Top Banner
1 30 October 2019 Kidoguchi, Kenneth 2 2 0 dx dx m c kx dt dt + + = 2 2 R S F F F dx dx m c kx dt dt = + =− , ^ 0 R dx F cv c c c dt =− =− > Assuming a frictional force proportional to the speed of the mass: where c is called the damping constant. If there are no additional external forces, F E = 0, then: , ^ 0 S F kx k k =− > k m Equilibrium Position @ x = 0 x > 0 x < 0 For an ideal Hooke's Law spring, the force exerted on the mass, m, by the spring is: where k is called the spring constant. §3.4: Mechanical Vibrations A Mass-Spring System
26

§3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

Jul 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

130 October 2019 Kidoguchi, Kenneth

2

2 0d x dxm c kxdtdt

⇒ + + =2

2

R SF F F

d x dxm c kxdtdt

= +

= − −

, ^ 0RdxF cv c c cdt

= − = − ∈ >

Assuming a frictional force proportional to the speed of the mass:

where c is called the damping constant.If there are no additional external forces, FE = 0, then:

, ^ 0SF kx k k= − ∈ >

km

Equilibrium Position @ x = 0

x > 0x < 0For an ideal Hooke's Law spring, the force exerted on the mass, m, by the spring is:

where k is called the spring constant.

§3.4: Mechanical VibrationsA Mass-Spring System

Page 2: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 Kidoguchi, Kenneth2

22 20 02

c d x c dxx x x xm m dtdt

+ +ω ≡ + +ω

N.B.: A dot over the variable, “dot notation” , means we are considering a time dependent dynamic variable and differentiating with respect to time.

20

km

⇐ ω =2

202 0d x c dx x

m dtdt+ +ω =

2

2 0d x c dx k xm dt mdt

+ + =

2

2 0d x dxm c kxdtdt

+ + = km

Equilibrium Position @ x = 0

x > 0x < 0

§3.4: Mechanical VibrationsA Mass-Spring System

Page 3: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 3 Kidoguchi, Kenneth

L

-mg

0θ >0θ <

Let s be the distance travelled by the mass on a circular arc and assume a damping force proportional to v = ds/dt, we have:

Consider a simple pendulum with a mass m attached to a massless rod of length L.

R GF F F= +

§3.4: Mechanical VibrationsA Simple Pendulum

Page 4: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 5 Kidoguchi, Kenneth

L

-mgss = Lθ

sin( )mg− θ

cos( )mg− θ

0θ >0θ <

θ

2

2 sin( ) 0d s dsm c mgdt dt

+ + θ =

§3.4: Mechanical VibrationsA Simple Pendulum

Page 5: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 6 Kidoguchi, Kenneth

L

-mgss = Lθ

sin( )mg− θ

cos( )mg− θ

0θ >0θ <

θ0 0 2g LT

L gω = ⇒ = π

2

2

2202

sin( ) 0

0

d c d gdt m dt L

d c ddt m dt

θ θ+ + θ =

θ θ+ +ω θ =

§3.4: Mechanical VibrationsA Simple Pendulum

Page 6: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

830 October 2019 Kidoguchi, Kenneth

2 2

0

0

0

0

amplitude

angular frequency /phase angle arctan( / )period 2 /frequency 1/ /(2 )time lag /

C A B

k mB A

Tf T

= +

ω =

α =

= π ω

ν = = = ω π

δ = α ω

Where:

( ) ( )( )0 0 00

cos cos cosC t C t C t α

= ω −α = ω − = ω −δ ω

km

Equilibrium Position @ x = 0

x > 0x < 0

( ) ( )0 0( ) cos sinx t A t B t= ω + ω

With general solution:

2202 0d x x

dt+ω =

If the system is undamped, c = 0, so:

§3.4: Mechanical VibrationsSimple Harmonic Motion – Free Undamped Motion

Page 7: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

Kidoguchi, Kenneth30 October 2019 9

phase trajectory

akaphase

portrait

1sin2 2 2

t π π = − −

t-domain

0

amplitude 1angular frequency / 2phase angle / 4period 4frequency 1/ 4time lag 1/ 2

C

Tf

=ω = πα = π=

ν = =δ =

( )( )0 0( ) ( ) sinv t x t C t= = − ω ω −δ

1cos2 2

t π = −

( )( )0( ) cosx t C t= ω −δUndamped system response description:

3.4: Mechanical VibrationsSimple Harmonic Motion – Free Undamped Motion

Page 8: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 Kidoguchi, Kenneth10

2202 2

c crm m

= − ± −ω

which requires: Eigenvalues

Characteristic polynomial

2 20 0rtcr r e

m + +ω =

Upon substitution:

or: 2 20 0cr r

m+ +ω =

2

( )

( )

( )

rt

rt

rt

x t e

x t re

x t r e

=

=

=

Assume a solution of the form:

20 00, where / natural (angular) frequencycx x x k m

m+ +ω = ω = = Given:

§3.4: Mechanical VibrationsFree Damped Motion – Eigenvalue Computation

Page 9: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 Kidoguchi, Kenneth11

1 21 2( )

( )

r t r tx t a e a edxv tdt

= +

=

phase trajectory

akaphase

portrait

t-domain

/55 t te e− −= +

The system is said to be overdampedwith general solution:

22

1 0

22

2 0

2 2

2 2

c crm m

c crm m

= − + −ω

= − − −ω

220If , eigenvalues are real and distinct.

2cm

> ω

§3.4: Mechanical VibrationsDistinct Real Eigenvalues – Overdamped System

Page 10: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 12 Kidoguchi, Kenneth

2202 2

c crm m

= − + −ω

220If , eigenvalues are complex.

2cm

< ω

§3.4: Mechanical VibrationsComplex Eigenvalues – Underdamped System

Page 11: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 Kidoguchi, Kenneth13

2

1 1 00

, where 12 2c cr im m

= − + ω ω =ω − ω

220

220

0

2

00

2 2

12 2

12 2

c crm m

c cm m

c cim m

= − + −ω

= − + −ω − ω

= − + ω − ω

220If , eigenvalues are complex.

2cm

< ω

§3.4: Mechanical VibrationsComplex Eigenvalues – Underdamped System

Page 12: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 Kidoguchi, Kenneth14

phase trajectory

akaphase

portrait

t-domain

( ) dxv t xdt

= =

/2 1cos2 2

te t− π = −

( ) ( )

( ) ( )( )

2 21 1 2 1

21 1 2 1

( ) cos sin

cos sin

c ct tm m

c tm

x t a e t a e t

e a t a t

− −

= ω + ω

= ω + ω

The system is said to be underdampedwith general solution:

2

1 00

where 12

cm

ω =ω − ω

12cr im

= − + ω

220Hence, if ,

2cm

< ω

§3.4: Mechanical VibrationsComplex Eigenvalues – Underdamped System

Page 13: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 Kidoguchi, Kenneth15

1 2( )

( )

rt rtx t a e a t edxv t xdt

= +

= =

The system is said to be critically damped with general solution:

220If , we have one distinct eigenvalue,

2 2c cr -m m

= ω =

§3.4: Mechanical VibrationsRepeated Eigenvalues – Critically Damped System

Page 14: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 Kidoguchi, Kenneth16

) 2 0, (0) 2, (0) (0) 0d x x x x x v+ + = = = =

) 0, (0) 2, (0) (0) 0c x x x x v+ = = = =

) 4 13 0, (0) 6, (0) (0) 0b x x x x x v+ + = = = =

) 7 10 0, (0) 2, (0) (0) 13a x x x x x v+ + = = = = −

• find x(t), the solution to the IVP and dx/dt and• sketch graphs of x(t) and dx/dt in the t-domain and in the phase plane.

For each of the following initial value problems (IVPs):

§3.4: Mechanical VibrationsHarmonic Oscillator – Example IVPs

Page 15: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 17 Kidoguchi, Kenneth

) 7 10 0, (0) 2, (0) (0) 13a x x x x x v+ + = = = = −

§3.4: Mechanical VibrationsHarmonic Oscillator– Example IVPs

Page 16: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 18 Kidoguchi, Kenneth

Page 17: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 19 Kidoguchi, Kenneth

) 4 13 0, (0) 6, (0) (0) 0b x x x x x v+ + = = = =

§3.4: Mechanical VibrationsHarmonic Oscillator– Example IVPs

Page 18: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 20 Kidoguchi, Kenneth

§3.4: Mechanical VibrationsHarmonic Oscillator– Example IVPs

Page 19: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 21 Kidoguchi, Kenneth

Page 20: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 22 Kidoguchi, Kenneth

) 0, (0) 2, (0) (0) 0c x x x x v+ = = = =

§3.4: Mechanical VibrationsHarmonic Oscillator– Example IVPs

Page 21: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 23 Kidoguchi, Kenneth

Page 22: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 24 Kidoguchi, Kenneth

Page 23: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 25 Kidoguchi, Kenneth

) 2 0, (0) 2, (0) (0) 0d x x x x x v+ + = = = =

§3.4: Mechanical VibrationsHarmonic Oscillator– Example IVPs

Page 24: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 26 Kidoguchi, Kenneth

Page 25: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 Kidoguchi, Kenneth27

Category Eigenvalues Parameters Decay Phase Trajectory

Undamped imaginary c = 0 no decay ellipse

Underdamped complex c2 – 4mk < 0 e-ct/(2m) spiral to origin

Overdamped real c2 – 4mk > 0 e-ct/(2m) decay to origin

Critically damped repeated c2 – 4mk = 0 e-rt decay to origin

km

Equilibrium Position @ x = 0

x > 0x < 0

where: m > 0, k > 0, and c > 0 are real, constants.

0m x c x k x+ + =

The damped harmonic oscillator model:

§3.4: Mechanical Vibrations Mechanical Vibrations – Response Summary

Page 26: §3.4: Mechanical Vibrations A Mass-Spring Systemspot.pcc.edu/~kkidoguc/m256/m256_03.4.pdf3.4: Mechanical Vibrations Free Damped Motion –Eigenvalue Computation 30 October 2019 11

30 October 2019 28 Kidoguchi, Kenneth

0m x c x k x+ + = The damped harmonic oscillator model:

§3.4: Mechanical Vibrations Mechanical Vibrations – Response Summary Revisited