Top Banner
Simon Fraser University
16
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 325 steevn

Simon Fraser University

Page 2: 325 steevn

2

Dept. of Chemistry (Physics#)

Simon Fraser University

Burnaby, British Columbia

Canada

Model Polymers for Fuel Cell Membranes.

E.M.W. Tsang, A. Yang, Z. Shi,T. Weissbach, R. Narimana,# B. Frisken,#

S. Holdcroft*

Funding:Dec, 2013,ICAER 2013

Page 3: 325 steevn

Proton Exchange Membrane Fuel Cell (PEMFC)

Cathode Reaction

O2

+ 4e

O2

H2O

+ 4H + - 2H 2O

H2

Anode Reaction

2H2

4H ++ 4e -

Proton Exchange

Membrane (PEM)

ElectrodeCatalyst

H+

e-

e-

(Hydrogen)

Page 4: 325 steevn

Fuel Cells – Stacks

gasket

electrodebacking

MEA

flow field

Bi-polar plate

Automotive: 80,000 W

~350-400 MEAs

750 Bipolar plates

Page 5: 325 steevn

Structure of Nafion (PFSI)

CF2 CF2 CF CF2

OCF2CF

CF3

O(CF2)2SO3H

x y

z

1 micron (1/1000 mm)

Page 6: 325 steevn

Disadvantages• Very expensive

• High H2,O2, N2 & methanol crossover

• Humidification necessary

• Failure at high temperature ( >100 0C)

• Catalyst poisoning

• High electro-osmotic drag

Advantages• High proton conductivity

• Efficient even at low operating temp

• Good mechanical properties

• High durability

• Good flexibility at low temp

Perfluorinated vs Hydrocarbon PEMs

6

There is a need to develop alternative advanced membranes based on aromatic hydrocarbons

Disadvantages• Very expensive

• High H2,O2, N2 & methanol crossover

• Humidification necessary

• Failure at high temperature ( >100 0C)

• Catalyst poisoning

• High electro-osmotic drag

Advantages• High proton conductivity

• Efficient even at low operating temp

• Good mechanical properties

• High durability

• Good flexibility at low temp

Perfluorinated vs Hydrocarbon PEMs

Page 7: 325 steevn

7

F2C CF2

H2C CH2

C CH2 CH2 CH2

SO3H

x y

z

SO3H

CF2CF

SO3H

CF2CF

m n

R

ETFE-g-PSSA

BAM

S-SEBS

CH2CH

SO3H

CH2CH CH2CH2 CH3CH2

CH2CH3

CH2CH

SO3H

CH2CH

Nafion

CF2CF2x

CFCF2y

OCF2CF

CF3

OCF2CF2SO3Hz

Examples of

PEMs

O O C

O

nHO3SS-PEEK

Potential Polymer Architectures for PEM Materials

Page 8: 325 steevn

Microphase Separation in Block Copolymers

F.S. Bates and G. H. Fredrickson, Physics Today, Feb. 1999.

Block

Copolymers

Graft

Polymers

Page 9: 325 steevn

Chain Transfer Radical Polymerization Macroinitiator

x CF2=CH2 + y CF2=CF-CF3

CuX / bpy

Sulfonation

R-XCH2CF2 CF2CFx y R'-X

CF3

ATRP

CH2CF2 CF2CF CH2CH

CF3

n

x y nClSO3H or CH3COOSO3H CH2CF2 CF2CF CH2CH

SO3H

CF3

x y nX X

• Chain Transfer Radical Emulsion Polymerization

• Atom Transfer Radical Polymerization

• Sulfonation

Synthesis of Novel Fluoropolymer-block-

Ionic Polymers

HFP VDF20%HFP80%VDF

Page 10: 325 steevn

10

Synthesis of Fluorous-Ionic Graft

Copolymer

P(VDF-co-CTFE)-g-SPS

P(VDF-co-CTFE)-g-SPS

P(VDF-co-CTFE)Macroinitiator

P(VDF-co-CTFE)-g-PS

CF2

CH2 CF

2CFx y+

Cl

Emulsion Polymerization

n

CuCl/ bpy

ATRP

CH3COOSO3H

Sulfonation

Na2S

2O

5+ K

2S

2O

8

* CH2CF2 CF2CFyx

*

Cl

* CH2CF2 CF2CFyx

Cl

CF2CFz

*

CH2CHn

Cl

* CH2CF2 CF2CFyx

Cl

CF2CFz

*

CH2CHn

Cl

SO3H

2.6mol%CTFE 97.4mol%VDF

Page 11: 325 steevn

Membrane Morphology

Perforated Lamellar Morphology:- “Ionic” channels width = 8 – 15 nm

CF2CFCH2CF2

CF3

CH2CH

SO3H

x' y' n'

H

100 nm

CH2CF2 CF2CFx y

CF2CF

CH2CH

z

n

SO3H

Cl

Disordered cluster-network Morphology:-Ionic cluster size = 2 – 3 nmNote: Nafion cluster size = 5 – 10 nm

Graft copolymer:Diblock copolymer:

11

100 nm

Page 12: 325 steevn

IEC (mmol/g)

0.0 0.5 1.0 1.5 2.0 2.5

H2O

]/[S

O3

- ])

0

30

60

90

120

150

180

IEC (mmol/g)

0.0 0.5 1.0 1.5 2.0 2.5

Pro

ton C

onductivity (

S/c

m)

0.00

0.02

0.04

0.06

0.08

0.10

Diblock vs Graft Membrane

Diblocks (long-range channels):- Greater water uptake Higher proton conductivity and mobility- Excessive water swelling mechanical instability and limited attainable IEC.

Grafts (small ionic clusters):- Less water swelling Lower proton mobility- Maintain good mechanical property and high proton concentrations

IEC (mmol/g)

0.0 0.5 1.0 1.5 2.0 2.5

eff x

103

(cm

2 s

-1 V

-1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[H+

] (M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Graft copolymer:

100 nm

Diblock copolymer:

100 nm

dissolves

Page 13: 325 steevn

6-17% PS, Fully Sulfonated:

45% PS, Partially Sulfonated:

35% PS, Partially Sulfonated:

100 nm

E

B

100 nm

100 nm

H

100 nm

J50% PS, Partially Sulfonated:

Proton Conductivity :

IEC (mmol/g)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Pro

ton

Co

nd

ucti

vit

y (

S/c

m)

0.00

0.02

0.04

0.06

0.08

0.10

0.126-17% PS, fully sulfonated

35% PS, partially sulfonated

45% PS, partially sulfonated

50% PS, partially sulfonated

Nafion 117

13

- Fully sulfonated : continuous increase in

proton conductivity with IEC

- Partially sulfonated: initial increase followed

by drop in proton conductivity at high IEC.

6-17% PS, Fully Sulfonated

35% PS, p. Sulfonated

45% PS, p. Sulfonated

50% PS, p. Sulfonated

(IONIC PURITY):

Page 14: 325 steevn

Fluorinated polymer Partially Sulfonated polystyrene

& water

SANS: Contrast Variation Effect

Rubatat, Holdcroft, Diat, Shi. Frisken100 nm

Page 15: 325 steevn

Conclusions

• Model fluorous-ionic diblock copolymers with different block ratios have been synthesized to investigate structure-property relationships in PEMs.

• Water sorption, proton conductivity, proton mobility, anisotropy, etc, depend strongly on the membrane morphology….and on the degree of sulfonation within an “ionic” channel.

• Ionic purity of the “ionic channel” is critical.

• The graft structure allows for very high IEC without dissolution – promising for low RH conductivity.

100 nm

G

IEC = 0.89 mmol/g100 nm

K

IEC = 0.68 mmol/g100 nm

C

IEC = 0.70 mmol/g500 nm500 nm500 nm

Page 16: 325 steevn

T.J. Peckham, S. Holdcroft. Adv. Mater., 22 (2010) 4667–4690

Yossef Elabd and Michael Hickner“Block Copolymers for Fuel Cells”

Macromolecules, 2011, 44 (1), pp 1–11