Top Banner
HCU – Dept. of Mechtronics Eng’g Dr.-Ing. Saleh Chehade Engineering Mechanics STATICS Equilibrium of a Particle LECTURE 3
31
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Engineering Mechanics

STATICS

Equilibrium of a Particle

LECTURE 3

Page 2: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Condition of the Equilibrium of a ParticleA particle is in equilibrium provided

• it is at rest if originally at rest or

• has a constant velocity if originally in motion

To maintain equilibrium, it is necessary to satisfy Newton’s first law of motion, which requires that the resultant force acting on a particle to be equal to zero.

This condition may be stated mathematically asnF = 0

The above equation is necessary and sufficient

Page 3: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Condition of the Equilibrium of a ParticleAdditionally, if the particle is moving

⇒ Newton's second Law: ΣF = ma

But to satisfy equilibrium

ΣF = 0 ⇒ ma = 0 ⇒ a = 0

⇒ particle has constant velocity

Page 4: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

The Free-Body Diagram

To apply the equation of equilibrium;All the known and unknown forces (nF ) must be considered

The best way to do that is through drawing the particle’s

FREE BODY DIAGRAM

Page 5: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

The Free-Body Diagram

Procedure:

1. Draw outline shape of the particle to be isolated

2. Show all forces acting on the particle

3. Identify each force

Page 6: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Springs• With linear elastic springs,

deformation is linearly proportional to the applied force

• The elasticity of the spring is defined by means of the spring stiffness k

F = ks

s = l – lo

If s > 0F must “pull”

If s < 0 F must “push”

Page 7: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Cables and Pulleys

Remarks:

• Weights of Cables are not to be considered

• Cables support only Tension in the direction of the Cable

• For any θ the cable is subjected to a constant tension T throughout its length

Page 8: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Example 3-1

Page 9: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Coplanar Force System

If a particle is subjected to a system of forces that lie in the x-y plane

For the above vector equation to be satisfied then

These scalar equations must be satisfied

Page 10: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Scalar Notation

• In the above example, when drawing the FBD, we assumed the senseof the unknown F is to the right.

• But the equation resulted in F = -10 N, which indicates that F must have a sense to the left to hold the particle in equilibrium

Page 11: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Example 3-2

FBD

Equilibrium Equations

From the above Equilibrium Equations, then

Page 12: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Example 3-3

FBD

Equilibrium Equations

Page 13: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Example 3-3

FBD

FBDNewton’s 3rd Law

Principle of Action and Reaction

Equilibrium Equations

Page 14: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-16/1

The cylinder D has a mass of 20 kg. If a force of F=100N is applied horizontally to the ring at A, determine the largest dimension d so that the force in cable AC is zero.

Page 15: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-16/2Free-Body diagram of ring A:• Force from cable AC (FAC=0)• Force from cable AB (FAB)• Weight of cylinder D {W = 20(9.81) = 196.2N}• Force F = 100N

F = 100N x

y

W = 20(9.81) = 196.2N

FAB

θ⇒

Page 16: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-16/3

)(

)(coscos

2196.2inθ0196.2inθ

0

1100θ0100θ

0:mEquilibriu of Equations

=⇒=−⇒

=↑+

=⇒=+−⇒

=⎯→⎯

∑+

sFsF

F

FF

F

AB

AB

y

AB

AB

x

F = 100Nx

y

W = 20(9.81) = 196.2N

FAB

θ

Page 17: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-16/4

NF

FF

sFF

AB

AB

AB

AB

AB

2220cos62.99

100(1)in Substitute

9962θ9621θ

100196.2

θθ

12

2196.2inθ1100θ

.

..tancossin

)()(

)()(cos

=⇒

°=⇒=⇒

=⇒

=

=

F = 100Nx

y

W = 20(9.81) = 196.2N

FAB

θ

Page 18: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-16/5

θ

mddd

4225199262

51θ22

d1.5θ

:geometry From9962θ

..).(tan

.)(tan

tan

.

=⇒−=⇒

−=⇒

+=

°=

Page 19: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-22/1

The springs on the rope assembly are originally stretched 1 ft when θ = 0°. Determine the vertical force F that must be applied so that θ = 30°.

Page 20: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-22/2Free-Body diagram of A:• Tension from cable AB (Fs)• Tension from cable AD (Fs)• Vertical Force F

Fs

x

F

Fs

30ο30ο⇒

Page 21: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-22/3

lbFF

FsF

F

lbFkxF

ftxllx

ft

s

y

s

s

3390303392

0inθ2

0

33931130

3111312- stretched are springs the30θwhen

31230cos2

cosθ2BA

o

.))(sin.(

)(

.).(

..

.

=⇒=−°⇒

=−⇒

=↑+

==⇒

==−=⇒

=°=

==

∑Fs

x

F

Fs

30ο30ο

Page 22: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Three Dimensional Force System

⎪⎩

⎪⎨

===

=++⇒

=

∑∑∑

∑∑∑

000

0:components , , their into resolved are forces theIf

0:require wemequilibriu particleFor

z

y

x

zyx

FFF

FFF

F

kjikji

00

00

00

321

321

321

=++−⇒=

=−+⇒=

=+−⇒=

∑∑∑

zzzz

yyyy

xxxx

FFFF

FFFF

FFFF

Page 23: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/1

If the maximum allowable tension in cables AB and AC is 500 lb, determine the maximum height z to which the 200-lb crate can be lifted. What horizontal force F must be applied? Take y = 8 ft.

Page 24: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/2

y = 8ft⇒

Free-Body diagram of A:• Tension from cable AB (FAB = 500 lb)• Tension from cable AC (FAC = 500 lb)• Weight of the crate (W = 200 lb) • Force F

A

FAB = 500 lb

200 lb

F

FAC = 500 lb

x

z

y

5 ft

4 ft

8 ft

5 ft

4 ft

8 ft

(4-z) ft

x’y’

z’

Page 25: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/3

lb489

4500489

4000489

2500

500489

4489

84895

489485

485

axes as x'-y'-z'origin, asA Consider

222

222

2222

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−+

−+

−+−

−+

−=⇒

=

−+

−+

−+−

−+

−=

−+=−+−+−=

−+−−=

k)(

)(j)(

i)(

F

uF

k)(

)(j)(

i)(

u

)()()()(

k)(jir

AB

ABAB

AB

AB

zz

zz

zz

zz

zzr

z

AB

FAC = 500 lb

FAB = 500 lb

200 lb

Fx

y

z

5 ft5 ft

4 ft

4 ft

8 ft

8 ft

(4-z) ft

x’y’

z’

Page 26: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/4

{ }

{ }jF

kW

k)(

)(j)(

i)(

F

FF

k)(

)(j)(

i)(

F

AC

ACAB

AB

F

zz

zz

zz

zz

=

−=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−+

−+

−+−

−+=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−+

−+

−+−

−+

−=

lb200

lb489

4500489

4000489

2500

thuslsymmetrica are and

lb489

4500489

4000489

2500

222

222

FAC = 500 lb

FAB = 500 lb

200 lb

Fx

y

z

5 ft5 ft

4 ft

4 ft

8 ft

8 ft

(4-z) ft

x’y’

z’

Page 27: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/5

( )

( ))(

)()(

)()(

1489

8000

0489

8000

0489

4000489

4000

0

0489

2500489

2500

0

2

2

22

22

⎟⎟

⎜⎜

−+=⇒

=+⎟⎟

⎜⎜

−+

−⇒

=+−+

−−+

−⇒

=

=−+

+−+

−⇒

=

zF

Fz

Fzz

F

zz

F

y

x

y = 8ft

FAC = 500 lb

FAB = 500 lb

200 lb

Fx

y

z

5 ft5 ft

4 ft

4 ft

8 ft

8 ft

(4-z) ft

x’y’

z’

Page 28: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/6

( )

( )

( ))()(

)(

)()(

)()(

)(

2489

41000200

0200489

41000

0200489

4500489

4500

0

1489

8000

2

2

22

2

⎟⎟

⎜⎜

−+

−=⇒

=−⎟⎟

⎜⎜

−+

−⇒

=−−+

−+

−+

−⇒

=

⎟⎟

⎜⎜

−+=

z

z

z

z

zz

zz

F

zF

z

y = 8ft

FAC = 500 lb

FAB = 500 lb

200 lb

Fx

y

z

5 ft5 ft

4 ft

4 ft

8 ft

8 ft

(4-z) ft

x’y’

z’

Page 29: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/7

( )

( )

Fz

F

z

z

zF

16004

8z-4200

(1)by (2) Dividing

2489

41000200

1489

8000

2

2

=−⇒

=⇒

⎟⎟

⎜⎜

−+

−=

⎟⎟

⎜⎜

−+=

)(

)()(

)(

y = 8ft

FAC = 500 lb

FAB = 500 lb

200 lb

Fx

y

z

5 ft5 ft

4 ft

4 ft

8 ft

8 ft

(4-z) ft

x’y’

z’

Page 30: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/8

( )

( )

22

2

2

2

1600898000

160089

18000

489

18000

489

8000(1) From

16004

⎟⎠⎞

⎜⎝⎛+=⎟

⎠⎞

⎜⎝⎛⇒

⎟⎠⎞

⎜⎝⎛+

=⇒

−+=⇒

⎟⎟

⎜⎜

−+=

=−

FF

F

Fz

F

zF

Fz)(

y = 8ft

FAC = 500 lb

FAB = 500 lb

200 lb

Fx

y

z

5 ft5 ft

4 ft

4 ft

8 ft

8 ft

(4-z) ft

x’y’

z’

Page 31: 3

HCU – Dept. of Mechtronics Eng’gDr.-Ing. Saleh Chehade

Problem 3-59/9

ftzF

z

lbF

FF

FF

0729314

931831

160016004

83189

10146

8910146

8916008000

1600898000

7

27

2

22

22

..

.

.

.

=−=⇒

===−

=⇒

=×⇒

=−

⎟⎠⎞

⎜⎝⎛+=⎟

⎠⎞

⎜⎝⎛

y = 8ft

FAC = 500 lb

FAB = 500 lb

200 lb

Fx

y

z

5 ft5 ft

4 ft

4 ft

8 ft

8 ft

(4-z) ft

x’y’

z’