Top Banner
§3.2.6. Semi-Lagrangian Advection We have studied the Eulerian leapfrog scheme and found it to be conditionally stable.
78

3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

May 12, 2018

Download

Documents

lyquynh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

§3.2.6. Semi-Lagrangian Advection• We have studied the Eulerian leapfrog scheme and found

it to be conditionally stable.

Page 2: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

§3.2.6. Semi-Lagrangian Advection• We have studied the Eulerian leapfrog scheme and found

it to be conditionally stable.

• The criterion for stability was the CFL condition

µ ! c!t

!x" 1 .

Page 3: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

§3.2.6. Semi-Lagrangian Advection• We have studied the Eulerian leapfrog scheme and found

it to be conditionally stable.

• The criterion for stability was the CFL condition

µ ! c!t

!x" 1 .

• For high spatial resolution (small !x) this severly limitsthe maximum time step !t that is allowed.

Page 4: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

§3.2.6. Semi-Lagrangian Advection• We have studied the Eulerian leapfrog scheme and found

it to be conditionally stable.

• The criterion for stability was the CFL condition

µ ! c!t

!x" 1 .

• For high spatial resolution (small !x) this severly limitsthe maximum time step !t that is allowed.

• In numerical weather prediction (NWP), timeliness of theforecast is of the essence.

Page 5: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

§3.2.6. Semi-Lagrangian Advection• We have studied the Eulerian leapfrog scheme and found

it to be conditionally stable.

• The criterion for stability was the CFL condition

µ ! c!t

!x" 1 .

• For high spatial resolution (small !x) this severly limitsthe maximum time step !t that is allowed.

• In numerical weather prediction (NWP), timeliness of theforecast is of the essence.

• In this lecture, we study an alternative approach to timeintegration, which is unconditionally stable and so, freefrom the shackles of the CFL condition.

Page 6: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The Basic IdeaThe semi-Lagrangian scheme for advection is based on theidea of approximating the Lagrangian time derivative.

2

Page 7: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The Basic IdeaThe semi-Lagrangian scheme for advection is based on theidea of approximating the Lagrangian time derivative.

It is so formulated that the numerical domain of dependencealways includes the physical domain of dependence. Thisnecessary condition for stability is satisfied automaticallyby the scheme.

2

Page 8: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The Basic IdeaThe semi-Lagrangian scheme for advection is based on theidea of approximating the Lagrangian time derivative.

It is so formulated that the numerical domain of dependencealways includes the physical domain of dependence. Thisnecessary condition for stability is satisfied automaticallyby the scheme.

In a fully Lagrangian scheme, the trajectories of actualphysical parcels of fluid would be followed throughout themotion.

2

Page 9: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The Basic IdeaThe semi-Lagrangian scheme for advection is based on theidea of approximating the Lagrangian time derivative.

It is so formulated that the numerical domain of dependencealways includes the physical domain of dependence. Thisnecessary condition for stability is satisfied automaticallyby the scheme.

In a fully Lagrangian scheme, the trajectories of actualphysical parcels of fluid would be followed throughout themotion.

The problem with this aproach, is that the distribution ofrepresentative parcels rapidly becomes highly non-uniform.

2

Page 10: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The Basic IdeaThe semi-Lagrangian scheme for advection is based on theidea of approximating the Lagrangian time derivative.

It is so formulated that the numerical domain of dependencealways includes the physical domain of dependence. Thisnecessary condition for stability is satisfied automaticallyby the scheme.

In a fully Lagrangian scheme, the trajectories of actualphysical parcels of fluid would be followed throughout themotion.

The problem with this aproach, is that the distribution ofrepresentative parcels rapidly becomes highly non-uniform.

In the semi-Lagrangian scheme the individual parcels arefollowed only for a single time-step. After each step, werevert to a uniform grid.

2

Page 11: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The semi-Lagrangian algorithm has enabled us to integratethe primitive equations using a time step of 15 minutes.

This can be compared to a typical timestep of 2.5 minutesfor conventional schemes.

3

Page 12: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The semi-Lagrangian algorithm has enabled us to integratethe primitive equations using a time step of 15 minutes.

This can be compared to a typical timestep of 2.5 minutesfor conventional schemes.

The consequential saving of computation time means thatthe operational numerical guidance is available to the fore-casters much earlier than would otherwise be the case.

3

Page 13: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The semi-Lagrangian algorithm has enabled us to integratethe primitive equations using a time step of 15 minutes.

This can be compared to a typical timestep of 2.5 minutesfor conventional schemes.

The consequential saving of computation time means thatthe operational numerical guidance is available to the fore-casters much earlier than would otherwise be the case.

The semi-Lagrangian method was pioneered by the renownedCanadian meteorologist Andre Robert.

Robert also popularized the semi-implicit method.

3

Page 14: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The semi-Lagrangian algorithm has enabled us to integratethe primitive equations using a time step of 15 minutes.

This can be compared to a typical timestep of 2.5 minutesfor conventional schemes.

The consequential saving of computation time means thatthe operational numerical guidance is available to the fore-casters much earlier than would otherwise be the case.

The semi-Lagrangian method was pioneered by the renownedCanadian meteorologist Andre Robert.

Robert also popularized the semi-implicit method.

The first operational implementation of a semi-Lagrangianscheme was in 1982 at the Irish Meteorological Service.

Semi-Lagrangian advection schemes are now in widespreaduse in all the main Numerical Weather Prediction centres.

3

Page 15: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Paper in Monthly Weather Review, 1982.

4

Page 16: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Eulerian and Lagrangian ApproachWe consider the linear advection equation which describesthe conservation of a quantity Y (x, t) following the motionof a fluid flow in one dimension with constant velocity c.

5

Page 17: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Eulerian and Lagrangian ApproachWe consider the linear advection equation which describesthe conservation of a quantity Y (x, t) following the motionof a fluid flow in one dimension with constant velocity c.

This may be written in either of two alternative forms:

!Y

!t+ c

!Y

!x= 0 # Eulerian Form

dY

dt= 0 # Lagrangian Form

The general solution is Y = Y (x$ ct).

5

Page 18: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Eulerian and Lagrangian ApproachWe consider the linear advection equation which describesthe conservation of a quantity Y (x, t) following the motionof a fluid flow in one dimension with constant velocity c.

This may be written in either of two alternative forms:

!Y

!t+ c

!Y

!x= 0 # Eulerian Form

dY

dt= 0 # Lagrangian Form

The general solution is Y = Y (x$ ct).

To develop numerical solution methods, we may start fromeither the Eulerian or the Lagrangian form of the equation.

For the semi-Lagrangian scheme, we choose the latter.

5

Page 19: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Since the advection equation is linear, we can construct ageneral solution from Fourier components

Y = a exp[ik(x$ ct)] ; k = 2"/L .

6

Page 20: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Since the advection equation is linear, we can construct ageneral solution from Fourier components

Y = a exp[ik(x$ ct)] ; k = 2"/L .

This expression may be separated into the product of a func-tion of space and a function of time:

Y = a% exp($i#t)% exp(ikx) ; # = kc .

6

Page 21: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Since the advection equation is linear, we can construct ageneral solution from Fourier components

Y = a exp[ik(x$ ct)] ; k = 2"/L .

This expression may be separated into the product of a func-tion of space and a function of time:

Y = a% exp($i#t)% exp(ikx) ; # = kc .

Therefore, in analysing the properties of numerical schemes,we seek a solution of the form

Y nm = a% exp($i#n!t)% exp(ikm!x) = aAnexp(ikm!x)

where A = exp($i#!t).

6

Page 22: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Since the advection equation is linear, we can construct ageneral solution from Fourier components

Y = a exp[ik(x$ ct)] ; k = 2"/L .

This expression may be separated into the product of a func-tion of space and a function of time:

Y = a% exp($i#t)% exp(ikx) ; # = kc .

Therefore, in analysing the properties of numerical schemes,we seek a solution of the form

Y nm = a% exp($i#n!t)% exp(ikm!x) = aAnexp(ikm!x)

where A = exp($i#!t).The character of the solution depends on the modulus of A:

If |A| < 1, the solution decays with time.If |A| = 1, the solution is neutral with time.If |A| > 1, the solution grows with time.

6

Page 23: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Since the advection equation is linear, we can construct ageneral solution from Fourier components

Y = a exp[ik(x$ ct)] ; k = 2"/L .

This expression may be separated into the product of a func-tion of space and a function of time:

Y = a% exp($i#t)% exp(ikx) ; # = kc .

Therefore, in analysing the properties of numerical schemes,we seek a solution of the form

Y nm = a% exp($i#n!t)% exp(ikm!x) = aAnexp(ikm!x)

where A = exp($i#!t).The character of the solution depends on the modulus of A:

If |A| < 1, the solution decays with time.If |A| = 1, the solution is neutral with time.If |A| > 1, the solution grows with time.

In the third case (growing solution), the scheme is unstable.6

Page 24: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Domain of Dependence. Space axis horizontalTime axis vertical

+--------+--------+--------•--------+--------+--------+ n| | | ******* | | || | | ************* | | |+--------+--------*******************--------+--------+ n-1| | ************************* | || | ******************************* | |+--------*************************************--------+ n-2| ******************************************* || ************************************************* |******************************************************* n-3| | | | | | |m-3 m-2 m-1 m m+1 m+2 m+3

7

Page 25: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Domain of Dependence. Space axis horizontalTime axis vertical

+--------+--------+--------•--------+--------+--------+ n| | | ******* | | || | | ************* | | |+--------+--------*******************--------+--------+ n-1| | ************************* | || | ******************************* | |+--------*************************************--------+ n-2| ******************************************* || ************************************************* |******************************************************* n-3| | | | | | |m-3 m-2 m-1 m m+1 m+2 m+3

For the Eulerian Leapfrom Scheme, the value Y nm at time

n!t and position m!x depends on values within the areadepicted by asterisks.

Values outside this region have no influence on Y nm.

7

Page 26: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Domain of DependenceEach computed value Y n

m depends on previously computedvalues and on the initial conditions. The set of points whichinfluence the value Y n

m is called the numerical domain ofdependence of Y n

m.

8

Page 27: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Domain of DependenceEach computed value Y n

m depends on previously computedvalues and on the initial conditions. The set of points whichinfluence the value Y n

m is called the numerical domain ofdependence of Y n

m.

It is clear on physical grounds that if the parcel of fluid arriv-ing at point m!x at time n!t originates outside the numer-ical domain of dependence, the numerical scheme cannotyield an accurate result: the necessary information is notavailable to the scheme.

8

Page 28: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Domain of DependenceEach computed value Y n

m depends on previously computedvalues and on the initial conditions. The set of points whichinfluence the value Y n

m is called the numerical domain ofdependence of Y n

m.

It is clear on physical grounds that if the parcel of fluid arriv-ing at point m!x at time n!t originates outside the numer-ical domain of dependence, the numerical scheme cannotyield an accurate result: the necessary information is notavailable to the scheme.

Worse again, the numerical solution may bear absolutely norelationship to the physical solution and may grow exponen-tially with time even when the true solution is bounded.

8

Page 29: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Domain of DependenceEach computed value Y n

m depends on previously computedvalues and on the initial conditions. The set of points whichinfluence the value Y n

m is called the numerical domain ofdependence of Y n

m.

It is clear on physical grounds that if the parcel of fluid arriv-ing at point m!x at time n!t originates outside the numer-ical domain of dependence, the numerical scheme cannotyield an accurate result: the necessary information is notavailable to the scheme.

Worse again, the numerical solution may bear absolutely norelationship to the physical solution and may grow exponen-tially with time even when the true solution is bounded.

A necessary condition for avoidance of this phenomenon isthat the numerical domain of dependence should includethe physical trajectory. This condition is fulfilled by thesemi-Lagrangian scheme.

8

Page 30: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Parcel coming from Outside Domain of Dependence

+--------+--------+--------+--------+--------•--------+ n| | | | | • ******* || | | | •| ************* |+--------+--------+--------+--•-----******************* n-1| | | • | **********************| | | • | *************************+--------+-----•--+--------**************************** n-2| |• | *******************************| • | | **********************************•--------+--------************************************* n-3| | | | | | |m-5 m-4 m-3 m-2 m-1 m m+1

9

Page 31: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Parcel coming from Outside Domain of Dependence

+--------+--------+--------+--------+--------•--------+ n| | | | | • ******* || | | | •| ************* |+--------+--------+--------+--•-----******************* n-1| | | • | **********************| | | • | *************************+--------+-----•--+--------**************************** n-2| |• | *******************************| • | | **********************************•--------+--------************************************* n-3| | | | | | |m-5 m-4 m-3 m-2 m-1 m m+1

The line of bullets (•) represents a parcel trajectory (µ = 53).

The value everywhere on the trajectory is Y nm. (c = 5!x/3!t).

9

Page 32: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Parcel coming from Outside Domain of Dependence

+--------+--------+--------+--------+--------•--------+ n| | | | | • ******* || | | | •| ************* |+--------+--------+--------+--•-----******************* n-1| | | • | **********************| | | • | *************************+--------+-----•--+--------**************************** n-2| |• | *******************************| • | | **********************************•--------+--------************************************* n-3| | | | | | |m-5 m-4 m-3 m-2 m-1 m m+1

The line of bullets (•) represents a parcel trajectory (µ = 53).

The value everywhere on the trajectory is Y nm. (c = 5!x/3!t).

Since the parcel originates outside the numerical domain ofdependence, the Eulerian scheme cannot model it correctly.

9

Page 33: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The central idea of the Lagrangian scheme is to representthe physical trajectory of the fluid parcel.

10

Page 34: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The central idea of the Lagrangian scheme is to representthe physical trajectory of the fluid parcel.

We consider a parcel arriving at gridpoint m!x at the newtime (n + 1)!t and ask: Where has it come from?

10

Page 35: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The central idea of the Lagrangian scheme is to representthe physical trajectory of the fluid parcel.

We consider a parcel arriving at gridpoint m!x at the newtime (n + 1)!t and ask: Where has it come from?

The departure point will not normally be a grid point. There-fore, the value at the departure point must be calculated byinterpolation from surrounding points.

10

Page 36: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The central idea of the Lagrangian scheme is to representthe physical trajectory of the fluid parcel.

We consider a parcel arriving at gridpoint m!x at the newtime (n + 1)!t and ask: Where has it come from?

The departure point will not normally be a grid point. There-fore, the value at the departure point must be calculated byinterpolation from surrounding points.

But this interpolation ensures that the trajectory falls withinthe numerical domain of dependence.

We will show that this leads to a numerically stable scheme.

10

Page 37: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Interpolation using Surrounding Points

+--------+--------+--------+--------+--------&--------+ n+1| | | | | & | || | | | &| | |+--------+--------+--------+++•++++++--------+--------+ n| | | & | | | || | | & | | | |+--------++++++&+++--------+--------+--------+--------+ n-1| | | | | | |m-5 m-4 m-3 m-2 m-1 m m+1

The line of circles (&) represents a parcel trajectory (c = 5!x3!t )

11

Page 38: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Interpolation using Surrounding Points

+--------+--------+--------+--------+--------&--------+ n+1| | | | | & | || | | | &| | |+--------+--------+--------+++•++++++--------+--------+ n| | | & | | | || | | & | | | |+--------++++++&+++--------+--------+--------+--------+ n-1| | | | | | |m-5 m-4 m-3 m-2 m-1 m m+1

The line of circles (&) represents a parcel trajectory (c = 5!x3!t )

At time n!t the parcel is at (•), which is not a grid-point.

11

Page 39: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Interpolation using Surrounding Points

+--------+--------+--------+--------+--------&--------+ n+1| | | | | & | || | | | &| | |+--------+--------+--------+++•++++++--------+--------+ n| | | & | | | || | | & | | | |+--------++++++&+++--------+--------+--------+--------+ n-1| | | | | | |m-5 m-4 m-3 m-2 m-1 m m+1

The line of circles (&) represents a parcel trajectory (c = 5!x3!t )

At time n!t the parcel is at (•), which is not a grid-point.

The value at the departure point is obtained by interpola-tion from surrounding points.

Thus we ensure that, even though µ = 53 > 1, the physical

trajectory is within the domain of numerical dependence.

11

Page 40: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The advection equation in Lagrangian form may be written

dY

dt= 0 .

In physical terms, this equation says that the value of Y isconstant for a fluid parcel.

12

Page 41: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The advection equation in Lagrangian form may be written

dY

dt= 0 .

In physical terms, this equation says that the value of Y isconstant for a fluid parcel.

Applying the equation over the time interval [n!t, (n+ 1)!t],we get

!

"Value of Y atpoint m!x attime (n + 1)!t

#

$ =

!

"Value of Y at

departure pointat time n!t

#

$

12

Page 42: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

The advection equation in Lagrangian form may be written

dY

dt= 0 .

In physical terms, this equation says that the value of Y isconstant for a fluid parcel.

Applying the equation over the time interval [n!t, (n+ 1)!t],we get

!

"Value of Y atpoint m!x attime (n + 1)!t

#

$ =

!

"Value of Y at

departure pointat time n!t

#

$

In a more compact form, we may write

Y n+1m = Y n

where Y n• represents the value at the departure point,

which is normally not a grid point.

12

Page 43: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Interpolation using Surrounding Points

+--------+--------+--------+--------+--------&--------+ n+1| | | | | & | || | | | &| | |+--------+--------+--------+++•++++++--------+--------+ nm-5 m-4 m-3 m-2 m-1 m m+1

The distance travelled in time !t is s = c!t.

13

Page 44: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Interpolation using Surrounding Points

+--------+--------+--------+--------+--------&--------+ n+1| | | | | & | || | | | &| | |+--------+--------+--------+++•++++++--------+--------+ nm-5 m-4 m-3 m-2 m-1 m m+1

The distance travelled in time !t is s = c!t.The Courant Number is µ = c!t

!x . Here, µ = 53. We define:

p = [µ] = Integral part of µ$ = µ$ p = Fractional part of µ

Note that, by definition, 0 " $ < 1 (here, p = 1 and $ = 2/3).

13

Page 45: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Interpolation using Surrounding Points

+--------+--------+--------+--------+--------&--------+ n+1| | | | | & | || | | | &| | |+--------+--------+--------+++•++++++--------+--------+ nm-5 m-4 m-3 m-2 m-1 m m+1

The distance travelled in time !t is s = c!t.The Courant Number is µ = c!t

!x . Here, µ = 53. We define:

p = [µ] = Integral part of µ$ = µ$ p = Fractional part of µ

Note that, by definition, 0 " $ < 1 (here, p = 1 and $ = 2/3).So, the departure point falls between the grid pointsm$ p$ 1 and m$ p.

13

Page 46: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Interpolation using Surrounding Points

+--------+--------+--------+--------+--------&--------+ n+1| | | | | & | || | | | &| | |+--------+--------+--------+++•++++++--------+--------+ nm-5 m-4 m-3 m-2 m-1 m m+1

The distance travelled in time !t is s = c!t.The Courant Number is µ = c!t

!x . Here, µ = 53. We define:

p = [µ] = Integral part of µ$ = µ$ p = Fractional part of µ

Note that, by definition, 0 " $ < 1 (here, p = 1 and $ = 2/3).So, the departure point falls between the grid pointsm$ p$ 1 and m$ p.A linear interpolation gives

Y n• = $Y n

m$p$1 + (1$ $)Y nm$p .

13

Page 47: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Interpolation using Surrounding Points

+--------+--------+--------+--------+--------&--------+ n+1| | | | | & | || | | | &| | |+--------+--------+--------+++•++++++--------+--------+ nm-5 m-4 m-3 m-2 m-1 m m+1

The distance travelled in time !t is s = c!t.The Courant Number is µ = c!t

!x . Here, µ = 53. We define:

p = [µ] = Integral part of µ$ = µ$ p = Fractional part of µ

Note that, by definition, 0 " $ < 1 (here, p = 1 and $ = 2/3).So, the departure point falls between the grid pointsm$ p$ 1 and m$ p.A linear interpolation gives

Y n• = $Y n

m$p$1 + (1$ $)Y nm$p .

Check: Show what this implies in the limits $ = 0 and $ ' 1.13

Page 48: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Break here

14

Page 49: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Stability of the SchemeThe discrete equation may be written

Y n+1m = $Y n

m$p$1 + (1$ $)Y nm$p .

15

Page 50: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Stability of the SchemeThe discrete equation may be written

Y n+1m = $Y n

m$p$1 + (1$ $)Y nm$p .

Let us look for a solution of the form

Y nm = a An exp(ikm!x) .

15

Page 51: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Stability of the SchemeThe discrete equation may be written

Y n+1m = $Y n

m$p$1 + (1$ $)Y nm$p .

Let us look for a solution of the form

Y nm = a An exp(ikm!x) .

Substituting into the equation we get

aAn+1 exp(ikm!x) = $ · aAn exp[ik(m$ p$ 1)!x]

+ (1$ $) · aAn exp[ik(m$ p)!x]

15

Page 52: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Stability of the SchemeThe discrete equation may be written

Y n+1m = $Y n

m$p$1 + (1$ $)Y nm$p .

Let us look for a solution of the form

Y nm = a An exp(ikm!x) .

Substituting into the equation we get

aAn+1 exp(ikm!x) = $ · aAn exp[ik(m$ p$ 1)!x]

+ (1$ $) · aAn exp[ik(m$ p)!x]

Removing the common term aAn exp(ikm!x), we get

A = $ exp[ik($p$ 1)!x] + (1$ $) exp[ik($p)!x]

15

Page 53: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Numerical Stability of the SchemeThe discrete equation may be written

Y n+1m = $Y n

m$p$1 + (1$ $)Y nm$p .

Let us look for a solution of the form

Y nm = a An exp(ikm!x) .

Substituting into the equation we get

aAn+1 exp(ikm!x) = $ · aAn exp[ik(m$ p$ 1)!x]

+ (1$ $) · aAn exp[ik(m$ p)!x]

Removing the common term aAn exp(ikm!x), we get

A = $ exp[ik($p$ 1)!x] + (1$ $) exp[ik($p)!x]

We can write this as

A = exp($ikp!x) · [(1$ $) + $ exp($ik!x)]

15

Page 54: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Again,

A = exp($ikp!x) · [(1$ $) + $ exp($ik!x)]

16

Page 55: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Again,

A = exp($ikp!x) · [(1$ $) + $ exp($ik!x)]

Now consider the squared modulus of A:

|A|2 = |exp($ikp!x)|2 · |(1$ $) + $ exp($ik!x)|2

= |(1$ $) + $ cos k!x$ i$ sin k!x|2

= [(1$ $) + $ cos k!x]2 + $[sin k!x]2

= (1$ $)2 + 2(1$ $)$ cos k!x + $2 cos2 k!x + $2 sin2 k!x= (1$ 2$ + $2) + 2$(1$ $) cos k!x + $2

= 1$ 2$(1$ $)[1$ cos k!x] .

16

Page 56: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Again,

A = exp($ikp!x) · [(1$ $) + $ exp($ik!x)]

Now consider the squared modulus of A:

|A|2 = |exp($ikp!x)|2 · |(1$ $) + $ exp($ik!x)|2

= |(1$ $) + $ cos k!x$ i$ sin k!x|2

= [(1$ $) + $ cos k!x]2 + $[sin k!x]2

= (1$ $)2 + 2(1$ $)$ cos k!x + $2 cos2 k!x + $2 sin2 k!x= (1$ 2$ + $2) + 2$(1$ $) cos k!x + $2

= 1$ 2$(1$ $)[1$ cos k!x] .

We note that, for all %, we have 0 " (1$ cos %) " 2.

16

Page 57: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Again,

A = exp($ikp!x) · [(1$ $) + $ exp($ik!x)]

Now consider the squared modulus of A:

|A|2 = |exp($ikp!x)|2 · |(1$ $) + $ exp($ik!x)|2

= |(1$ $) + $ cos k!x$ i$ sin k!x|2

= [(1$ $) + $ cos k!x]2 + $[sin k!x]2

= (1$ $)2 + 2(1$ $)$ cos k!x + $2 cos2 k!x + $2 sin2 k!x= (1$ 2$ + $2) + 2$(1$ $) cos k!x + $2

= 1$ 2$(1$ $)[1$ cos k!x] .

We note that, for all %, we have 0 " (1$ cos %) " 2.

Taking the largest value of 1$ cos k!x gives

|A|2 = 1$ 4$(1$ $) = (1$ 2$)2 " 1 .

16

Page 58: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Again,

A = exp($ikp!x) · [(1$ $) + $ exp($ik!x)]

Now consider the squared modulus of A:

|A|2 = |exp($ikp!x)|2 · |(1$ $) + $ exp($ik!x)|2

= |(1$ $) + $ cos k!x$ i$ sin k!x|2

= [(1$ $) + $ cos k!x]2 + $[sin k!x]2

= (1$ $)2 + 2(1$ $)$ cos k!x + $2 cos2 k!x + $2 sin2 k!x= (1$ 2$ + $2) + 2$(1$ $) cos k!x + $2

= 1$ 2$(1$ $)[1$ cos k!x] .

We note that, for all %, we have 0 " (1$ cos %) " 2.

Taking the largest value of 1$ cos k!x gives

|A|2 = 1$ 4$(1$ $) = (1$ 2$)2 " 1 .

Taking the smallest value of 1$ cos k!x gives

|A|2 = 1 .

16

Page 59: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Again,

A = exp($ikp!x) · [(1$ $) + $ exp($ik!x)]

Now consider the squared modulus of A:

|A|2 = |exp($ikp!x)|2 · |(1$ $) + $ exp($ik!x)|2

= |(1$ $) + $ cos k!x$ i$ sin k!x|2

= [(1$ $) + $ cos k!x]2 + $[sin k!x]2

= (1$ $)2 + 2(1$ $)$ cos k!x + $2 cos2 k!x + $2 sin2 k!x= (1$ 2$ + $2) + 2$(1$ $) cos k!x + $2

= 1$ 2$(1$ $)[1$ cos k!x] .

We note that, for all %, we have 0 " (1$ cos %) " 2.

Taking the largest value of 1$ cos k!x gives

|A|2 = 1$ 4$(1$ $) = (1$ 2$)2 " 1 .

Taking the smallest value of 1$ cos k!x gives

|A|2 = 1 .

In either case, |A|2 " 1, so there is numerical stability.16

Page 60: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Discussion and Conclusion

17

Page 61: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Discussion and Conclusion!We have determined the departure

point by linear interpolation.

17

Page 62: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Discussion and Conclusion!We have determined the departure

point by linear interpolation.

!This ensures that 0 " $ < 1.

17

Page 63: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Discussion and Conclusion!We have determined the departure

point by linear interpolation.

!This ensures that 0 " $ < 1.

!This in turn ensures that |A| " 1.

17

Page 64: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Discussion and Conclusion!We have determined the departure

point by linear interpolation.

!This ensures that 0 " $ < 1.

!This in turn ensures that |A| " 1.

! In other words, we haveunconditional numerical stability.

17

Page 65: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Discussion and Conclusion!We have determined the departure

point by linear interpolation.

!This ensures that 0 " $ < 1.

!This in turn ensures that |A| " 1.

! In other words, we haveunconditional numerical stability.

!The implication is thatthe time step is unlimited.

17

Page 66: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Discussion and Conclusion!We have determined the departure

point by linear interpolation.

!This ensures that 0 " $ < 1.

!This in turn ensures that |A| " 1.

! In other words, we haveunconditional numerical stability.

!The implication is thatthe time step is unlimited.

! In contradistinction to the Eulerianscheme there is no CFL criterion.

17

Page 67: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

!Of course, we must consider accuracyas well as stability

18

Page 68: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

!Of course, we must consider accuracyas well as stability

!The time step !t is chosen to ensuresu!cient accuracy, but can be muchlarger than for an Eulerian scheme.

18

Page 69: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

!Of course, we must consider accuracyas well as stability

!The time step !t is chosen to ensuresu!cient accuracy, but can be muchlarger than for an Eulerian scheme.

!Typically, !t is about six times largerfor a semi-Lagrangian scheme than foran Eulerian scheme.

18

Page 70: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

!Of course, we must consider accuracyas well as stability

!The time step !t is chosen to ensuresu!cient accuracy, but can be muchlarger than for an Eulerian scheme.

!Typically, !t is about six times largerfor a semi-Lagrangian scheme than foran Eulerian scheme.

!This is a substantial gain in computa-tional e!ciency.

& & &

18

Page 71: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Miscellaneous Issues

19

Page 72: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Miscellaneous Issues!Calculation of departure point

19

Page 73: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Miscellaneous Issues!Calculation of departure point

!Higher order interpolation

19

Page 74: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Miscellaneous Issues!Calculation of departure point

!Higher order interpolation

! Interpolation in two dimensions

19

Page 75: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Miscellaneous Issues!Calculation of departure point

!Higher order interpolation

! Interpolation in two dimensions

! Interpolation in the vertical

19

Page 76: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Miscellaneous Issues!Calculation of departure point

!Higher order interpolation

! Interpolation in two dimensions

! Interpolation in the vertical

!Coriolis terms: Pseudo-implicit scheme

19

Page 77: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

Miscellaneous Issues!Calculation of departure point

!Higher order interpolation

! Interpolation in two dimensions

! Interpolation in the vertical

!Coriolis terms: Pseudo-implicit scheme

! Inclusion of Physics

19

Page 78: 3.2 .6. Semi -Lag rangi an A dvect ion - UMD | …ekalnay/syllabi/AOSC614/NWP-CH03-2-6.pdf¤3.2 .6. Semi -Lag rangi an A dvect ion ¥ W e ha v e studi ed the Euler ian leapfr o g sc

End of §3.2.6

20