of E1 = RBL + E1 603.86 ftCrest level = Level of E1 - Eo 589.45 ftMaximum d/s water level 600 fth = d/s WL - Crest Level 10.55 ftUsing Gibson Curveh / Eo 0.73C' / C 0.86C 3.8 fpsC' = (C'/C) x C 3.27

Q = C' x W clear x Eo**3/2 589630 cusecsO.K

4- Design of Undersluices

Difference between undersluices & main weir 3 ftNumber of undersluices (N1) 2Number of bays for one undersluices (N2) 5Flow through undesluices as % of main weir 120 %Crest level of undersluices 586.45 ftb1 = N1 x Bay width 300 ft

196.364 cusecs/ftScour depth, R = 0.9(qus**2 / f)**1/3 23.91 ftDo, (may be Do = R) 23.91 ft

8.21 ft/secEnergy head, ho = Vo**2 / 2g 1.05 ftMaximum U/S E.L = HFL + Afflux + ho 604.05 ftEo = U/S E.L - Crest Level 17.60 fth = (U/S E.L - Afflux) - Crest level 14.60 fth / Eo 0.83Using Gibson CurveC' / C 0.77C' = (C'/C) x C 2.93

129586 cusecs482425 cusecs

O.K 612010 cusecs%water through undersluices=(Q1+Q3)/Qmain weir*100 1 26.9 %HenceCrest Level of Undersluices 586.45 ftNumber of Bays on Each Side 5

5- Determination of Water Levels and Energy Levels

qus = % flow x q weir

Approach velocity, Vo = qus / R

Q1 & Q3, ( Q = C' x Wclear x Eo**3/2)Q main weir = C' x (Wclear(bays) - Wclear( us) )x Eo**3/2

Total Discharge = Q1 + Q3 + Q main weir

Page 34: 44025203 Design of a Barrage MS

5.1 Check for main weir

Q DSWL USWL D Vo ho h Ho(USWL-RBL) (Vo**2/2g) (DSWL-CL) (USWL-CL)

(cusecs) (ft) (ft) (ft) (ft/s) (ft) (ft) (ft)

For normal state 648000 602 604.5 22.5 8.7 1.18 12.55 15.05540000 600.5 603.0 21.0 7.8 0.94 11.05 13.55270000 597.5 598.5 16.5 5.0 0.382 8.05 9.05135000 593 594.5 12.5 3.3 0.17 3.55 5.05

For retrogressed state648000 596 602.5 20.5 9.6 1.42 6.55 13.05540000 596.5 601.5 19.5 8.4 1.09 7.05 12.05270000 592 597.0 15.0 5.5 0.46 2.55 7.55

For accreted state648000 604.5 605.5 23.5 8.4 1.08 15.05 16.05540000 603 604.0 22.0 7.4 0.86 13.55 14.55270000 602 602.5 20.5 4.0 0.25 12.55 13.05

5.2 Check for undersluices

Increase in flow 20 %Concentration of flow 2E+05 cusecs

Q DSWL USWL D Vo ho h Ho(USWL-RBL) (Vo**2/2g) (DSWL-CL) (USWL-CL)

(cusecs) (ft) (ft) (ft) (ft/s) (ft) (ft) (ft)

For normal state155503 594 601.5 19.5 13.3 2.74 7.55 15.05

For Retrogressed state155503 590 601 19 13.6 2.89 3.55 14.55

For accreted state155503 598.0 602.5 20.5 12.6 2.48 11.55 16.05

6- Fixation of d/s Floor Levels and Length of d/s Glacis and d/s Floor

6.1 Fixation of d/s floor levels for normal weir section using blench curves

Q USEL DSEL DSFL(USWL+ho) (DSWL +ho) (USEL-DSEL) (blench curve)

qclear/D

qclear/D

qclear hL E2

(DSEL - E2)

Page 35: 44025203 Design of a Barrage MS

(cusecs) (cusecs/ft) (ft) (ft) (ft) (ft) (ft)

Normal state of river648000 201.3 605.68 603.18 2.50 18.6 584.58540000 170.8 603.94 601.44 2.50 17.6 583.84270000 83.6 598.88 597.88 1.00 10 587.88

For Retrogressed state of river648000 198.8 603.92 597.42 6.50 20.8 576.62540000 168.4 602.59 597.59 5.00 17.3 580.29270000 84.4 597.46 592.46 5.00 12 580.46

For accreted state of river648000 196.7 606.58 605.58 1.00 17 588.58540000 167.8 604.86 603.86 1.00 15.4 588.46270000 86.6 602.75 602.25 0.50 10.5 591.75

Hence d/s Floor level ### ft

6.2 Fixation of d/s floor levels for undersluices using blench curves

Q USEL DSEL DSFL(USWL+ho) (DSWL +ho) (USEL-DSEL) (blench curve)

(cusecs) (cusecs/ft) (ft) (ft) (ft) (ft) (ft)

Normal state of river157414 262.36 604.24 596.74 7.50 27.5 569.24

For Retrogressed state of river156064 260.11 603.89 592.89 11.00 26.5 566.39

For accreted state of river165503 275.84 604.98 600.48 4.50 28.4 572.08

Hence d/s Floor level for undersluices 566.00 ft

7- Fixation of d/s floor level for normal barrage section usingCrump's method and determination of floor length

Q 540000 cusecsMaximum DSWL 603.00 ftUSWL 604.00 ftUSEL 604.86 ftDSFL 577.00 ftRBL 582 ftCrest level 589.45 ftDpool (Max. DSWL - DSFL) 26 ftd/s Velocity (Q/(Dpool x Wa) 5.58 ft/sec

0.48 ft

qclear hL E2

(DSEL - E2)

d/s velocity head (V2/2g)

Page 36: 44025203 Design of a Barrage MS

DSEL (DSWL + velocity head) 603.48 ftK (USEL - Crest Level ) 15.41 ftL (USEL - DSEL ) 1.38 ftq (Q / Total width of bays) 163.64 cusecs/ft

9.40 ftL/C 0.15(K+F)/C ,(from crumps curve) 1.92F, [(K+F)/C x C - K] 2.65Level of intersection of jump with glacis= Crest level - F 586.80 ft

16.68 ft9.80 ft

Slope of d/s glacis 1: 3Length of glacis d/s of jump, (slope x submergency) 29.41 ft

75.06 ft45.64 ft

Say 46 ft

b)Q 540000 cusecsMinimum DSWL 596.5 ftUSWL 601.5 ftUSEL 602.59 ftDSFL 577.00 ftRBL 582 ftCrest level 589.45 ftDpool (Min. DSWL - DSFL) 19.5 ftd/s Velocity (Q/(Dpool x Wa) 7.45 ft/sec

0.86 ftDSEL, (DSWL + velocity head) 597.36 ftK (USEL - Crest Level ) 13.14 ft

Critical Depth, C, (q2 / g)1/3

E2, ( DSEL - Level of intersection of jump)Submergency of jump, (Level of intersection of jump - DSFL )

Length of stilling pool, (4.5 x E2)Length of d/s floor, (Length of stilling pool -Length of glacis d/s of jump)

d/s velocity head (V2/2g)

L K

y F x

Fig:1 Various Parameters for using Crump's Curve

Page 37: 44025203 Design of a Barrage MS

L (USEL - DSEL ) 5.23 ftq (Q / Total width of bays) 163.64 cusecs/ft

9.40 ftL/C 0.56(K+F)/C ,(from crumps curve) 2.48F, [(K+F)/C x C - K] 10.18 ftLevel of intersection of jump with glacis= Crest level - F 579.27 ft

18.09 ft2.27 ft

Slope of d/s glacis 1: 3Length of glacis d/s of jump, (slope x submergency) 6.81 ft

81.42 ft74.61 ft

Say 75.00 ft

8 - Fixation of d/s floor length for undersluicesa)

Q 155503 cusecsMaximum DSWL 598 ftUSWL 602.5 ftUSEL 604.98 ftDSFL 566.00 ftRBL 582 ftCrest level 586.45 ftDpool (Max. DSWL - DSFL) 32 ftd/s Velocity (Q/(Dpool x Wa) 8.1 ft/sec

1.02 ftDSEL (DSWL + velocity head) 599.02 ftK (USEL - Crest Level ) 18.53 ftL (USEL - DSEL ) 5.96 ftq (Q / Total width of bays) 259.2 cusecs/ft

12.78 ftL/C 0.467(K+F)/C ,(from crumps curve) 2.2F, [(K+F)/C x C - K] 9.58 ftLevel of intersection of jump with glacis= Crest level - F 576.87 ft

22.15 ft10.87 ft

Slope of d/s glacis 1: 3Length of glacis d/s of jump, (slope x submergency) 32.61 ft

Critical Depth, C, (q2 / g)1/3

E2, ( DSEL - Level of intersection of jump)Submergency of jump, (Level of intersection of jump - DSFL )

Length of stilling pool, (4.5 x E2)Length of d/s floor, (Length of stilling pool -Length of glacis d/s of jump)

d/s velocity head (V2/2g)

Critical Depth, C, (q2 / g)1/3

E2, ( DSEL - Level of intersection of jump)Submergency of jump, (Level of intersection of jump - DSFL )

Page 38: 44025203 Design of a Barrage MS

100 ft67.06 ft

Say 68.00 ftb)

Q 155503 cusecsMinimum DSWL 590 ftUSWL 601 ftUSEL 603.89 ftDSFL 566.00 ftRBL 582 ftCrest level 586.45 ftDpool (Min. DSWL - DSFL) 24 ftd/s Velocity (Q/(Dpool x Wa) 10.80 ft/sec

1.81 ftDSEL (DSWL + velocity head) 591.81 ftK (USEL - Crest Level ) 17.44 ftL (USEL - DSEL ) 12.08 ftq (Q / Total width of bays) 259.2 cusecs/ft

12.78 ftL/C 0.945(K+F)/C ,(from crumps curve) 2.9F, [(K+F)/C x C - K] 19.62 ftLevel of intersection of jump with glacis= Crest level - F 566.84 ft

24.97 ft0.84 ft

Slope of d/s glacis 1: 3Length of glacis d/s of jump, (slope x submergency) 2.51 ft

112 ft109.88 ft

Say 110 ft

Hence we shall provide d/s floor length = 110 ft

9- Check for Adequacy for d/s floor levels using conjugate depth method.

9.1 For normal weir section

Ф 1.00Floor level of stilling pool 577.00 ft

Discharge in river, Q (cusecs) 540000

Length of stilling pool, (4.5 x E2)Length of d/s floor, (Length of stilling pool -Length of glacis d/s of jump)

d/s velocity head (V2/2g)

Critical Depth, C, (q2 / g)1/3

E2, ( DSEL - Level of intersection of jump)Submergency of jump, (Level of intersection of jump - DSFL )

Length of stilling pool, (4.5 x E2)Length of d/s floor, (Length of stilling pool -Length of glacis d/s of jump)

Page 39: 44025203 Design of a Barrage MS

432000max. min.

USEL (ft) 604.86 602.59DSWL (ft) 603 596.5E = USEL - DSFL 27.86 25.59

160.00 160.00

26.00 19.50

1.088 1.236

Conjugate depth coefficientsz 0.150 0.170z' 0.643 0.671

Conjugate depths4.18 4.35

17.92 17.17

8.08 2.33Remarks O.K O.K

9.2 For undersluices section

Ф 1.00Floor level of stilling pool 566.00

Discharge in river, Q (cusecs) 540000Discharge through U.S with 20% concentration, (1.2 x (Q1 + Q2)) 155503

Max.USEL (ft) 604.98DSWL (ft) 598.00E = USEL - DSFL (ft) 38.98

259

32.00

1.06

Conjugate depth coefficientsz 0.145z' 0.635

Conjugate depths5.65

24.75

7.25Remarks O.K

10 - Scour ProtectionFor main weirAssume flow concentration 20 %q = Qmax /(total width of bays) x 1.2 196.364 cusecs/ft

23.91 ft

Discharge through main weir, Q1= 0.8Q (cusecs)

Intensity of flow on d/s floor, q = Q1/width of main weir

Depth in stilling pool, Dpool = DSWL - DSFL

f(z) = q/E3/2

d1 = z x E

d2 = z' x E

Jump submergency = Dpool - d2

Intensity of flow on d/s floor, q = Q1/Total width of all U/S

Depth in stilling pool, Dpool = DSWL - DSFL

f(z) = q/E3/2

d1 = z x E

d2 = z' x E

Jump submergency = Dpool - d2 (ft)

R = 0.9 (q2/f)1/3

Page 40: 44025203 Design of a Barrage MS

10.1 - d/s scour protection for main weir

Safety factor for d/s floor critical condition 1.75Depth, R' = safety factor x R 41.84 ft

596.5 ftd/s appron (floor) level, (DSFL) 577.00 ftDepth of water on apron (Min DSWL - DSFL) 19.50 ftIncrease in depth due to concentration 0.50 ftDepth of water with concentration, D' 20.00 ftDepth of scour below apron = R' - D' 21.84 ftSlope of protection 1: 3

69.05 ftLength of d/s stone apron in horizontal position

= length of apron x (1.25t/1.75t) 50 ft

10.2 U/s Scour Protection for main weir

Safety factor for u/s floor critical condition 1.25R' = Safety factor x R 29.88 ft

601.50 ftU/s apron level, (RBL) 582 ftDepth of water on apron = USWL -RBL 19.50 ftIncrease in depth due to concentration 0.50 ftTotal depth with concentration, D' 20.00 ftDepth of scour below apron = R' - D' 9.88 ftSlope of protection 1: 3

31.25 ftLength of u/s stone apron in horizontal position

Minimum DSWL for Qmax

Length of apron to cover surface of scour = Sqrt (12+32)x(R'-D')

Minimum USWL for Qmax

Length of apron to cover surface of scour = Sqrt (12+32)x(R'-D')

D

R'

t

1:3

3(R-D)

2.5(R-D)Bed Level DSFL

MIN. W.L

Deepest Possible Scour

Fig:2 Scour Protection

Page 41: 44025203 Design of a Barrage MS

= length of apron x (1.25t/1.75t) 23 ft

For undersluices

Assume flow concentration 20 %

259 cusecs/ft

28.76 ft

10.3 - d/s scour protection for undersluices

Safety factor for d/s floor critical condition 1.75Depth, R' = safety factor x R 50.34 ft

590 ftd/s appron (floor) level, (DSFL) 566.00 ftDepth of water on apron (Min DSWL - DSFL) 24.00 ftIncrease in depth due to concentration 0.5 ftDepth of water with concentration, D' 24.50 ftDepth of scour below apron = R' - D' 25.84 ftSlope of protection 1: 3

81.71 ftLength of d/s stone apron in horizontal position

= length of apron x (1.25t/1.75t) 59 ft

10.4 U/s Scour Protection for undersluices

Safety factor for u/s floor critical condition 1.25R' = Safety factor x R 35.96 ft

601 ftU/s apron level, (RBL) 582 ftDepth of water on apron = USWL -RBL 19 ftIncrease in depth due to concentration 0.5 ftTotal depth with concentration, D' 19.5 ftDepth of scour below apron = R' - D' 16.46 ftSlope of protection 1: 3

52.04 ftLength of u/s stone apron in horizontal position

= length of apron x (1.25t/1.75t) 38 ft

10.5 - Thickness of Aprons

The following table gives the required valuves of "t" (Fig:2) for protection of various grades of sand and slope of rivers.

q = (Q1+Q3)/Total width of undersluicesx 1.2

R = 0.9 (q2/f)1/3

Minimum DSWL for Q1 + Q3

Length of apron to cover surface of scour = Sqrt (12+32)x(R'-D')

Minimum USWL for Q1 + Q3

Length of apron to cover surface of scour = Sqrt (12+32)x(R'-D')

Page 42: 44025203 Design of a Barrage MS

Fall in inches/mile 3 9 12 18 24Sand classification Thickness of stone pitching in inches

Very coarse 16 19 22 25 28Coarse 22 25 28 31 34Medium 28 31 34 37 40

Fine 34 37 40 43 46Very fine 40 43 45 49 52

Type of soil Medium sandSlope of river 12 in/mileThickness if stone pitching, t 34 inThickness of stone apron in horizontal position = 1.75xt/slo 5 ftSize of concrete blocks over filter 4 ft cubeSummary

Total Length of d/s stone apron 50 ft4 ft Thick bloke apron = 1/3 x total length 16 ft (block= 4'x4'x4')5 ft Thick stone apron 34 ft

Total length of u/s apron 23 ft4 ft Thick bloke apron = 1/3 x total length 7 ft (block= 4'x4'x4')5 ft Thick stone apron 16 ft

11 - Inverted Filter Design

Size of Concrete blocks 4 ft cubeThickness of shingle (3' - 6") 9 inThickness of coarse shingle (3/4" - 3") 9 inThickness of fine shingle (3/16" - 3/4") 6 inSpacing b/w conc. Blocks filled with fine shingle 2 in

Concrete Blocks(4'x4'x4')

9" Gravel

9" Coarse sand

6" Sand

Spacing /Jhries (2")

Page 43: 44025203 Design of a Barrage MS

12- Design of guide banks

i) Length of each guid bank measured in straight line along

5579 ft

ii) 743.8 ft

iii) For the nose of the u/s guide bank and the full length of d/sguide bank use Lacey's depth = 1.75 x R 41.84 ft

For remaining u/s guide bank lacey's depth = 1.25 x R 29.88 ftiv) Possible slope of scour 1: 3v) Free board u/s 7 ft above HFL

Free board d/s 6 ft above HFLThese free boards also include allowance for accretion.

vi) Top of guide bank 10 ftvii) Side slope of guide bank 1: 3viii) Minimum apron thickness 4 ft

Length of barrage, Wa 3719 ftLength of u/s guide bank 5579 ftLength of d/s guide bank 743.8 ftRadius of u/s curved part 600 ftRadius of d/s curved part 400 ft

Maximum u/s angle protected

Maximum d/s angle protected

12.1 Determination of levels of guide banksMerrimen's backwater formula

L = length of back water curve

the barrage u/s , Lu/s = 1.5 x Wa

Length of each guid bank d/s of barrage, Ld/s = 0.2 x Wa

140o

57o - 80o

Concrete Blocks(4'x4'x4')

9" Gravel

9" Coarse sand

6" Sand

Fig: 3 Inverted Filter

d1d2 D

L=d1−d2

S+D( 1

S−C2

g )[Φ( d1

D )−Φ ( d2

D )]

Page 44: 44025203 Design of a Barrage MS

Chezy's Coefficient, C 71 ( max for earthen channels)

Bed slope of river, S 1/ 5000RBL 582 ftD/s HFL with accretion 603 ftD = D/s HFL with accretion - RBL 21 ftU/s HFL with accretion 604.0 ft

22.0 ft

21.8 ft

1.048

1.038

0.8999

0.958L 6909 ftLength of guide bank 5579

Comments O.K

Rise in RBL = Length of guide bank / slope 1.12 from barrage level

Water level along h/w axis at 5579 ft u/s of barrage= RBL + Rise in RBL + d2 604.92 ft

i) Level at the nose of u/s guide bank = W/L + free board 611.92 ftii) Level at the barrage = HFL + free board 607.5 ftiii) Water level d/s of barrage 603.0 ft

D/s free board 6 ftLevel of guide bank d/s = W/L + Free board 609.0 ft

13 - Design of Guide Bank Apron

d1 = U/s HFL with accretion - RBL

Assume d2 (in between d1 and D)

d1/D

d2/D

Ф (d1/D) (from Bresse back water function table)

Ф (d2/D)

W.L

T=1.07t

2.5 (R' - D')D

RT

1 :3

d1d2 D

L

Bresse Backwater Function

S

Page 45: 44025203 Design of a Barrage MS

Working on same lines as in section 10,

Length of unlanched horizontal apron = 2.5(R' - D') 24.71 ftLength of launched apron at 1:3 slope = 3.16(R' - D') 31.23 ft

34 inchessay 3 ft

Volume of stones in apron = t x length launched apron 93.69Minimum thickness of unlaunched apron = 1.07t 3.2 ftMean thickness of unlaunched apron = volume/ 2.5(R' - D') 3.8 ft

5.0 ft

14 - Design of Marginal Bunds

i) Top width 20 ftii) Top level above estimated HFL after allowing 1.5ft accretio 5 ftiii) 1: 3iv) Back slope to be such as to provide minimum cover of 2 ft,

over hydraulic gradient of 1:6v) U/s water level at nose of guide bank 611.92 ft

Free board of marginal bund 5 ftHence level of marginal bund 616.92 ft

Calculation of length of backwater curve:

Merrimen's equation can be used to calculate backwater length

Thickness of stone apron, t (as calculated previously)

ft3/unit width

Maximum thickness of unlaunched apron = 2tmean - tmin

Front slope of marginal bunds (not pitched)

t

Deepest Possible Scour

d1d2 D

L

Bresse Backwater Function

L=d1−d2

S+D( 1

S−C2

g )[Φ( d1

D )−Φ ( d2

D )]

Page 46: 44025203 Design of a Barrage MS

604.0 ftRBL 582 ftNormal W.L without weir 600 ft

22.0 ftD = Normal W.L - RBL 18 ftSlope 1: 5000Table for length of backwater curve

D

1 2 3 4 5 6 7 8

18 22.0 21.5 2500 4843.4 1.222 1.194 0.455318 21.5 21.0 2500 4843.4 1.194 1.167 0.479918 21.0 20.5 2500 4843.4 1.167 1.139 0.534518 20.5 20.0 2500 4843.4 1.139 1.111 0.625318 20.0 19.5 2500 4843.4 1.111 1.083 0.645318 19.5 19.0 2500 4843.4 1.083 1.056 0.795618 19.0 18.5 2500 4843.4 1.056 1.028 0.856418 18.5 18.1 2000 4843.4 1.028 1.006 1.155

Hence length of backwater cure = 22.4 miles

Part IIDesign of barrage profile for sub surface flow condition

15 - Fixing of Depth of Sheet Piles

Scour depth, R 19.55 ftDepth of u/s sheet pile from HFL = 1.5 R 30 ft

604.0 ftRL of bottomo fu/s sheet pile = Max. USWL - 1.5R 574.0 ftDepth of d/s sheet pile below HFL = 2R 40 ftRL of bottom of intermediate sheet pile = Max. USWL - 2R 564.0 ftLet RL of bottom of d/s sheet pile 548 ft

604.0 ft

589.45 ft

582.0 1: 4

Maximum USWL at Qmax

d1 = Maximum USWL - RBL

d1 d2

Max. USWL for Qmax

Bresse Backwater Function

d1−d2

ST 1=

d1

DT 2=

d2

D Φ1( d1

D )1S−C2

g

Page 47: 44025203 Design of a Barrage MS

A K 1: 3

577.00B L N P R

574.0 75.00

M

564.0 Q

1.5H = 46.5 29.81 6 37.35 548.0

16 - Calculation of Exit Gradient

Let the water be headed up to Max. accreted level u/s 604.0 ftand no flow d/s.Retogression 4 ftDSFL 577.0 ft

31.0 ft29.0 ft

Total length of concrete floor = b 194.66 ft

α = b/d 6.71form α ~ curve 0.153

0.164 SAFE

17 - Calculation of Uplift Pressure After Applying Correction

17.1 U/s pile line:

46.5 ftTotal length of concrete floor, b 194.66 ft

Differential head causing seepeage, H = Max. u/s WL - (DSFL - Retrogression)

Depth of d/s sheet pile, d = DSFL - RL of bottom of d/s sheet pile

GE

Length of concrete floor upto u/s sheet pile, b1

b

db1

H

E

D

C

α = b/d

Parmeters of Khosla's Curve

GE=Hd

x1

π √λ

1π √ λ

1π √ λ

Page 48: 44025203 Design of a Barrage MS

Depth of u/s sheet pile,d 8.0 ft

2.5 ft0.041124.33

0.239

0.761= From khosla's curve 100 - 34 66 %= From khosla's curve 100 - 33 67 %= From khosla's curve 61 %

i) Correction for floor thickness

Correction in 1.563 %

Correction in -ve 0.3125 %

ii) Correction for interface of sheet pile

Correction in due to second pile =

Depth of u/s sheet pile,d 8.0 ftD = RBL - RL of bottom of second pile 18.0 ftTotal length of concrete floor, b 194.66 ftDistance between two piles, b' 73.16 ftCorrection in +ve 1.26 %

iii) Slope correction for

Correction for

For 1:4 slope, Fs (from slope correction curve) 3.3

73.16 ft29.81 ft

Correction for -1.34Hence Correted 66.6875 %Corrected 66 %Corrected 62.477 %

17.2 Intermediate sheet pile at toe of d/s glacis:

Assume floor thickness 10 ftDSFL 577.00 ft

Assume tf u/s floor thickness1/α = d/bα = b/d

b1/b

1 - b1/b

Distance between two piles, b1

Horizontal projection of u/s glacis, bs = (crest level - RBL) x 1/slope

ΦA

ΦB

ΦK

ΦEΦc

ΦD

ΦK=t fd

(ΦB−ΦK )

ΦA=t fd

(ΦA−ΦB )

ΦK 19[ d+Db ]√ D

b'

ΦK

ΦK

ΦK=−FS

bsb1

ΦK

ΦA

ΦB

ΦK

Page 49: 44025203 Design of a Barrage MS

RL of intermediate sheet pile 564.00 ftd = DSFL - RL of Intermediate sheet pile 13.00 ftTotal length of concrete floor, b 194.66 ft

119.66 ft

0.615

0.38514.97

From khosla's curve 100 - 48 52 %From khosla's curve 100 - 46 54 %From khosla's curve 36.5 %

i) Correction due to floor thickness

Correction in 1.53846 %

Correction in 13.46 %

ii) Correction due to interference of pile

Correction in due to u/s sheet pile

Depth of Intermediate sheet pile,d 13.0 ftD = RBL - RL of bottom of u/s sheet pile 18.00 ftTotal length of concrete floor, b 194.66 ftDistance between two piles, b' 73.16 ft

Correction in = -1.50 %

Correction in due to d/s sheet pile =Depth of Intermediate sheet pile,d 13.00 ftD = DSFL - RL of bottom of d/s sheet pile 29.00 ftTotal length of concrete floor, b 194.66 ftDistance between two piles, b' 75.00 ft

Correction in = 2.55 %

iii) Slope correction for

4.5

37.35 ft

73.16 ft

Correction in 2.30 %

Length of concrete floor up to sheet pile, b1

b1/b

1 - b1/bα = b/d

for '1:3 slope, Fs

bs = (crest level - DSFL) x 1/slope

Distance between two piles, b1

ΦL=ΦEΦM=ΦDΦN=Φ

C

ΦL

ΦL=t fd

(Φ L−ΦM )

ΦN=t fd

(ΦM−ΦN )

19[ d+Db ]√ D

b'

ΦL 19[ d+Db ]√ D

b'

ΦN 19[ d+Db ]√ D

b'

ΦN 19[ d+Db ]√ D

b'

ΦL

ΦL=F S×bs

b1

Page 50: 44025203 Design of a Barrage MS

Hence Corrected 54.34 %Corrected 54 %Corrected 52.51 %

17.3 D/s sheet pile at the end of impervious floor

Assume floor thickness 7 ftDepth of d/s sheet pile, d 29.00 ftTotal length of concrete floor, b 194.66 ft

0.149From khosla's curve 100 - 68 32 %From khosla's curve 100 - 78 22 %From khosla's curve 0 %

i) Correction due to floor thickness

Correction in -2.41 %Correction in 5.31 %

ii) Correction due to interface of piles

Correction in Depth of d/s sheet pile,d 29.00 ftD = DSFL - RL of bottom of intermediate sheet pile 13.00 ftTotal length of concrete floor, b 194.66 ftDistance between two piles, b' 75.00 ft

Correction in = -1.71 %

HenceCorrected 27.88 %Corrected 22 %Corrected 5.31 %

Table: Uplift pressure at E, D, C and along the sheet piles

Symbol used in u/s Pile Intermediate d/s PileKhosla cueve line Line Line

= 66.69% = 54.34% = 27.88%= 66% = 54% = 22%

1/α = d/b

ΦL=F S×bs

b1

ΦLΦM

ΦN

ΦP=ΦE

ΦQ=ΦDΦR=ΦC

ΦPΦR

ΦP

19[ d+Db ]√ D

b'ΦP

ΦP

ΦR

ΦQ

ΦEΦD

ΦC

ΦA

ΦB

ΦK

ΦL

ΦM

ΦN

ΦP

ΦQ

ΦR

Page 51: 44025203 Design of a Barrage MS

= 62.48% = 52.51% = 5.31%

18 - Calculation For Floor Thickness:

where

H = Maximum differential head causing seepageG = Specific gravity of concrete 2.4

a) Thickness of floor at A

Assumend thickness 2.5 ftH 27.00 ftThickness from uplift pressure 12.86 ft

say 13.00 ftb) Thickness of floor at L

Assumend thickness 10 ftThickness from uplift pressure 10.48 ft

say 11.00 ftc) Thickness of floor at N

Assumend thickness 10 ftThickness from uplift pressure 10.13 ft

say 11.00 ftd) Thickness of floor at P

Assumend thickness 7 ftThickness from uplift pressure 5.38 ft

say 6.00 fte) Thickness of floor at crest

tf = Thickness of floor in ft = % Uplift pressure

K

L

Pressure at crest

x

ΦD

ΦC

ΦA

ΦB

ΦK

ΦL

ΦM

ΦN

ΦP

ΦQ

ΦR

t f=Φ

100 (G−1 )×H

Φ

ΦK

ΦL

Page 52: 44025203 Design of a Barrage MS

Uplift pressure at crest 58.4922 %HenceThickness of floor at crest d/s of gate 11.2806 ft

say 12 ft

Pressure at crest

y

=Φ L+ΦK−ΦL

y( x )

Page 53: 44025203 Design of a Barrage MS

cusecs/ftcusecs/ft

Page 54: 44025203 Design of a Barrage MS

cusecs/ft

Page 55: 44025203 Design of a Barrage MS

Eo h/Eo C'/C C' Q(USWL+ho-CL) (Gibson)

(ft) (cusecs/ft) (cusecs)

16.23 0.77 0.810 3.08 201.3 664221.95 O.K

14.49 0.76 0.815 3.10 170.8 563797.82 O.K

9.43 0.85 0.760 2.89 83.6 275999.79 O.K

5.21 0.68 0.920 3.50 41.6 137391.44 O.K

14.47 0.45 0.950 3.61 198.8 655955.61 O.K

13.14 0.54 0.930 3.53 168.4 555619.13 O.K

8.01 0.32 0.980 3.72 84.4 278626.51 O.K

17.13 0.88 0.730 2.77 196.7 649177 O.K

15.41 0.88 0.730 2.77 167.8 553639.38 O.K

13.30 0.94 0.470 1.79 86.6 285743 O.K

Eo h/Eo C'/C C' Q(USWL+ho-CL) (Gibson)

(ft) (cusecs/ft) (cusecs)

17.79 0.42 0.92 3.50 262.36 157414.34 O.K

17.44 0.20 0.94 3.57 260.11 156063.65 O.K

18.53 0.62 0.91 3.46 275.84 165503.38 O.K

6- Fixation of d/s Floor Levels and Length of d/s Glacis and d/s Floor

6.1 Fixation of d/s floor levels for normal weir section using blench curves

qclear

qclear

Page 56: 44025203 Design of a Barrage MS

cusecs/ft

Page 57: 44025203 Design of a Barrage MS

cusecs/ft

cusecs/ft

Page 58: 44025203 Design of a Barrage MS

cusecs/ft

9- Check for Adequacy for d/s floor levels using conjugate depth method.

270000

Page 59: 44025203 Design of a Barrage MS

216000max min

602.75 597.46602 597

25.75 20.46

80.00 80.00

25.00 20.00

0.612 0.8640.080 0.1150.504 0.585

2.06 2.35

12.98 11.97

12.02 8.03O.K O.K

ft

540000155503

Min.603.89590.0037.89

259

24.00

1.110.1550.630

5.87

23.87

0.13O.K

cusecs/ft

Page 60: 44025203 Design of a Barrage MS

cusecs/ft

Page 61: 44025203 Design of a Barrage MS

ft (block= 4'x4'x4')

ft (block= 4'x4'x4')

Concrete Blocks(4'x4'x4')

9" Gravel

9" Coarse sand

6" Sand

Page 62: 44025203 Design of a Barrage MS

ft above HFLft above HFL

Concrete Blocks(4'x4'x4')

9" Gravel

9" Coarse sand

6" Sand

Page 63: 44025203 Design of a Barrage MS

( max for earthen channels)

from barrage level

Page 64: 44025203 Design of a Barrage MS

ft3/unit width

Page 65: 44025203 Design of a Barrage MS

(5)x(10) Lx(1) =(11)+(4)

9 10 11 12

0.4799 0.0246 2145 46450.5345 0.0546 4760 72600.6253 0.0908 7916 104160.6453 0.02 1744 42440.7956 0.1503 13103 156030.8564 0.0608 5301 78011.155 0.2986 26033 28533

1.5881 0.4331 37759 39759Total 118260 ft

22.40 miles

Φ2( d2

D )Φ2−Φ1

Page 66: 44025203 Design of a Barrage MS

17 - Calculation of Uplift Pressure After Applying Correction

Page 67: 44025203 Design of a Barrage MS

Basic Data:Clear width of the weir section of the barrage b 2520 ftBarrage Crest Level EL 678 ftUngated Discharge 700000 692.74 ftUngated Discharge 842000 694.55 ftUngated Discharge 950000 695.84 ft

For ungated flow

Q (cfs)

Trial 1 Trial 2

H (ft) D/S WL

50000 14.88 24.00 39.31 33.42 0.45 23.78 39.13 29.35 0.51 7.26 9.78 4.96 674.96

100000 29.76 24.00 39.31 33.42 0.89 23.55 38.95 29.21 1.02 5.10 6.73 6.86 676.86

200000 59.52 24.00 39.31 33.42 1.78 23.11 38.58 28.93 2.06 3.55 4.55 9.37 679.37

300000 89.29 24.00 39.31 33.42 2.67 22.66 38.20 32.47 2.75 3.45 4.41 12.12 682.12

400000 119.05 24.00 39.31 33.42 3.56 22.22 37.83 32.15 3.70 2.94 3.69 13.68 683.68

500000 148.81 24.00 39.31 33.42 4.45 21.77 37.45 31.83 4.68 2.59 3.20 14.97 684.97

700000700000208.33 15.37 31.46 26.74 7.79 11.47 27.18 23.11 9.02 1.36 1.48 13.36 683.36

840000840000250.00 16.27 32.37 27.52 9.08 11.73 27.49 23.36 10.70 1.26 1.35 14.43 684.43

950000950000282.74 16.92 33.01 28.06 10.08 11.88 27.66 23.51 12.02 1.19 1.26 15.18 685.18

Table F Conjugate depth d2 for different discharges under gated and ungated flows.

Theoretical velocity for gated control flow

q=Q/b (cfs/ft)

H (ft)

Vth ft/sec

Vact

ft/secd1

(ft)Vth ft/sec

Vact ft/sec

d1 ft FR1 d2/ d1 d2 ft

H=Z−d /2H=Z−h/2−d /2

Page 68: 44025203 Design of a Barrage MS

EL694

EL 678d Z

EL673

EL 670

h

EL 678d Z

EL673

EL 670

1:3

1:3

Page 69: 44025203 Design of a Barrage MS
Page 70: 44025203 Design of a Barrage MS

Part IDesign of barrage for overflow condition

1 Minimum stable wetted perimeter2 Calculation of Lacey's silt factor3 Fixation of crest level4 Design of undersluices5 Determination of water levels and energy levels

5.1 Check for main weir5.2 Check fo undersluices

6 Fixation of d/s floor levels and length of d/s glacis and d/s floor6.1 Fixation of d/s floor levels for normal weir section using blench curves6.2 Fixation of floor levels for undersluices

7 Fixation of d/s floor level for normal barrage section usingCrump's method and determination of floor length

8 Fixation of d/s floor length for undersluices9 Check for the adequacy for d/s floor levels using conjugate

depth method9.1 For normal weir section9.2 For undersluice section

10 Scour protection10.1 d/s scour protection10.2 u/s scour protection10.3 Thickness of aprons

11 Inverted filter design12 Design of guide banks

12.1 Determination of levels of guide banks13 Design of guide bank aprons14 Design of marginal bunds

Part IIDesign of barrage profile for sub surface flow condition

15 Fixation of depth of sheet piles16 Calculation of exit gradients17 Calculation of uplift pressure after applying correction

17.1 u/s pile length17.2 Intermediate sheet pile at toe of d/s glacis17.3 d/s sheet pile at the end of impervious floor

18 Calculation of floor thickness

Page 71: 44025203 Design of a Barrage MS

days

Done

0

Done

0

Fixation of d/s floor levels and length of d/s glacis and d/s floorFixation of d/s floor levels for normal weir section using blench curves

Done0

Check for the adequacy for d/s floor levels using conjugate

Done

0

Done

0

Done 0

Done 0

Done

0

0Done

total 0 days left