Top Banner

of 26

3DOF

Jun 02, 2018

Download

Documents

danvic
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 3DOF

    1/26

    KINEMATICS

    ANALYSISOF

    ROBOTS

    (Part 3)

  • 8/10/2019 3DOF

    2/26

    This lecture continues the discussion on the analysis of theforward and inverse kinematics of robots.

    After this lecture, the student should be able to:

    Solve problems of robot kinematics analysis using transformation

    matrices

    Kinematics Analysis of Robots III

  • 8/10/2019 3DOF

    3/26

    Example: A 3 DOF RRR Robot

    Link and Joint Assignment

    Link (2) Link (3)Link (1)

    Revolute joint

    Link (0)

    Revolute joint

    Revolute joint

  • 8/10/2019 3DOF

    4/26

    Example: A 3 DOF RRR Robot

    Frame Assignment

    Z1

    Z1

    Y1

    Y1

    X1

  • 8/10/2019 3DOF

    5/26

    Example: A 3 DOF RRR Robot

    Frame Assignment

    Y0, Y1

    X0, X1

    Z0, Z1

    Z2

    Z2

    X2

    Y2

    Y2

  • 8/10/2019 3DOF

    6/26

    Example: A 3 DOF RRR Robot

    Frame Assignment

    Y0, Y1

    X0, X1

    Z0, Z1

    Z2

    X2

    Y2

    Z3

    Z3

    X3

    Y3

    Y3

  • 8/10/2019 3DOF

    7/26

    Example: A 3 DOF RRR Robot

    Frame Assignment

    Y0, Y1

    X0, X1

    Z0, Z1

    Z2

    X2

    Y2

    Z3

    X3

    Y3

    1

    2 3

  • 8/10/2019 3DOF

    8/26

    Example: A 3 DOF RRR Robot

    Tabulation of D-H parameters

    Y0, Y1

    X0, X1

    Z0, Z1

    Z2

    X2

    Y2

    Z3

    X3

    Y3

    A

    B

    0= (angle from Z0to Z1measured along X0) = 0

    a0= (distance from Z0to Z1measured along X0) = 0

    d1= (distance from X0to X1measured along Z1)= 0

    1= variable (angle from X0to X1measured along Z1)

    1= 0(at home position) but 1can change as the arm moves

  • 8/10/2019 3DOF

    9/26

    Example: A 3 DOF RRR Robot

    Tabulation of D-H parameters

    Y0, Y1

    X0, X1

    Z0, Z1

    Z2

    X2

    Y2

    Z3

    X3

    Y3

    A

    B

    1= (angle from Z1to Z2measured along X1) = 90

    a1= (distance from Z1to Z2measured along X1) = Ad2= (distance from X1to X2measured along Z2) = 0

    2= variable (angle from X1to X2measured along Z2)

    2= 0(at home position) but 2can change as the arm moves

  • 8/10/2019 3DOF

    10/26

    Example: A 3 DOF RRR Robot

    Tabulation of D-H parameters

    Y0, Y1

    X0, X1

    Z0, Z1

    Z2

    X2

    Y2

    Z3

    X3

    Y3

    A

    B

    2= (angle from Z2to Z3measured along X2) = 0

    a2= (distance from Z2to Z3measured along X2) = Bd3= (distance from X2 to X3measured along Z3) = 0

    3= variable (angle from X2to X3measured along Z3)

    3= 0(at home position) but 3 can change as the arm moves

  • 8/10/2019 3DOF

    11/26

    Link i Twist i Linklength aiLink offsetdi

    Joint angle i

    i=0 0 0

    i=1 90 A 0 1

    (1=0at home

    position)

    i=2 0 B 0 2

    (2=-0at home

    position)

    i=3 0 3

    (3=-0at home

    position)

    Summary of D-H parameters

  • 8/10/2019 3DOF

    12/26

    Example: A 3 DOF RRR Robot

    Tabulation of Transformation Matrices from the D-H table

    1000

    )cos()cos()cos()sin()sin()sin(

    )sin()sin()cos()cos()sin()cos(0)sin()cos(

    1111

    1111

    1

    1

    iiiiiii

    iiiiiii

    iii

    i

    id

    da

    T

    1000

    010000)cos()sin(

    00)sin()cos(

    11

    11

    01

    T

    0,0,0 100 da

  • 8/10/2019 3DOF

    13/26

    Example: A 3 DOF RRR Robot

    Tabulation of Transformation Matrices from the D-H table

    0,,90 211 dAa

    1000

    00)cos()sin(0100

    0)sin()cos(

    22

    22

    12

    A

    T

    1000

    )cos()cos()cos()sin()sin()sin(

    )sin()sin()cos()cos()sin()cos(0)sin()cos(

    1111

    1111

    1

    1

    iiiiiii

    iiiiiii

    iii

    i

    id

    da

    T

  • 8/10/2019 3DOF

    14/26

    Example: A 3 DOF RRR Robot

    Tabulation of Transformation Matrices from the D-H table

    0,,0 322 dBa

    1000

    0100

    00)cos()sin(

    0)sin()cos(

    33

    33

    2

    3

    B

    T

    1000

    )cos()cos()cos()sin()sin()sin(

    )sin()sin()cos()cos()sin()cos(0)sin()cos(

    1111

    1111

    1

    1

    iiiiiii

    iiiiiii

    iii

    i

    id

    da

    T

  • 8/10/2019 3DOF

    15/26

    Example: A 3 DOF RRR Robot

    Forward Kinematics

    1000

    00)cos()sin(

    )sin()cos()sin()sin()cos()sin(

    )cos()sin()sin()cos()cos()cos(

    22

    112121

    112121

    1

    2

    0

    1

    0

    2

    A

    A

    TTT

    1000

    )sin(0)cos()sin(

    )sin())cos(()cos()sin()sin()cos()sin(

    )cos())cos(()sin()sin()cos()cos()cos(

    23232

    121321321

    121321321

    2

    3

    0

    2

    0

    3

    B

    BA

    BA

    TTT

  • 8/10/2019 3DOF

    16/26

    Y0, Y1

    X0, X1

    Z0, Z1

    Z2

    X2

    Y2

    Z3

    X3

    Y3

    A=3B=2 C=1

    P

    Example: A 3 DOF RRR Robot

    What is the position

    of point P at the

    home position?

    Solution:

    1

    0

    0

    1

    1

    3p

    11

    30

    3

    0 pT

    p

  • 8/10/2019 3DOF

    17/26

    Example: A 3 DOF RRR Robot

    1

    00

    1

    1000

    )sin(0)cos()sin()sin())cos(()cos()sin()sin()cos()sin(

    )cos())cos(()sin()sin()cos()cos()cos(

    123232

    121321321

    121321321

    3

    0

    3

    B

    BA

    BA

    pT

    1= 2= 3=0, A=3, and B=2:

    1

    0

    0

    6

    1

    0

    0

    1

    1000

    0010

    0100

    5001

    11

    3

    0

    3

    0 pT

    p

  • 8/10/2019 3DOF

    18/26

    Example: A 3 DOF RRR Robot

    Inverse Kinematics

    Given the orientation and position of point P:

    TTTTpaon

    paon

    paon

    zzzz

    yyyy

    xxxx

    03

    23

    12

    01

    1000

    1

    0

    0

    1

    1000

    )sin(0)cos()sin(

    )sin())cos(()cos()sin()sin()cos()sin(

    )cos())cos(()sin()sin()cos()cos()cos(

    123232

    121321321

    121321321

    3

    0

    3

    B

    BA

    BA

    pT

  • 8/10/2019 3DOF

    19/26

    Example: A 3 DOF RRR Robot

    Inverse Kinematics

    Equate elements (1,3) and (2,3):

    y

    x

    y

    x

    a

    a

    a

    a1

    1

    1

    1tan

    )cos(

    )sin(

    Provided that 1)( 22 yx aa

    Equate elements (1,4) and (2,4):

    Ap

    BBAp

    ApB

    BAp

    y

    y

    xx

    )cos(

    1)sin()sin())cos((

    )cos(1)cos()cos())cos((

    1

    212

    1

    212

  • 8/10/2019 3DOF

    20/26

    Example: A 3 DOF RRR Robot

    Inverse Kinematics

    If cos(1)0, then use pxto find cos(2). Afterwards, find

    Otherwise use pyto find sin(2) and then solve using

    )cos(

    )sin(

    tan

    )(cos1)sin(

    2

    21

    2

    2

    2

    2

    )cos(

    )sin(tan

    )(sin1)cos(

    2

    21

    2

    2

    2

    2

  • 8/10/2019 3DOF

    21/26

    Example: A 3 DOF RRR Robot

    Inverse Kinematics

    Equate elements (3,1) and (3,2):

    z

    z

    z

    z

    o

    n

    o

    n1

    32

    32

    32tan)(

    )cos(

    )sin(

    2323

    Now find 1, 2, and 3given the orientation and position of point P:

    1000

    1001

    01005010

    1000

    zzzz

    yyyy

    xxxx

    paon

    paonpaon

  • 8/10/2019 3DOF

    22/26

    Example: A 3 DOF RRR Robot

    Inverse Kinematics

    0tan1

    0 11

    y

    x

    y

    x

    a

    aaa

    Now cos(1)=10. We use pxto find cos(2):

    1)cos(

    1)cos(

    2,3,5

    1

    2

    Ap

    B

    BAp

    x

    x

    0)cos(

    )sin(tan

    0)(cos1)sin(

    2

    21

    2

    2

    2

    2

  • 8/10/2019 3DOF

    23/26

    Example: A 3 DOF RRR Robot

    Inverse Kinematics90tan)(

    0

    11

    32

    z

    z

    z

    z

    o

    n

    o

    n

    900902323

    Y0

    X0

    Z0

    Z3

    X3

    Y3

    1000

    1001

    0100

    5010

    1000

    zzzz

    yyyy

    xxxx

    paon

    paon

    paonA=3 B=2

    PC=1

  • 8/10/2019 3DOF

    24/26

    Forward & Inverse Kinematics Issues

    Given a set of joint variables, the forward kinematics will always

    produce an unique solution giving the robot global position and

    orientation.

    On the other hand, there may be no solution to the inverse

    kinematics problem. The reasons include:

    The given global position of the arm may be beyond the robotwork space

    The given global orientation of the gripper may not be possible

    given that the gripper frame must be a right hand frame

    For the inverse kinematics problem, there may also exist multiple

    solutions, i.e. the solution may not be unique.

  • 8/10/2019 3DOF

    25/26

    Forward & Inverse Kinematics Issues

    Example of multiple solutions given the same gripper global

    position and orientation:

    First solution

    Second solution

    First solution

    Second solution

    Some solutions may not be feasible due to obstacles in the workspace

  • 8/10/2019 3DOF

    26/26

    Summary

    This lecture continues the the discussion on the analysis of the

    forward and inverse kinematics of robots.

    The following were covered:

    Problems of robot kinematics analysis using transformation

    matrices