Top Banner

of 20

320 Amp Models

Apr 14, 2018

Download

Documents

lovekumarchechi
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 320 Amp Models

    1/20

    320-amp-models.tex Page 1

    ECE 320

    Amplifier Models

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    2/20

    320-amp-models.tex Page 2

    2-Port Networks

    A 2-port network is any circiut with two pairs of wires connecting to the outside world. (Each

    port is a pair of wires.) The standard notation used for the voltages and currents in a 2-port

    network is shown below.

    2-port

    network

    +

    -v2

    +

    -v1

    i1 i2

    Just as there are two completely equivalent models for a 1-port network (the Thevenin and

    Norton equivalent circuits), there are multiple equivalent models for a 2-port network. We will

    consider the z, y, g, and h parameter models. (There are also s and abcd parameters.)

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    3/20

    320-amp-models.tex Page 3

    z Parameters

    +

    -v2

    +

    -v1

    i1 i2

    z12i2

    z21i1z11 z22

    +

    +

    v1 = z11i1 + z12i2

    v2 = z21i1 + z22i2

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    4/20

    320-amp-models.tex Page 4

    z11 =v1i1

    i2=0

    = open-circuit input resistance

    z12 =v1i2

    i1=0

    = reverse open-circuit transresistance

    z21 =v2

    i1i2=0

    = forward open-circuit transresistance

    z22 =v2i2

    i1=0

    = open-circuit output resistance

    All of the zij are in Ohms.

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    5/20

    320-amp-models.tex Page 5

    y Parameters

    +

    -v2

    +

    -v1

    i1 i2

    y12v2

    y21v11y11

    1y22

    i1 = y11v1 + y12v2

    i2 = y21v1 + y22v2

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    6/20

    320-amp-models.tex Page 6

    y11 =i1v1

    v2=0

    = short-circuit input conductance

    y12 =i1v2

    v1=0

    = reverse short-circuit transconductance

    y21 =i2

    v1

    v2=0

    = forward short-circuit transconductance

    y22 =i2v2

    v1=0

    = open-circuit output conductance

    All of the yij are in Siemens.

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    7/20

    320-amp-models.tex Page 7

    g Parameters

    +

    -v2

    +

    -v1

    i2

    +

    g12i2

    g21v1g221

    g11

    i1 = g11v1 + g12i2

    v2 = g21v1 + g22i2

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    8/20

    320-amp-models.tex Page 8

    g11 =i1v1

    i2=0

    = open-circuit input conductance

    g12 =i1i2

    v1=0

    = reverse short-circuit current gain

    g21 =v2

    v1

    i2=0

    = forward open-circuit voltage gain

    g22 =v2i2

    v1=0

    = short-circuit output resistance

    g12 and g21 are dimensionless, while g11 is in Siemens and g22 is in Ohms.

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    9/20

    320-amp-models.tex Page 9

    h Parameters

    +

    -

    v2

    +

    -

    v1

    i1 i2

    h12v2

    h21i1h11 1

    h22+

    v1 = h11i1 + h12v2

    i2 = h21i1 + h22v2

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    10/20

    320-amp-models.tex Page 10

    h11 =v1i1

    v2=0

    = short-circuit input resistance

    h12 = v1

    v2

    i1=0

    = reverse open-circuit voltage gain

    h21 =i2

    i1

    v2=0

    = forward short-circuit current gain

    h22 =i2v2

    i1=0

    = open-circuit output conductance

    h12 and h21 are dimensionless, while h11 is in Ohms and h22 is in Siemens.

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    11/20

    320-amp-models.tex Page 11

    IEEE Alternative Subscript Notation

    11 i for input

    12 r for reverse transfer

    21 f for forward transfer

    22 o for output

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    12/20

    320-amp-models.tex Page 12

    Amplifiers

    An amplifier is a special case of a 2-port network having an input port and an output port.

    Amplifiers are considered to be one-directional, producing a scaled copy of the input signal at the

    output port.

    Standard amplifier models are used in system design in much the same way as the Thevenin

    and Norton models: they provide the simplest possible description of the properties of a more

    complex circuit. Thus, the parameters of the standard amplifier models are used in specifications.

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    13/20

    320-amp-models.tex Page 13

    The circuit below shows an amplifier, together with a model for the source that drives it, and the

    load. The definitions of a number of commonly-used parameters are also given.

    +

    +

    RL

    RL

    vivS

    +

    -vo

    +

    -

    io

    iiInput voltage gain: Av =

    vovi

    Overall voltage gain: Avs =vovS

    Current gain: Ai =ioii

    Transresistance: Rm = voiiInput transconductance: Gm =

    iovi

    Input power gain: Ap =popi

    =vovi

    ioii= AvAi

    Overall power gain: Aps=

    po

    ps

    =vovs

    ioii= AvsAi

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    14/20

    320-amp-models.tex Page 14

    Amplifier Models

    There are four equivalent amplifier models. Each one can be derived from one of the 2-port

    network parameterizations by setting the parameter with the subscript 21 to zero, renaming v1. v2

    and i1 to vi, vo and ii, changing the direction of i2 and naming the new current io. Thus there are

    four amplifier models, which are discussed in detail on the next few slides.

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    15/20

    320-amp-models.tex Page 15

    Voltage Amplifier

    +

    vS

    RS

    Ri+

    -

    vi

    +

    -Avovi

    Ro

    +

    vo

    -

    RL

    io

    Avo =

    vo

    viio=0

    = open circuit voltage gain

    The voltage amp comes from the g-parameter 2-port model. The figure below shows how.

    +

    -v2

    +

    -v1

    i2

    +

    g12i2

    g21v1g221

    g11

    0

    viRi

    io

    vo

    Ro

    Avovi

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    16/20

    320-amp-models.tex Page 16

    +

    vS

    RS

    Ri+

    -

    vi+-A

    vo

    vi

    Ro

    +

    vo

    -

    RL

    io

    The voltage amplifier, together with its source and load, are used to connect the specific

    amplifier model with quantities describing the amplifiers performance.

    Av =vovi=

    RL

    Ro +RL

    Avo = input voltage gain

    Avs =vo

    vS

    =vo

    vi

    vi

    vS

    = Ri

    RS+RiAv = overall voltage gain

    Ai =ioii=

    vo/Rovi/Ri

    =RiRo

    vovi=

    RiRo

    Av = current gain

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    17/20

    320-amp-models.tex Page 17

    Current Amplifier

    +

    vS

    RS

    RiRo

    +

    vo

    -

    RLii

    Aisii

    io

    Ais =ioii

    vo=0

    = short circuit current gain

    Ai =ioii=

    Ro

    Ro +RL

    Ais = input current gain

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    18/20

    320-amp-models.tex Page 18

    Transconductance Amplifier

    +

    vS

    RS

    RiRo

    +

    vo

    -

    RL

    Gmsvi

    +

    vi

    -

    io

    Gms =iovi

    vo=0

    = short circuit transconductance

    Gm =iovi=

    Ro

    Ro +RL

    Gms = input transconductance

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

  • 7/30/2019 320 Amp Models

    19/20

    320-amp-models.tex Page 19

    Transresistance Amplifier

    +

    vS

    RS

    Ri+-Rmoii

    Ro

    +

    vo

    -

    RLii

    io

    Rmo =voii

    Io=0

    = open circuit transconductance

    Rm =voii=

    RL

    RL +Ro

    Rmo = input transconductance

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson

    d l P

  • 7/30/2019 320 Amp Models

    20/20

    320-amp-models.tex Page 20

    Conversion Between Amplifier Models

    Lets find the component values of a voltage amp that is equivalent to a given current amp.

    +

    vS

    RS

    RiRo

    +

    vo

    -

    RLii

    Aisii

    io

    +

    vS

    RS

    Ri+

    -

    vi+-Avovi

    Ro

    +

    vo

    -

    RL

    io

    Current Amp Voltage Amp

    Neither Ro or Ri needs a new value, although Ro changes from parallel- to series-connected.

    Avo =voviio=0

    =

    RoAisiivi =

    RoAisvi/ii =

    RoRiA

    is

    Note that this final expression contains only component values, and that all the voltages and

    currents have been eliminated.

    ECE 320 - Linear Active Circuit Design Phyllis R. Nelson