Top Banner

of 30

4. Practicle Cycles

Jun 02, 2018

Download

Documents

Daniel Lee
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 4. Practicle Cycles

    1/30

    Mean Efective Pressure - MEPthe theoretical constant pressure which iexerted on the piston or the entire powerstroke would produce work equal to thework o the cycle.

    MEP= work/V-V! "ndicated MEP was ound usin# indicator

    cards and a plani$eter which #ave areainside the curve %work&. V-V! is known

    %displace$ent& so MEP could 'ecalculated. (oday electronics andtransducers are used to #et MEP andindicator cards.

    )//!**

    MEP

  • 8/10/2019 4. Practicle Cycles

    2/30

    )//!**!

  • 8/10/2019 4. Practicle Cycles

    3/30

    )//!** +

    Indicated Efective Pressure

  • 8/10/2019 4. Practicle Cycles

    4/30

    (he area under the curve %as deter$ined 'y theplani$eter & is the work which is equal to the area in

    the rectan#le co$prised o the Mean Efective Pressureti$es the chan#e in volu$e %'y de,nition&. n the dia#ra$ the chan#e in volu$e or trace len#th is

    $easured.(he hei#ht o the trace depends on the type o sprin#

    used in the indicator. (he sprin# scale is #iven in $$per k#/c$!.

    Exa$ple n indicator card is taken with a sprin# scaleo $$ = .0 k#/c$!. (he plani$eter #ives an area o

    !! c$!. " the trace len#th is !.0 c$ what is the MEP1rea/len#th = hei#ht !!/!.0 = .2) c$.2) c$ = 2.) $$ 2.) $$ x .0 k#/c$! = !).3k#/c$!

    )//!** 3

    Indicated Efective Pressure

  • 8/10/2019 4. Practicle Cycles

    5/30

    )//!**4 0

  • 8/10/2019 4. Practicle Cycles

    6/30

    )//!** )

    Draw Cards

  • 8/10/2019 4. Practicle Cycles

    7/30

    5yl hp = P67/++8*** per cylinder

    P= $ep8 psi 6= stroke8 eet= area o piston8 in!

    7 = nu$'er o power strokes per $inute

    = rp$ or ! stroke cycle % powerstroke per revolution& = rp$ x 9 or 3 stroke cycle % power

    stroke every two revolution&

    ++8*** tl'/$in/hp

    En#ine hp = %P67/++8***& x : o cylinders

    )//!** 2

    Power

  • 8/10/2019 4. Practicle Cycles

    8/30

    Power per cylinder in ;

  • 8/10/2019 4. Practicle Cycles

    9/30

    ! stroke has twice as $any power strokes at a #ivenrp$ so we theoretically #et twice as $uch hp

    >?( ! stroke has 'reathin# and coolin# pro'le$s. 3stroke has exhaust and intake strokes to clear andrechar#e cylinder. ! stroke $ust acco$plish thisaround >@5. ! stroke has less ti$e to re$ove heat

    ro$ liner and co$'ustion cha$'er to keep the$within accepta'le li$its. >MEP is lower in a ! strokeas a$ount o uel added is li$ited 'y coolin#pro'le$s

    ! stroke has a 'etter wei#ht to AP ratio andproduces $ore unior$ torque %twice as $any powerstrokes at a #iven BPM

    Modern tur'ochar#ed ! and 3 stoke en#ines are o

    a'out equal eCciency. )/** 4

    stroke

  • 8/10/2019 4. Practicle Cycles

    10/30

  • 8/10/2019 4. Practicle Cycles

    11/30

    Ftoichio$etric %ideal& air/uel ratio %G& opetroleu$ is 3-0. ctual en#ine $assratio o air to uel is !0-+* as not idealco$'ustion conditions.

    $fuel = $air/ G

    H/dd = $fuel x Aeatin# Valve o uel H/dd is li$ited 'y $fuelas there is a li$it how

    $uch uel can 'e added at a #iven BPMwithout s$okin# % s$oke li$it& I $eans

    $ore uel 'ein# inJected than can 'eco$pletely 'urned.

    )//!**

    ir!"ue# $atio

  • 8/10/2019 4. Practicle Cycles

    12/30

    torque = a'ility to do work = orce%l's& x crank radius B % eet&

    "ncrease torque 'y increasin# the orce %pressure&or 'y len#thenin# the crank radius

    usin# Prony 'rake we can ,nd >AP which is

    >AP= !KGB7/++8***G= orce8 l's B=radius o 'rake8 eet 7=BPM

    %++8***/!K = 0!0!& >AP = !KGB7/++8*** = GB7/0!0!

    (orque = GB >AP = GB7/0!0! = (7/0!0! or (orque= 0!0!

    >AP/7 = 0!0! AP/BPM

    )//!** !

    %or&ue

  • 8/10/2019 4. Practicle Cycles

    13/30

    (orque = GB G = Pressure x reaB and are ,xed or a #iven en#ine so

    torque delivered is directly proportional tothe pressure

    @iesel en#ine is torque-li$ited as torque isli$ited 'y >MEP and >MEP is li$ited 'y Hadd

    )//!** +

    %or&ue

  • 8/10/2019 4. Practicle Cycles

    14/30

    Volu$e at >@5 %V&

    Volu$e at (@5 or clearance volu$e %V! & @isplace$ent or swept volu$e %Vpd& = area o

    piston x stroke

    V= VpdD V! rc= V/V! = %VpdD V! &/ V! = %Vpd/ V! & D

    percent clearance %c& = V!/ Vpd

    rc= %Vpd/ V! & D = %/c& D or / c= rc

    I c= /% rcI &

    )//!** 3

    Percent C#earance 'c(

  • 8/10/2019 4. Practicle Cycles

    15/30

    )//!** 0

  • 8/10/2019 4. Practicle Cycles

    16/30

    Liven V=** and Vpd= 4*

    V= VpdD V! then V!=*rc= V/V! = **/* = *

    c= /% rcI & = /%*-& = /4

    Liven rc=* and V=**

    V!= V/rc= **/* = *

    / c= rcI = * - = 4 c= /4

    Vpd= V I V! = ** -* = 4*

    )//!**)

    Percent C#earance

  • 8/10/2019 4. Practicle Cycles

    17/30

    volu$etric eCciency is the ratio o the

    actual wei#ht o air trapped in thecylinder to the theoretical wei#ht 'ased onthe piston displace$ent and thepressure/te$perature o the air.

    Volu$etric eCciency is efected 'y portdesi#n8 nu$'er8 sie and lit o valves8and 'y valve ti$in#.

    (ur'o char#ed or 'lown en#ines havevolu$etric eCciencies #reater than ** N

    (he de#ree o eli$ination o exhaust#ases also efects the volu$etric

    eCciency. )//!** 2

    )o#umetric E*cienc+

  • 8/10/2019 4. Practicle Cycles

    18/30

    Volu$etric eCciency is reduced 'y

    5ylinder 'ein# hot increaseste$perature o air thus reducin#density

    Exhaust #ases not co$pletelypur#ed dilute and heat inco$in# airchar#e

    Valve and $aniold restrictionsi$pede Oow o air in and exhaust#ases out

    )//!**

    )o#umetric E*cienc+

  • 8/10/2019 4. Practicle Cycles

    19/30

    Piston $otion is cyclic non-sinusoidal .

    @irection o piston $otion reverses at (@5 and>@5 so piston speed at (@5 and >@5 is ero.

    Piston speed varies over the len#th o the stroke Ftartin# at (@5 piston travel is hal the

    downward stroke at 4* de#rees and ro$ 4*-*de#rees the piston travel is hal the stroke.

    Gro$ >@5 to !2* de#rees the piston travel is hal the stroke and ro$ !2* de#rees to (@5 it is

    hal the stroke. Gor a #iven an#le o crank rotation piston travel

    is #reater around (@5 than >@5.

    )//!** 4

    Piston Motion

  • 8/10/2019 4. Practicle Cycles

    20/30

    )//!** !*

    Piston %rave#

  • 8/10/2019 4. Practicle Cycles

    21/30

    )//!** !

    %heoretica# C+c#e

    t # 4 St k % , h d

  • 8/10/2019 4. Practicle Cycles

    22/30

    )//!** !!

    ctua# 4 Stroke %ur,ocharged

  • 8/10/2019 4. Practicle Cycles

    23/30

    )//!** !+

    -atura##+ spirated 4 stroke

  • 8/10/2019 4. Practicle Cycles

    24/30

  • 8/10/2019 4. Practicle Cycles

    25/30

    )//!** !0

    %wo stroke with e/haust va#ve

    E t i

  • 8/10/2019 4. Practicle Cycles

    26/30

    )//!** !)

    Enterprise

    EMD

  • 8/10/2019 4. Practicle Cycles

    27/30

    )//!** !2

    EMD

  • 8/10/2019 4. Practicle Cycles

    28/30

    )//!** !

    "u##+ ported 2 stroke P)

    - t ## i t d 4 t k P)

  • 8/10/2019 4. Practicle Cycles

    29/30

    )//!** !4

    -atura##+ aspirated 4 stroke P)

  • 8/10/2019 4. Practicle Cycles

    30/30

    4 Stroke 0 2 Stroke 1ring ! crankarrangement