Top Banner
Ru II H 2 (CO)(PPh 3 ) 3 CO 2 Me MeO 2 C Ru 0 (CO) n (PPh 3 ) 3-n MeO 2 C CO 2 Me 14e - (n = 0 or 1) 18e - CO 2 Me MeO 2 C L 3 Ru 0 CO 2 Me CO 2 Me 16e - 1-5 1-6 CO 2 Me MeO 2 C 1-7 1-8 1-9 1-10 1-11 1-12 Problem Session (2) -Answer- 2017. 6. 3. Tsukasa Shimakawa Topic: cyclobutane and cyclobutene derivatives in skeletal rearrangement 1. Cascade thermal isomerization of cyclobutane derivatives 1-1. Reaction mechanism -1- Margetic, D.; Warrener, R. N.; Butler, D. N.; Jin, C. M. Tetrahedron 2012, 68, 3306. OAc AcO 1-1 Ru 0 coordination OAc AcO Ru 0 migratory insertion OAc AcO reductive elimination OAc AcO OAc AcO H H Ru II CO 2 Me MeO 2 C H H Ru II CO 2 Me CO 2 Me H H CO 2 Me CO 2 Me Key Point: autoxidation, [1,5] hydrogen abstraction, [1,2] hydrogen shift 1,3-dipolar cycloaddition Ru 0 N N N Ph OAc AcO CO 2 Me CO 2 Me N N N Ph homolysis OAc AcO CO 2 Me CO 2 Me N N N Ph O O trapped by triplet oxygen OAc AcO O O CO 2 Me N N N CO 2 Me Ph OAc AcO CO 2 Me N N N CO 2 Me Ph - L, then 1-0 step 1 step 2 OAc AcO 1-1 1. RuH 2 CO(PPh 3 ) 3 (cat.) CO 2 Me MeO 2 C benzene, 80 °C, n/d 2. PhN 3 (5-10 eq. n/d), neat, rt, 10 days, 66% 3*. 140 °C, air, neat 20 min, 23% OAc AcO O CO 2 Me 1-2 (1.2 eq.) O O 1. release of repulsion with Ph group 2. formation of radical stablized by sp 3 N atom
14

3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

Aug 09, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

RuIIH2(CO)(PPh3)3

CO2MeMeO2C

Ru0(CO)n(PPh3)3-n

MeO2C CO2Me 14e- (n = 0 or 1)18e-

CO2MeMeO2C

L3Ru0

CO2Me

CO2Me

16e-

1-5 1-6

CO2Me

MeO2C

1-7 1-8

1-9 1-10

1-11 1-12

Problem Session (2) -Answer- 2017. 6. 3. Tsukasa Shimakawa

Topic: cyclobutane and cyclobutene derivatives in skeletal rearrangement1. Cascade thermal isomerization of cyclobutane derivatives1-1. Reaction mechanism

-1-

Margetic, D.; Warrener, R. N.; Butler, D. N.; Jin, C. M. Tetrahedron 2012, 68, 3306.

OAc

AcO

1-1

Ru0

coordinationOAc

AcO

Ru0

migratoryinsertion

OAc

AcO

reductiveelimination

OAc

AcO

OAc

AcO HH

RuII CO2Me

MeO2C

HH

RuII

CO2Me

CO2Me

HH CO2Me

CO2Me

Key Point: autoxidation, [1,5] hydrogen abstraction, [1,2] hydrogen shift

1,3-dipolarcycloaddition

Ru0 NNN

Ph

OAc

AcO

CO2MeCO2Me

NN

N

Ph

homolysisOAc

AcO

CO2MeCO2Me

NN

N

Ph

O O

trapped bytriplet oxygen

OAc

AcOO O

CO2Me

N

N N

CO2Me

Ph

OAc

AcO

CO2Me

N

N N

CO2Me

Ph

- L, then

1-0

step 1

step 2

OAc

AcO

1-1

1. RuH2CO(PPh3)3 (cat.)CO2MeMeO2C

benzene, 80 °C, n/d

2. PhN3 (5-10 eq. n/d), neat, rt,10 days, 66%

3*. 140 °C, air, neat20 min, 23%

OAc

AcOO

CO2Me

1-2

(1.2 eq.)

OO

1. release of repulsion

with Ph group

2. formation of radical

stablized by sp3 N atom

Page 2: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

OAc

AcO

CO2Me

O

N N

H

O

HH

eliminationof N2

N2

orbital interaction(C-H HOMO and vacant 2p)

[1,2]-hydrogen shiftOAc

AcOO

CO2Me

1-2

1-2-2. Reaction mechanism for 1-3 and 1-41-2-2-1. tramsormation from 1-9 to 1-4

OAc

OAc

1-18

OAc

AcO

CO2MeCO2Me

NN

N

Ph

retroDiels-Alderreaction

[1,5] sigmatoropicrearrangement

OAc

OAc

1-4

1-13 1-14

1-15 1-16

1-17

1-16

N-1-17

1-9 -2-

bond rotation

OAc

AcO O

NN

1-16'

CO2MeOAc

AcO O

1-17

CO2Me

H

CO2Me

homolysis

OAc

AcO

OO

CO2Me

N

N N

CO2Me

PhH

[1,5] hydrogenabstraction

OAc

AcO

OHO

CO2Me

N

N N

CO2Me

Ph

OAc

AcO

CO2Me

O

OAc

AcOHO

CO2Me

N

N N

CO2Me

PhO

retro1,3-dipolar

cycloadditionN N

OAc

AcO

CO2Me

O

eliminationof N2

N2

H

[1,2]-hydrogen shiftOAc

AcOO

CO2Me

1-2

1-2. Discussion1-2-1. Explanation of geometric isomers

N

CO2Me

HO

Ph

aromatization isa driving force

step 3

Page 3: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

OAc

AcO

1-3

NN

CO2Me

H

NMeO2C Ph

1-2-2-2. transformation from 1-9 to 1-3

OAc

AcO

CO2MeCO2Me

NN

N

Ph

retro1,3-dipolar

cycloaddition

OAc

AcO

CO2MeCO2Me

N

N

Ph

N

OAc

AcO

5-endo-dig

1-9 1-19

1-20

2-4

2-1 2-5 2-6

H

OAc

AcO

NN

1-19'

H

CO2Me

bond rotation

*

CO2Meintramolecularproton transfer

2. Asymmetric total synthesis of (+)-pleocarpenene by Snapper group2-1. Retrosynthesis

2-2. Reaction mechanism

Williams, M. J.; Deak, H. L.; Snapper, M. L. J. Am. Chem. Soc. 2007, 129. 486.

Key Point: Thermal rearrangement (fragmentation and Cope rearrangement)

H

Me

MeOH

MeHOH

2-3(+)-pleocarpenene

H

Me

MeOH

MeHO2-2

OTIPSH

AcO

thermalrearrangement Me Me

HO

cyclopropanationOTIPSH

AcO

[2+2]photocycloaddition

CO2MeO

O

MeO2C

4 photochemicalelectrocyclization

OTIPS

H

H

OTIPSH

AcO

1. EDA (5.0 eq.), Cu(acac)2 (5 mol%)CH2Cl2, reflux, 30 min;EtOH, rt, 15 min;NaOEt (5.0 eq.), 1.5 h (93%, 3 steps)

2. (COCl)2 (1.8 eq.), DMSO (2.0 eq.)THF, -62 °C, 30 min;Et3N (4.0 eq.), -62 °C to rt, 20 min;MeMgCl (10 eq.), -78 °C to rt, 12 h(79%, 3 steps)

3. DBU (15 mol%), benzene200 °C, 76%

H

Me

MeOH

MeHO

(-)-2-12-2

OTIPS

H

-3-

CuII(acac)2

* Salomon, R. G. and Kochi, K. J. Am. Chem.Soc. 1973, 95, 3300.Shirafuji, T.; Yamamoto, Y.; Nozaki, H. Tetrahedron. 1971, 27, 5353.

CuII

acac acac CuII

acac acac

EtO2C N2

- N2

CuII

acac

EtO2C O Me

O

Me

homolysisCuIacac

O Me

O

Me

+ CO2Et

MeO2C N Ph

NN

2-7 2-8

2-9active specie

Reduction from CuII to CuI*

H

CO2Me

Ph

H

Page 4: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

H

HH H

H

H

H

H

2-10 2-11

2-13 2-14

2-15 2-16

2-17 2-4 2-18

2-18 2-19 2-20-1

EtO

O

NN

CuI

EtO

O

NN

CuI- N2

EtO

O

CuIII

OTIPSH

AcO

2-1

O

EtO

CuIII

OTIPSH

O

2-12

EtO2C

O Me OEt

OTIPSH

O

EtO2C

OTIPSH

HO

EtO2C

step 1

O

Cl

O

Cl

O

SMe Me

O

O

ClO

S

OTIPSH

O

EtO2C

SMe

H

- HNEt3

OTIPSH

O

EtO2C

HSMe

CH2

OTIPSH

EtO2C

O

- Me2S

OTIPSH

Me

HO

MeMe

HO

step 2

Cl

SCl

-CO2, -CO, -Cl

homolysis

H

H work-up

OTIPS

Me

HO

MeMe

HOHH

Discussion 1

3x MeMgCl

Discussion 2

Me

HO

OTIPSH

H

RH

OTIPS

HHH

conformationalchange

HH

H

HH

O

EtO2C

OTIPS

H

-4-

OTIPS

H

H H H

cyclopropanation(concerted)

H

H

2-17

scission

R R

Page 5: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

OTIPS

H

large 1,3-diaxial interaction

Me

HO

2-20-2

2-3. Discussion2-3-1. Diastereoselectivity of cyclopropanation via metalcarbenoid

flip of radical

HHH

bond rotation

H

OTIPSCope rearrangement

H

H

H

H

Me

MeOH

MeHO

2-2

OTIPS

small 1,3-diaxial interaction

Me

HO

Me

HO

Davies, H. M. L.; Clark, T. J.; Church, L. A. Tetrahedron. Lett. 1989, 30, 5057.

+EtO2C CO2Et

N2 RhII2(OAc)4Ph Ph

CO2Et

Ph CO2Et

CO2Et

CO2Et96%

ratio: 8.3 : 1

Explanation of diastereoselectivity by Davies groupDavies, H. M. L. et al., J. Am. Chem. Soc. 1996, 118, 6897.Doyle, M. P. Chem. Rev. 1986, 86, 919.

RhIV

EWG

CO2Et

(Plane of ligand)

Ph

H

H

H

Ph group avoids bulky ligand plane and metal carbenoid(in case of trans olefin, dr ratio was increased)

RhIV

EWG

H

HPh

H

CO2Et

+

RhII

EWGHH

stablization of zwitterion like intermediate

PhH

CO2Et

CuIII

OAc

TIPSO

H

H

HEtO2C H

1. Path A (favored) 2. Path B (disfavored)

OAc

TIPSO

H

H

H

CuIII

H CO2Et

OTIPS

-5-

2-21-1

2-21-2 2-2

2-22 2-23 2-24

OTIPS

step 3

electrophilic carbene

2-22

TS-1

N-2-23

Ph

CO2Et

CO2Et

2-23

EWG: CO2Et

R R

H

H

R R

2-1

2-1

Page 6: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

1

23

4

5

6776%

CuIII

H CO2Et

H H

TIPSO

OAc

large steric repulsion between ethyl esterand five membered ring

small steric repulsion between ethyl esterand five membered ring

CuIII

EtO2C HOAc

TIPSO

H

OTIPSH

2-9

EtO2C H

H

HAcO

OTIPSH

EtO2C H

H

HAcO

OTIPSH

Me

HO

MeMe

HOH

H

Me

MeOH

MeHO

OTIPSDBU (15 mol%)benzene, 200 °C1

234

6 75

-6-

2-9

2-4 2-2

H

disfavored path

path A path B

TS-2 TS-3

2-26

Page 7: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

Cope rearrangement

H

H

H

2-3-2. Reaction mechanisam of thermal rearrangement

(1) Concerted path ([ 2s+ 2a] fragmentation)

Roth, W. R. et al., Chem. Ber. 1983, 116, 2717.

example of concerted [ 2s + 2a] fragmentation

HH

H

HH

H

4q+2 (s) = 14r (a) = 0

HH

HH

consistent with Woodward-Hoffmann rule(concerted pathway)

(1-1) [ 2s+ 2a] fragmentation (cleavage of C3-C7 and C4-C6)

Me

HO

OTIPSR H

Me

HO

OTIPS

R

Me

HO

OTIPSR

Cope rearrangement(chairTS)

trans olefin (disfavored intermediate)

OTIPS

HH

Me

HO

large 1,3-diaxial interaction

H

OTIPS Cope rearrangement

H

HH

small 1,3-diaxial interaction

Me

HOMeHO OTIPS

Reaction mechanism (from 2-27 to 2-30):

Other possibilities of [ 2s + 2a] fragmentation (3 types)* 5 membered ring cannot locate inside of newly formed 7 membered ring.

TS-4

OTIPS

Me

HO

Me

HO

OTIPS

R[ 2s + 2a]

OTIPS

Me

HO

H H

HOTIPS

Me

HO

HH

H

H

Me

HO

OTIPS Cope rearrangement

O

via

H

Me

MeOH

MeHO

OTIPS

chair TS

O O

boat TS

-7-

2-27 2-28 2-29 2-30

2-27 2-30

2-4 2-4-a 2-31

2-21-1 2-21-22-2

fast

2-4-b 2-32 2-32

2-33-1 2-33-2 2-34

[ 2s + 2a]H

R

R R

RR

R

R

H

H

4

63

7

H

H

R:Me

MeOH

Page 8: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

(1-2) [ 2s+ 2a] fragmentation (cleavage of C1-C2 and C3-C7)

Me

HO

OTIPSR

Me

HO

OTIPS

R

Me

HO

OTIPS

H

OTIPSCope rearrangement

H

HH

small 1,3-diaxial interaction

Me

HO

MeHO OTIPS

Other possibilities of [ 2s+ 2a] fragmentation (3 types)

large 1,3-diaxial interaction

Me

HO

OTIPS

R

OTIPS

R

Me

HO

[ 2s + 2a]

impossible(trans olefin in 5 membered ring)

[ 2s + 2a]

impossible(trans double bond x 2 in 7 membered ring)

[ 2s + 2a]

HOTIPS

R

Me

HO

OTIPS

Me

HO H

OTIPS

MeHO

H

R

HH Cope rearrangement

boat TS

HH OTIPS

bond rotationHH

OTIPS

HH

OTIPS

H

Me

MeOH

MeHO

OTIPS

Cope rearrangement

-8-

2-4-c 2-35 2-35

2-36-1 2-36-2 2-36-2 2-34

2-4-d

2-4 2-4-e 2-21-1

2-21-2 2-2

2-4-f

H

[ 2s+ 2a] fragmentation (cleavage of C3-C7 and C4-C6) is NOT a reasonable path1. via trans olefin included in 7 membered ring intermediate2. Possibility of generating diastereomer 2-34

R

R

R R

R

Me MeMeHO HOHO

R R

Page 9: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

3. Synthesis of bridged cyclopropane derivative3-1. Reaction mechanism

3-1

O

MeO2C CO2Me4. m-CPBA (1.0 eq.)CH2Cl2, rt, 1 h (89%)

5. Et2O, h , rt, 1 h (77%)6. NaOMe (3.0 eq.)MeOH, reflux, 1 h

O

O

MeO

MeO2CH

MeO2C+

OMeO

OMeMeO2C

O

O

H

3-2(35%)

3-3(31%)

1. cyclooctyne (1.8 eq.), , 2 h2. Et2O, h -20 °C , 20 h3. toluene or xylene,

H

Glaser, R.; Neumann, M.; Ott, F.; Peters, E. M.; Peters, K.;Schnering, H. G. V.; Tochtermann, W. Tetrahedron, 2001, 57, 3927.Tochtermann, W. and Rosner, P. Chem. Ber. 1981, 114, 3725.

Key Point: Pericyclic reaction ([4+2], [2+2], 4 electrocyclization), 3 -3 isomerization, [1,3]-hydride shift

O

MeO2CCO2Me

Diels-Alderreaction

O

MeO2C

MeO2C hO

MeO2C

MeO2C

OMeO2C

radical mechanismis also possibleO

MeO

OMeO2C

O

MeO

fragmentation[2+2]

cycloadditionformation of ylide(fragmentation)

1. via diradical (Homolysis of C3-C7 bond) or 2. [ 2s+ 2a] fragmentation of C1-C2,C3-C7 bond

Me

HO

OTIPS

R

Me

HO

OTIPS

R

impossible(trans olefin in 5 membered ring)

[ 2s + 2a]

[ 2s + 2a]

Me

HO

step 1 step 2

repulsion between "H" and"methylene-OTIPS" in TS

-9-

2-4-g

2-4-h

3-4 3-5

3-6 3-7

H

OTIPS

H

2-21-3

bond rotationMe

HO

OTIPS

large 1,3-diaxial interaction2-21-1

R

H

OTIPSCope rearrangement

H

HHsmall 1,3-diaxial interaction

Me

HO

MeHO OTIPS

2-21-2 2-2R R

Page 10: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

O

MeO2C

MeO2CO

MeO2C

MeO2C O

MeO2C

MeO2C

ClO

O

H O

epoxidation(from convex)

O

MeO2C

MeO2C

O

O

MeO2C

MeO2H2C

O4 -electrocyclization(disrotatory)

H

MeO2C

O

CO2Me

H

O

fragmentation

OH

O

O OMe

OMe

-

OMeO

O O

MeO2C

O

MeO

OH

O

O OMeO

MeO

MeO OH

O

O OMeO

MeO

MeO

MeO

MeO H

1,4-addition

(release of strain

from sp2 to sp3)

OMeO

O

MeO2CMeO

O

Discussion 1

step 3

step 4 step 5

OMeO

O O

OMeMeO2C

MeOO

H H

OCO2Me

OMe

good: 1. stablized by anomeric effect2. No repulsion with tethered carbon chain

bad: 3. 1,3 like interaction

tethered carbon chain

OMeO

O

H

H

O

OMe

tethered carbon chain

O

lactone formation

methyl ester moiety:

OMe

OMe

O

OMe

-10-

3-8 3-9 3-9

Cl

O

HO 3-10 3-11 3-11

3-11 3-12 3-13

3-14 3-14'

3-15-

3-15- -A 3-16-

OMe

ring-opening

(formation ofoxonium cation) OMe

OMeO

O O

OMeMeO2C

MeO

3-15

from convex

Page 11: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

MeO

O

H CO2Me

H

OCO2Me

OMe

formation ofoxonium cation

O

HCO2Me

H

CO2Me

O

O

MeO2C

H

MeO2C H

O

H H

CO2Me

tethered carbon chain

OMeO

O

MeO

H

good: 1. No 1,3-like interactionbad: 1. Not stablized by anomeric effect

2. repulsion between axial "H" and"tethered carbon chain"

H

CO2Me

tethered carbon chain

OMeOO

O

OMe

H

good: 1. No 1,3-like interactionbad: 2. Not stablized by anomeric effect

3. repulsion between axial "H" and"tethered carbon chain"

methyl ester moiety:

OMeO

O O

OMeMeO2C

OMeO

O O

MeO2CMeO

O

H

H

O

OMe

tethered carbon chain

O

OMe

OMe

O

OMe

O

H

H

O

OMe

tethered carbon chain

O

OMe

O

OMe1,4-addition OMeO

OMeMeO2C

O

O

Me

3-3

H

3-exo-tet

-11-

3-15- -B 3-15- -C

3-16- 3-17-

3-15- 3-15- -A 3-16-

3-16- ' 3-17-

OMeOMe

[1,3] hydrideshift

OMe OMe

MeO

H

H

O orbital overlapis insufficient

conformation is fixed due todouble bond (x2)

tethered carbon chaintethered carbon chain

MeO

Page 12: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

3-2. Discussion3-2-1. Facial selectivity of protonation

OMeO

O OH

OMeMeO2C

MeO

OMe

OMeO

O OH

OMeMeO2C

MeO

3-exo-tetOMeO

O OH

OMeMeO2C

OMeO2C

MeO2C

HOMe

O

MeO2C

MeO2C

H

OOMe

O

H

H

OMe OMe

deprotonation

O

O

MeO

MeO2CH

MeO2C

3-2

OMeO

O O

OMeMeO2C

OMe

OMe

OMeO2C

MeO2C

HOMe

O

MeO2C

MeO2C

H

OOMeO

H

H

formation ofoxonium cation [1,3]-hydride shift

OMeO

O O

OMeMeO2C

OMe

O

H

O

OMeOMe

H

MeO2C

O

OMe

H

O

HMeO

CO2Me

CO2Me

OH

O

O OMeO

MeO

MeOO

H

O

O OMeO

MeO

MeO

MeO H

from convex

kinetically favored

OH

O

O OMeO

MeO

MeO

thermodynamically favored -12-

3-123-13- 3-13-

3-18 3-19 3-20

3-21

3-21 3-21-1

3-21-1

3-21-2

3-21-2

3-21-1 3-22

overlap of orbitalis sufficient

OMe

CO2Me

OMe

Page 13: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

OMeO2C

H

CO2MeOMe

O

MeO2C

H

CO2Me

OOMe

O

H

H

deprotonationOMeO

O O

OMeMeO2C

OMe

OMe

OMeO

O OH

OMeMeO2C

OMe

OMeO

O O

OMeMeO2C

OMe

O

H

O

OMeOMe

H

MeO2C

O

OMe

H

O

HMeO

MeO2C

OMeO

3-2-2. Another mechanism of final step

-13-

3-3. Appendix (Proposed mechanism by author)

1. anti Baldwin's rule (3-endo-trig)

3-23 3-24

3-24 3-24-1 3-24-2

3-24-23-24-1

OMeO

OMeMeO2C

O

O

H

3-3

H

OMe

CO2Me

Page 14: 3UREOHP6HVVLRQ $QVZHUinoue/assets/img/archive-pdf/170603_PS.pdf · 0h2 2 + &2 0h 2 &2 0h 20h irupdwlrqri r[rqlxpfdwlrq 2 + &2 0h &2 0h 2 2 0h2 & 0h2 & + 2 + + &2 0h whwkhuhgfduerqfkdlq

-14-

Appendix1. Problem 11-1. Another reaction mechanism to form 1-12 (Proposed by Prof. Inoue)

1-9

OAc

AcO

CO2MeCO2Me

NN

N

Ph

single electronoxidation

I-1

OAc

AcO

CO2MeCO2Me

NN

N

Ph

O O

OO

I-2

OAc

AcO

CO2MeCO2Me

NN

N

PhH

OO

I-3

OAc

AcO

CO2MeCO2Me

NN

N

H OPhO

1-12

OAc

AcOO O

CO2Me

N

N N

CO2Me

Ph

If single electron oxidation occurs, regioselectivity of this reaction is explained.