Top Banner
7/28/2019 4. Crystal Structure http://slidepdf.com/reader/full/4-crystal-structure 1/31 Solid State Physics Introduction to Crystal structure Free e Fermi gas Energy bands Magnetic properties e  confinement (quantum, nano devices) Superconductivity
31

4. Crystal Structure

Apr 03, 2018

Download

Documents

Mudit Singh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 1/31

Solid State PhysicsIntroduction to

Crystal structureFree e Fermi gas

Energy bands

Magnetic properties

e confinement (quantum, nano devices)

Superconductivity

Page 2: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 2/31

 Physics?

Page 3: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 3/31

Basics

Crystal Periodic array of atoms

Lattice Periodic array of points in space

Basis Group of atoms attached to each lattice

point or each elementary

parallelepiped

Lattice + Basis Crystal structure

Platinum (STM image)NaClInsulin

Page 4: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 4/31

Bravais Lattice

 An infinite array of discrete points with anarrangement and orientation that appearsexactly the same, from any of the points thearray is viewed from.

 A three dimensional Bravais lattice consists of all points with position vectors R that can bewritten as a linear combination of  primitivevectors. The expansion coefficients must beintegers.

Page 5: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 5/31

 A protein molecule

1 2 3If we can write r r n a n b n c

, , fundamental translation vectorsa b c

Page 6: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 6/31

Primitive Unit Cell

 A primitive cell or primitive unit cell is a volume of 

space that when translated through all the vectors in aBravais lattice just fills all of space without either 

overlapping itself or leaving voids.

 A primitive cell must contain precisely one lattice point.

Primitive lattice cell

Parallelepiped defined by a, b, c 

= unit cell = minimum volume cell 

Page 7: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 7/31

Primitive cell (examples)

Page 8: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 8/31

Wigner-Seitz cell

Page 9: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 9/31

Wigner-Seitz primitive cell: 3D

f

Page 10: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 10/31

Fundamental types of lattices

Crystal lattices can be mapped intothemselves by the lattice translations T and byvarious other symmetry operations.

 A typical symmetry operation is that of rotation

about an axis that passes through a latticepoint. Allowed rotations of : 2 π, 2π/2,2π/3,2π/4, 2π/6

(Note: lattices do not have rotation axes for 1/5, 1/7 …) times 2π 

T Di i l L i

Page 11: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 11/31

Two Dimensional Lattices

Th Di i l L i T

Page 12: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 12/31

Three Dimensional Lattice Types

Page 13: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 13/31

 Dimensions

F t B i L tti

Page 14: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 14/31

Fourteen Bravais Lattices … 

C bi l tti

Page 15: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 15/31

Cubic space lattices

C bi l tti

Page 16: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 16/31

Cubic lattices

BCC t t

Page 17: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 17/31

BCC structure

P i iti t BCC

Page 18: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 18/31

Primitive vectors BCC

El t ith BCC St t

Page 19: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 19/31

Elements with BCC Structure

FCC l tti

Page 20: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 20/31

FCC lattice

P i iti C ll FCC L tti

Page 21: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 21/31

Primitive Cell: FCC Lattice

Page 22: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 22/31

 Structure

Crystal planes probing them

Page 23: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 23/31

Crystal planes – probing them

XY

1

2

a

Coherent incident light Diffracted light

Path difference XYbetween diffracted

beams 1 and 2:

sin = XY/a

XY = a sin  

For 1 and 2 to be in phase and give constructiveinterference, XY = , 2, 3, 4…..n 

so a sin = n where n is the order of diffraction

Constructive Interference

Page 24: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 24/31

Beam 2 lags beam 1 by XYZ = 2d sin  

so 2d sin = n  Bragg’s Law 

X

Y

Z

d

Incident radiation “Reflected” radiation

Transmitted radiation

1

2

Constructive Interference

Miller indices of lattice plane

Page 25: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 25/31

Miller indices of lattice plane The indices of a crystal plane (h,k,l) are defined to be

a set of integers with no common factors, inversely

proportional to the intercepts of the crystal plane alongthe crystal axes:

Indices of Planes: Cubic Crystal

Page 26: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 26/31

Indices of Planes: Cubic Crystal

Page 27: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 27/31

 indices

Some planes

Page 28: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 28/31

Some planes

Use of Miller indices

Page 29: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 29/31

Where does a protein crystallographer see the Miller 

indices?

• Common crystal faces areparallel to lattice planes

• Each diffraction spot can be

regarded as a X-ray beam

reflected from a lattice plane,

and therefore has a unique

Miller index.

Use of Miller indices

Simple Crystal Structures

Page 30: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 30/31

Simple Crystal Structures

There are several crystal structures of common

interest: sodium chloride, cesium chloride, hexagonalclose-packed, diamond and cubic zinc sulfide.

Each of these structures have many different

realizations.

References

Page 31: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 31/31

References

 A. Beiser  – “Concepts of Modern Physics”, 6 Ed., Tata

McGraw-Hill (New Delhi, 2003)

Charles Kittel – “Introduction to Solid State Physics”, 7

Ed., John Wiley and Sons (New York, 1996)

www.wikipedia.org