Top Banner
1 INTRODUCTION Iron, the silvery-whitish metal, is the most important of metals since it forms the basis of the spectrum of steels and cast iron. Today in industries steel and cast iron comprise well over 80% by weight of Cast iron and steel. Pure iron* is not an easy material to produce. Pure iron is quite soft, weak and expensive. If carbon is added in certain quantity in it, it will change its mechanical properties. According to carbon content we classified iron carbon alloys into two ways: 1. Steel (Less than 2.11%) 2. Cast iron (2.11-6.67%) Cast irons are basically iron-carbon alloys having carbon between 2.11% and 6.67%. The industrial cast irons have carbon normally in the range of 2.11% to 4.0%, along with other elements like silicon, manganese, sulphur and phosphorus in substantial amounts. Why cast iron has its name? Higher carbon content makes them more brittle. Cast irons are brittle, and cannot be forged, rolled, drawn, etc. but can only be ‘cast’ into desired shape and size by pouring the molten alloy of desired composition into a mould of desired shape and allowing it to solidify . Due to presence of high carbon content in it machinability is poor so casting is the only and exclusively suitable process to shape these alloys, known as Cast iron. Cast irons is made by remelting pig iron ( C-3.5%,Si-1.9%,S-0.06%, P-1.00%,Mn- 0.70%) often along with substantial quantities of scrap iron and scrap steel, and taking various steps to remove undesirable contaminants such as phosphorus and sulphur. The melting unit may be cupola, electric arc, and induction furnaces etc. The common cast irons are brittle and have lower strength properties than steels. *Pure Iron-Iron contains 99.98% alpha ferrite in it. Pure iron pillars were manufactured and situated in Delhi around 1200 AD.
48

30852555 Seminar Report on Cast Iron

Sep 04, 2014

Download

Documents

madake
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 30852555 Seminar Report on Cast Iron

1

INTRODUCTION

I r on , t he s i l ve ry -w h i t i s h me ta l , i s t he mos t impor t an t o f me ta l s s i nce i t

f o rms the ba s i s o f t he s pec t rum o f s t e e l s and ca s t i r on . Today in

i ndus t r i e s s t e e l and ca s t i r on compr i s e w e l l ove r 80% by w e igh t o f C as t

i r on and s t ee l . Pu re i r on* i s no t an ea s y ma te r i a l t o p roduce . Pu re i r on

i s qu i t e s o f t , w eak and expens ive . I f c a rbon i s added in ce r t a in quan t i t y

i n i t , i t w i l l change i t s mechan ica l p rope r t i e s . A cco rd ing t o ca rbon

con t en t w e c l a s s i f i ed i r on ca rbon a l l oys i n to tw o ways :

1. S tee l (Les s t han 2 .11%)

2. C as t i r on (2 .11 -6 .67%)

C as t i r ons a r e ba s i ca l l y i r on - ca rbon a l l oys hav ing ca rbon be tw een

2 .11% and 6 .67%. The i ndus t r i a l c a s t i r ons have ca rbon no rma l ly i n

t he r ange o f 2 . 11% to 4 .0%, a long w i th o the r e l emen t s l i ke s i l i con ,

manganes e , s u lphu r and phos pho rus i n s ubs t an t i a l amoun t s .

Wh y cas t i ron h as i t s name?

H ighe r ca rbon con t en t makes t hem more b r i t t l e . C as t i r ons a r e b r i t t l e ,

and canno t be fo rged , r o l l ed , d r aw n , e t c . bu t c an on ly be ‘ ca s t ’ i n to

de s i r ed shape and s i ze by pou r ing t he mo l t en a l l oy o f de s i r ed

compos i t i on i n to a mou ld o f de s i r ed shape and a l l ow ing i t t o s o l i d i fy .

D u e to p res en ce o f h igh carb on con ten t in i t mach in ab i l i t y i s p oor s o

cas t in g i s th e on ly an d exc lu s ive ly s u i tab le p roces s t o sh ap e th es e

a l l oys , kn ow n as C as t i ron .

C as t i r ons i s made by r eme l t i ng p ig i r on ( C-3 .5%,S i - 1 .9%,S -0 .06%,

P- 1 .00%,Mn - 0 .70%) o f t en a long w i th s ubs t an t i a l quan t i t i e s o f s c r ap

i r on and s c r ap s t e e l , and t ak ing va r ious s t ep s t o r emove undes i r ab l e

con t amin an t s s uch a s phos pho rus and s u lphu r . The me l t i ng un i t may be

cupo la , e l e c t r i c a r c , and i nduc t ion fu rnaces e t c . The common ca s t i r ons

a r e b r i t t l e and have l ow er s t r eng th p rope r t i e s t han s t ee l s .

* P u r e I r o n - I r o n c o n t a i n s 9 9 . 9 8 % a l p h a f e r r i t e i n i t . P u r e i r o n p i l l a r s w e r e

m a n u f a c t u r e d a n d s i t u a t e d i n D e l h i a r o u n d 1 2 0 0 A D .

Page 2: 30852555 Seminar Report on Cast Iron

2

Cast iron are also classified according to metallurgical point of view

• Hypo Eutectic cast iron (2.11-4.3% carbon)

• Eutectic* Cast iron (4.3% carbon)

• Hyper Eutectic cast iron(4.3-6.67% carbon)

E u tec t i c Cas t i ron - I n t he eu t ec t i c c a s t i r on , t he r e i s on ly one phas e

( l i qu id ) o f Eu tec t i c compos i t i on a t j u s t be fo r e 1147 o C . A nd th i s l i qu id

phas e w i l l t r an s fo rmed in to aus t en i t e and cemen t i t e phas es a t 1147 o C

by eu t ec t i c r e ac t i on .

L(4.3%) Austenite (2.11% C) + Cementite (6.67% C)

Hyp o E u tec t i c C as t I ron - I n t he hypo eu t ec t i c c a s t i r on , t he r e a r e tw o

phas e s ( i . e . au s t en i t e , l i qu id o f Eu tec t i c compos i t i on ) a t j u s t be fo r e

1147 o C . A nd on ly l i qu id phas e w i l l t r an s fo rmed in to aus t en i t e and

cemen t i t e phas es a t 1147 o C by eu t ec t i c r e ac t i on . Aus t en i t e wh ich i s

p r e s en t above Eu tec t i c t empe ra tu r e l i ne i s know n a s p roeu t ec t i c o r

p r imary A us t en i t e .

Hyp er E u tec t i c Cas t i ron - I n t he hype r eu t ec t i c c a s t i r on , t he r e a r e

tw o phas e s ( i . e . c emen t i t e , l i qu id o f Eu tec t i c compos i t i on ) a t j u s t

be fo r e 1147 0 C . And on ly l i qu id phas e w i l l t r an s fo rmed in to aus t en i t e

and cemen t i t e phas e s a t 1147 0 C by eu t ec t i c r e ac t i on . C emen t i t e wh ich

i s p r e s en t i n i t i a l l y i s know n a s p roeu t ec t i c o r p r imary cemen t i t e .

Coolin

Heatin

Page 3: 30852555 Seminar Report on Cast Iron

3

Iron bridge, made of cast iron Cover of sewerage system *Eutectic comes from Greek word Eutectus which means “That can be easily melted”

Development of Cast Iron

I n i t i a l l y , t he r e a r e tw o types o f C as t i r on ca l l ed Whi t e c a s t i r on and G rey ca s t i r on . I f c a rbon i s i n f o rm o f c emen t i t e t hen wh i t e c a s t i r on fo rms and i f c a rbon i s i n f o rm o f g r aph i t e t hen g r aph i t e c a s t f o rms . Whi t e c a s t i r ons have a l l t h e ca rbon in t he comb ined cemen t i t e f o rm ( f e r r i t e i s a s s umed to poss e s s neg l ig ib l e c a rbon ) . C emen t i t e i s a ha rd , b r i t t l e , w h i t e compound . The f r ac tu r ed su r f ace o f w h i t e c a s t i r on l ooks s i l ve ry - w h i t e due t o wh i t e c emen t i t e , and t ha t i s w h y th e name w h i t e ca s t i ron i s g iven .

G raph i t e i s s o f t , b r i t t l e and g r ay , and t hus , impa r t s g r ay co lou r t o t he f r ac tu r e . C as t i r ons con t a in ing g r aph i t e ( a s f l akes ) a r e t hus , ca l l ed gray cas t i ron s . Unde r mic ro s cop ic g r aph i t e f l akes appea r a s i r r egu l a r s t r ands s uch a s ‘ co rn f l akes ’ . As s how n in F igu reu re .1

Page 4: 30852555 Seminar Report on Cast Iron

4

Gray cast iron: 1 (a) Space model of flake graphite 1(b) Unetched photo-micrograph of gray cast iron

F rom tw o o r ig ina l c a s t i r ons , w h i t e c a s t i r on i s ve ry b r i t t l e and

unmach inab l e a s i t i s ve ry ha rd due t o p r e s ence o f ha rd and b r i t t l e

c emen t i t e and t hus f i nds ve ry f ew app l i ca t i ons . I t i s t he g r ay ca s t i r on ,

t he common commerc i a l va r i e ty mos t ex t ens ive ly u s ed i n i ndus t ry ; due

t o i t s c e r t a in s pec i f i c p rope r t i e s . The compres s ive s t r eng th and

ha rdnes s o f g r ay ca s t i r on a r e qu i t e h igh and ve ry c lo s e t o t he

p rope r t i e s o f t he s t e e l o f s imi l a r compos i t i on and ma t r i x s t r uc tu r e .

Whi l e deve lop ing g r aph i t i c c a s t i r ons o f supe r io r p rope r t i e s r e s u l t ed i n

f ou r more t ypes o f c a s t i r ons ca l l ed meahan i t e i r on , compac t ed i r on ,

ma l l e ab l e i r on and S .G . i r on . The mic ro s t ruc tu r e o f g r ay i r ons cons i s t s

o f g r aph i t e f l akes embedded in t he s t e e l ma t r i x , i . e . , i n va ry ing

p ropo r t i ons o f f e r r i t e and pea r l i t e . The p rope r t i e s o f G ray i r on a r e

de t e rmin ed by t he p rope r t i e s bo th o f t he ma t r i x , and t he amoun t , s i z e ,

s hape and d i s t r i bu t ion o f g r aph i t e i nc lu s ions . Graph i t e f l akes have

w eaken ing and embr i t t l i ng e f f ec t s , a s g r aph i t e i s s o f t , pow de ry , and

b r i t t l e , and can be cons ide r ed i n app rox ima t ion a s vo id s o r c r acks ,

b r eak ing t he con t inu i ty o f duc t i l e ma t r i x .

The p rope r t i e s o f g r ay i r on a r e de t e rmined by t he p rope r t i e s bo th o f t he

ma t r i x , and t he amoun t , s i z e , s hape and d i s t r i bu t ion o f g r aph i t e

i nc lu s ions . A cco rd ing t o t he r e g r aph i t e f l akes cond i t i on , g r ay ca s t i r on

i s f u r the r d iv ided i n to M eahan i t e c a s t i r on (by mak ing f l akes f i ne r ) ,

S .G C as t i r on ( round s haped f l akes ) , M a l l eab l e C as t i r on , Mo t t l ed C as t

i r on , C h i l l ed C as t I r on e t c .

Page 5: 30852555 Seminar Report on Cast Iron

5

Types of Cast Iron

The bes t me thod o f c l a s s i f y ing ca s t i r on i s ba s ed on t ype o f mic ro s t ruc tu r e :

Tw o ma in t ypes o f C as t i r on

I. White Cast I ron : C a rbon i s i n f o rm o f Whi t e c emen t i t e

II. Grey Cast I ron : C a rbon i s i n f o rm o f Graph i t e f l akes

Thes e a l l o the r c a s t i r on excep t g r ay and wh i t e c a s t i r on a r e made by s pec i a l t r e a tm en t ( hea t t r e a tm en t and by mix ing chemica l compos i t i on ) t o enhance i t s p rope r t i e s .

Page 6: 30852555 Seminar Report on Cast Iron

6

III. Chi l led Cast i ron : S u r f ace l aye r s a r e o f wh i t e c a s t i r on w i th i n t e r i o r o f g r ey ca s t i r on .

IV. Mott led i ron(Mixed I ron) : The t r an s i t i on l aye r be tw een G rey ca s t i r on and w h i t e c a s t i r on i n ch i l l ed i r on i s mo t t l ed ca s t i r on and cons i s t s no rma l ly o f g r aph i t e f l akes

V. Meahani te I ron: C as t i r on ha s ve ry f i ne f l akes o f g r aph i t e due t o add i t i on o f c a l c ium s i l i c ide a s i nocu l an t i n me l t i n l ad l e o the rw i s e i t w ou ld ha s s o l i d i f i ed a s wh i t e c a s t i r on .

VI. Malleable I ron: Thes e cons i s t s o f s t r uc tu r e o f i r r egu l a r ly r ound g r aph i t e pa r t i c l e s c a l l ed t empe r ca rbon and s t r uc tu r e i s ob t a ined by hea t t r e a tmen t

VII. Spheroidal graphi te I r on s t r uc tu r e o f nodu le s embedded in s t e e l ma t r i x , nodu le s a r e o f more r egu l a r , shape and compac t sphe re s .

VIII. Compacted/Vermicular Cast I ron: The g r aph i t e he r e i s i n t e rmed ia t e be tw een f l akes and s phe re s numerous rods o f g r aph i t e . S t r eng th and duc t i l i t y i s g r ea t e r t han g r ay ca s t i r on

IX. Alloy Cast I ron: P rope r t i e s and mic ro s t ruc tu r e o f c a s t i r on o r any o r f t he s e i s mod i f i ed by add i t i on o f a l l oy ing e l emen t s .

Graphitisation

We d i s cus s ed i n ea r l i e r s ec t i on t ha t c a s t i r on c l a s s i f i ed (w h i t e and g r ay ) on t he ba s i s o f c a rbon p r es en t i n i t . I n t h i s s ec t i on w e know tha t how cemen t i t e* and g r aph i t e** a r e f o rmed and a t wha t cond i t i on i n i r on ca rbon d i ag ram. The p rocess o f d i r ec t p r ec ip i t a t i on o f g r aph i t e f r om l i qu id o r by decompos i t i on o f p r ev ious ly fo rmed cemen t i t e - p roces s ca l l ed g r aph i t i s a t i on .

• I n i r on ca rbon d i ag ram g raph i t e (Equ i l i b r ium s t a t e ) i s more s t ab l e phas e t han cemen t i t e (M e ta s t ab l e s t a t e ) bu t k ine t i c a l l y i t i s e a s i e r t o f o rm cemen t i t e* t han g r aph i t e** (becaus e 6 .67% C s hou ld s eg rega t e t o nuc l ea t e c emen t i t e whe rea s 100% s eg rega t ion o f c a rbon i s needed to nuc l ea t e g r aph i t e .

• The c ry s t a l s t r uc tu r e o f aus t en i t e (F C C ) i s r e l a t i ve ly t o t ha t c emen t i t e ( comp lex o r tho rhombic*** ) , bu t d i f f e r s ubs t an t i a l l y f r om g raph i t e (H exagona l l aye r s t r uc tu r e ) .

Page 7: 30852555 Seminar Report on Cast Iron

7

• C emen t i t e f o rms more ea s i l y f r om aus t en i t e o r f r om l i qu id becaus e ene rgy r equ i r ed fo r d i f fu s ion i s much l e s s t han t ha t f o r g r aph i t e .

• A s k ine t i c a l l y cemen t i t e c an fo rm more ea s i l y i t i s more p robab le t o ge t i n mic ro s t ruc tu r e F e r r i t e + C emen t i t e f r om aus t en i t e t hen F e r r i t e + G raph i t e a l s o t he l i qu id t o f o rm eu t ec t i c a l l y t o aus t en i t e + C emen t i t e and no t au s t en i t e t han f e r r i t e + g r aph i t e . I f k ine t i c f a c to r a r e f avou rab l e t hen g r aph i t e c an fo rm becaus e g r aph i t e ha s l e s s f r ee ene rgy t han C emen t i t e . When g r aph i t e f o rm d i r ec t l y f r om l i qu id i s c a l l ed p r imary g r aph i t i s a t i on . The fo rma t ion o f g r aph i t e f r om l i qu id i s t akes p l ace i n a na r row r ange o f t empe ra tu r e ( 1153 -1147° C ) and a l s o fo rma t ion o f g r aph i t e f r om aus t en i t e be tw een 738° C to 727° C wh ich r equ i r e s l ow coo l ing . Th i s g r aph i t e i s know n a s s econda ry g r aph i t e .

The line Q’C’R’ (1153°C) in Figure. 1.2 is for Eutectic reaction

L Austenite + graphite (Primary graphitisation)

The line is for the Eutectoid reaction

Austenite Ferrite + graphite (Primary graphitisation)

* Cementite-It is an interstitial compound of fixed carbon percentage of 6.67% carbon ** Graphite and Diamond are purest form of carbon present in nature*** For Fe3C- Complex orthorhombic structure with 12 Fe atoms and 4 carbon atoms per unit cell at melting point 1227°C. Crystal structure= Radius of solute atom/radius of solvent atom=0.63

Cooling

Heating

Heating

Cooling

Page 8: 30852555 Seminar Report on Cast Iron

8

C ommerc i a l c a s t i r ons con t a in s f i ne pa r t i c l e o f i nc lu s ion ( l i ke S i ) w h ich becomes cen t r e o f g r aph i t e c rys t a l l i s a t i on and p romo te g r aph i t e f o rma t ion . When g r aph i t e f o rms f rom d i s s oc i a t i on o f c emen t i t e i s c a l l ed s econda ry g r aph i t i z a t i on . M e ta s t ab l e cemen t i t e above t empe ra tu r e 738° C decompos e t o A us ten i t e+ grap h i t e o r Ferr i t e + grap h i t e b e low 738° C . As w e know tha t s l ow coo l ing o f l i qu id ca s t i r on l e ads t o f o rma t ion o f g r aph i t e and f a s t coo l ing l e ads t o cemen t i t e . Th i s i s so becaus e t he fo rma t ion o f g r aph i t e f r om l i qu id o r au s t en i t e i s ve ry s low coo l ing p roces s and t akes p l ace on ly a t s ma l l unde r coo l ing .

FACTORS EFFECTING FORMATION OF CAST IRONS

The ma in f ac to r s e f f ec t i ng t he fo rma t ion o f w h i t e o r g r ay i r on , i . e . , w he the r c a rbon i s p r e s en t i n t he comb ined fo rm o r i n t he g r aph i t e f o rm a r e :

I . C h emica l comp os i t i on

I I . C oo l in g ra te .

Page 9: 30852555 Seminar Report on Cast Iron

9

I. COMPOSITION

( a ) C arb on : H ighe r i s t he ca rbon , more i s g r aph i t e f o rmed and low er t he mechan i ca l p rope r t i e s . C a rbons l ow er t he me l t i ng po in t o f me ta l and ac t a g r aph i t i s e r t o f avou r t he fo rma t ion o f g r ay ca s t i r on .

( b ) S i l i con : S i l i con i s a s t r ong g r aph i t i s e r and i nc r ea s e s t he f l u id i t y . I t con t ro l s t he r e l a t i v e p ropo r t i ons o f comb ined ca rbon and f r ee g r aph i t e . I f s i l i con i s p r e s en t du r ing t he so l i d i f i c a t i on ca rbon p r ec ip i t a t e s a s g r aph i t e f l akes . S i l i con con t en t may va ry be tw een 1 .0% to 3 .5%.S i l i con s h i f t s t he g r aph i t e - eu t ec t i c l i ne upw ards . Thus du r ing coo l ing f rom l i qu id s t a t e , a l a rge r deg ree o f unde r coo l ing i s pos s ib l e w i th g r ea t e r chance t o f o rm g raph i t e be fo r e cemen t i t e f o rma t ion becomes poss ib l e .

( c ) Su lp h u r and Man gan es e : Su lphu r r e t a rd s g r aph i t i s a t i on and i nc r ea s e s t he s i z e o f t he f l akes , H igh s u lphu r t ends t o r educe f l u id i t y and i s o f t en t he caus e o f b low ho le s i n ca s t i ngs . S u lphu r i s kep t l ow in amoun t o f . 06 t o . 12%.

S u lphu r i n ca s t i r on i s p r e s en t e i t he r a s F eS o r M nS . F eS t ends t o p romo te cemen t i t e f o rma t ion , i . e . , w h i t e c a s t i r on . Mn i s a mi ld ca rb ide fo rming e l emen t . The amoun t o f M n (one pa r t o f S t o 1 . 72 pa r t o f M n) w h ich combines w i th su lphu r t o f o rm M nS pa r t i c l e s i n l i qu id i r on and r i s e s t o be t op o f me l t t o be r emoved , ha s no t been ab l e t o have i t s ow n e f f ec t o f c emen t i t e f o rma t ion , no r t he l o s t s u lphu r cou ld exe r t i t s e f f ec t o f c emen t i t e f o rma t ion t hus , i nd i r ec t l y he lp s t o g ive g r ay i r on .

M anganes e i n exces s o f w ha t ha s f o rmed MnS , w eak ly r e t a rd s p r imar i l y g r aph i t i s a t i on . How eve r , i t h a s s t r ong cemen t i t e s t ab i l i s i ng e f f ec t on eu t ec to id g r aph i t i s a t i on .

( d ) Ph os p h orus - M os t c a s t i r on con t a in phos pho rus be tw een . 1 t o .3%. I t s amoun t may be more t han . 9%, t hen i t f o rms i r on phos ph ide (F e3P ) , wh ich fo rm a t e rna ry eu t ec t i c w i th cemen t i t e and aus t en i t e . The t e rna ry Eu tec t i c i s c a l l ed s t ead i t e . S t ead i t e i s b r i t t l e and ha s a me l t i ng po in t o f a round 960 deg ree . Th i s i nc r ea s e t he f l u id i t y a l s o he lp s i n g iv ing good ca s t ab i l i t y t o t he t h in and i n t r i c a t e c a s t i ng , whe re l ow me l t i ng f l u id cou ld ea s i l y f l ow . H ow eve r f o r t h i ck and h igh s t r eng th ca s t i r on ca s t i ng , b r i t t l e s t e ad i t e c an be avo ided by ma in t a in ing phos pho rus l e s s t han 0 .3%, w h ich s ha l l be p r e s en t i n d i s s o lve s t a t e i n f e r r i t e .

( d ) C arb on equ iva l en t V a lu e : S i , P ha s s imi l a r e f f ec t on t he mic ro s t ruc tu r e , t he i r e f f ec t i n t e rm o f c a rbon i s impor t an t .

The ca rbon equ iva l en t va lue (C E) = To ta l C % + 1 /3 (S i %+ P %)

Page 10: 30852555 Seminar Report on Cast Iron

10

The ca rbon con t en t o f c a s t i r on may be l ow er ( t han 4 .3%) , bu t i f C .E i s 4 . 3%, t hen , t he ca s t i r on i s eu t ec t i c c a s t i r on . C a rbon equ iva l en t va lue fo r a g iven coo l ing r a t e , de t e rmin es how c lo s e i s t o g iven compos i t i on o f c a s t i r on t o t he eu t ec t i c and t hus how much f r ee g r aph i t e , i t i s l i k e ly t o f o rm. Th i s de t e rmin es p robab le s t r eng th o f a s ec t i on o f c a s t i ng .

I I . The Effect of Rate of Cool ing on the Structure of Cast Iron

• A h igh r a t e o f coo l ing du r ing s o l i d i f i c a t i on t ends t o f avou r t he fo rma t ion o f c emen t i t e r a the r t han g r aph i t e . Tha t i s , t h e h ighe r t he r a t e o f coo l ing fo r any g iven ca s t - i r on compos i t i on t he ' w h i t e r ' and more b r i t t l e t he ca s t i ng i s l i ke ly t o be . Th i s e f f ec t i s impor t an t i n connec t ion w i th t he cho i ce o f a s u i t ab l e i r on fo r t he p roduc t ion o f c a s t i ngs o f t h in s ec t i on . S uppos ing an i r on wh ich , w hen coo l ed s low ly , had a f i ne g r ey s t r uc tu r e con t a in ing s ma l l eu t ec t i c c e l l s w e re chos en fo r s uch a pu rpos e . I n t h in s ec t i ons i t w ou ld coo l s o r ap id ly t ha t c emen t i t e wou ld fo rm in p r e f e r ence t o g r aph i t e and a t h in s ec t i on o f comp le t e ly wh i t e i r on w ou ld r e s u l t . S uch a s ec t i on w ou ld be b r i t t l e and u s e l e s s .

• Th i s e f f ec t i s i l l u s t r a t ed by ca s t i ng a ' s t epped ba r ' o f i r on o f a s u i t ab l e compos i t i on . H e r e , t h e t h i n s e c t i o n s h a v e c o o l e d s o q u i c k l y t h a t s o l i d i f i c a t i o n o f c e m e n t i t e h a s o c c u r r e d , a s i n d i c a t e d b y t h e w h i t e f r a c t u r e a n d h i g h B r i n e l l v a l u e s . T h e t h i c k e r s e c t i o n s , h a v i n g c o o l e d m o r e s l o w l y , a r e g r a p h i t i c a n d c o n s e q u e n t l y s o f t e r . D u e t o t h e c h i l l i n g e f f e c t e x e r t e d b y t h e m o u l d , m o s t c a s t i n g s h a v e a h a r d w h i t e s k i n o n t h e s u r f a c e . T h i s i s o f t e n n o t i c e a b l e w h e n t a k i n g t h e f i r s t c u t i n a m a c h i n i n g o p e r a t i o n .

F i g u r e 3 I l l u s t r a t i n g t h e e f f e c t s o f t h i c k n e s s o f s e c t i o n , a n d h e n c e r a t e o f c o o l i n g o n t h e s t r u c t u r e o f a g r e y i r o n . T h e t h i n n e s t p a r t o f t h e s e c t i o n h a s c o o l e d q u i c k l y e n o u g h t o p r o d u c e a w h i t e i r o n s t r u c t u r e , w h i l s t t h e c o r e o f t h e t h i c k e s t p a r t h a s a g r e y i r o n s t r u c t u r e . T h e r e l a t i o n s h i p s b e t w e e n s e c t i o n a l t h i c k n e s s a n d m i c r o s t r u c t u r e a r e s i m i l a r t o t h o s e i n d i c a t e d i n F i g u r e . . o n t h e o p p o s i t e p a g e . B o t h m i c r o g r a p h s x 3 0 0 a n d e t c h e d i n 2 % n i t a l . M a c r o s e c t i o n x 3 .

Page 11: 30852555 Seminar Report on Cast Iron

11

coo led so qu i ck ly t ha t so l i d i f i c a t i on o f c emen t i t e ha s occu r r ed , a s i nd i ca t ed by t he w h i t e f r ac tu r e and h igh B r ine l l va lue s . The t h i cke r s ec t i ons , hav ing coo l ed more s low ly , a r e g r aph i t i c and cons equen t ly s o f t e r . Due t o t he ch i l l i ng e f f ec t exe r t ed by t he mou ld , mos t c a s t i ngs have a ha rd w h i t e s k in on t he s u r f ace . Th i s i s o f t en no t i c eab l e when t ak ing t he f i r s t cu t i n a mach in ing ope ra t i on . I n ca s t i ng t h in s ec t i ons , t hen , i t i s nece s s a ry t o choos e an i r on o f r a the r coa r s e r g r ey f r ac tu r e t han i s r equ i r ed i n t he f i n i s hed ca s t i ng . Tha t i s , t h e i r on mus t have a h ighe r s i l i con con t en t t han t ha t u s ed fo r t he p roduc t ion o f c a s t i ngs o f heavy s ec t i on .

Figure 4 The effect of thickness of cross-section on the rate of cooling, and hence upon the microstructure of a grey cast iron.

Now we discussed types of cas t i ron in de ta i led:

I. WHITE CAST IRONS

Thes e a r e i r on - ca rbon a l l oys hav ing more t han 2 .11% ca rbon and a l l t h e ca rbon i s p r e s en t i n t he comb ined cemen t i t e f o rm, w h ich makes t he f r ac tu r e o f t he s e a l l oys t o have du l l and w h i t e co lou r , and t ha t i s t he r ea s on o f t he i r name a s w h i t e i r ons . Typ ica l w h i t e c a s t i r on con t a in s 2 . 5 – 3 . 5% C , 0 . 4 – 1 . 5% S i , 0 . 4 – 0 . 6 % M n , 0 . 1 – 0 .4%P , 0 . 15%S , and ba l ance F e . F igu re . 3 i l l u s t r a t e s changes occu r r ing on coo l ing i n hypoeu tec t i c wh i t e c a s t i r on . A t r oom t empe ra tu r e wh i t e c a s t i r on i s m ix tu r e o f pea r l i t e and cemen t i t e .

Page 12: 30852555 Seminar Report on Cast Iron

12

Figure. 5 The metastable iron—iron carbide phase diagram.

A l l w h i t e c a s t i r ons a r e hypoeu tec t i c a l l oys . The coo l ing o f a 2 . 50 pe r cen t c a rbon a l l oy w i l l now be de s c r ibed . The a l l oy , a t x 2 i n F igu re . 5 , ex i s t s a s a un i fo rm l i qu id s o lu t i on o f c a rbon d i s s o lved i n l i qu id i r on . I t r ema ins i n t h i s cond i t i on a s coo l ing t akes p l ace un t i l t h e l i qu idus l i ne i s c ro s s ed a t x 2 . S o l id i f i c a t i on now beg in s by t he fo rma t ion o f au s t en i t e c ry s t a l s con t a in ing abou t 1 pe r cen t c a rbon . A s t he t empe ra tu r e f a l l s , p r imary aus t en i t e con t inues t o s o l i d i fy , i t s compos i t i on mov ing dow n and to t he r i gh t a long the s o l i dus l i ne t ow ard po in t C . The l i qu id i n t he mean t i me i s becoming r i che r i n ca rbon , i t s compos i t i on a l s o mov ing dow n and to t he r i gh t a long the l i qu idus l i ne t ow ard po in t E . A t t he eu t ec t i c t empe ra tu r e , 1147° C the a l l oy cons i s t s o f au s t en i t e dend r i t e s con t a in ing 2 pe r cen t c a rbon and a l i qu id so lu t i on , con t a in ing 4 .3 pe r cen t c a rbon . The l i qu id accoun t s f o r ( 2 . 5—2.0 ) / ( 4 . 3—2.0 ) o r 22 pe r cen t o f t he a l l oy by w e igh t . Th i s l i qu id now unde rgoes t he eu t ec t i c r e ac t i on i s o the rma l ly t o f o rm the eu t ec t i c mix tu r e o f au s t en i t e and cemen t i t e know n a s l edebu r i t e .

L iqu id (4 .3%) A us t en i t e ( 2 . 11%) + C emen t i t e ( 6 . 67%)

S ince t he r eac t i on t akes p l ace a t a r e l a t i v e ly h igh t empe ra tu r e , 1edebu r i t e t ends t o appea r a s a coa r s e mix tu r e r a the r t han t he f i ne mix tu r e t yp i ca l o f many eu t ec t i c s . I t i s no t unus ua l f o r l edebu r i t e t o be

Heating

Cooling

Page 13: 30852555 Seminar Report on Cast Iron

13

s epa ra t ed comp le t e ly , w i th t he eu t ec t i c au s t en i t e added to t he p r imacy aus t en i t e dend r i t e s , l e av ing beh ind l aye r s o f mas s ive , f r e e cemen t i t e .

A s t he t empe ra tu r e f a l l s , b e tw een x3 and x4 , t he s o lub i l i t y o f c a rbon in au s t en i t e dec r ea s e s , a s i nd i ca t ed by t he Acm l i ne CJ . Th i s c aus e s p r ec ip i t a t i on o f p roeu t ec to id cemen t i t e , mos t o f w h ich i s depos i t ed upon the cemen t i t e a l r eady p r e s en t . A t t he eu t ec to id t empe ra tu r e , 727° C , t he r ema in ing aus t en i t e con t a in ing 0 .8 pe r cen t c a rbon and cons t i t u t i ng ( 6 . 67—2.5 ) / ( 6 . 67—0.8 ) , o r 70 pe r cen t o f t he a l l oy , unde rgoes t he eu t ec to id r eac t i on i s o the rma l ly t o f o rm pea r l i t e . D u r ing s ubs equen t coo l ing t o r oom t empe ra tu r e , t he s t r uc tu r e r ema ins e s s en t i a l l y unchanged .

The t yp i ca l m ic ro s t ruc tu r e o f w h i t e c a s t i r on , cons i s t i ng o f dend r i t e s o f t r an s fo rmed aus t en i t e (P ea r l i t e ) i n a w h i t e i n t e rdend r i t i c ne tw ork o f c emen t i t e a s show n in F igu re . 9 .

Figure 6 Changes during cooling of hypoeutectic white cast iron

Page 14: 30852555 Seminar Report on Cast Iron

14

Figure 7 Microstructure of white cast iron

F i g u r e 8 . C h a n g e s o n c o o l i n g , o f w h i t e c a s t i r o n s ( s c h e m a t i c ) . ( a ) D e n d r i t e s o f a u s t e n i t e f o n t : w h i c h g e t b r o k e n b y s e c o n d a r y c e m e n t i t e . A u s t e n i t e c h a n g e s t o P e a r l i t e a t e u t e c t o i d t e m p e r a t u r e . ( b ) C o m p l e t e l e d e b u r i t e f o r m s b y e u t e c t i c r e a c t i o n . C o a r s e l e d e b u r i t e f o r m s a s t e m p e r a t u r e i s h i g h . S e c o n d a r y c e m e n t i t e f o r m s r e d u c i n g s i z e o f a u s t e n i t e p a r t i c l e s w h i c h a t e u t e c t o i d t e m p e r a t u r e c h a n g e s t o P e a r l i t e t o r e s u l t i n c o m p l e t e t r a n s f o r m e d l e d e b u r i t e . ( c ) C e m e n t i t e b e i n g a c o m p o u n d , f e a s t s a s p l a t e , a s p r i m a r y c e m e n t i t e . A m o u n t o f t e r t i a r y c e m e n t i t e i n a l l t h e s e c a s e s i s n e g l i g i b l y s m a l l , t h u s . M i c r o s t r u c t u r e

i s s a m e a f t e r e u t e c t o i d r e a c t i o n a n d a t r o o m t e m p e r a t u r e .

Page 15: 30852555 Seminar Report on Cast Iron

15

F i g u r e . 9 M i c r o s t r u c t u r e o f w h i t e c a s t i r o n s , ( a ) M i c r o s t r u c t u r e o f h y p o e u t e c t i c w h i t e c a s t i r o n . C a r b o n i s c l o s e t o 2 . 1 1 % , a s i t h a s m a j o r a m o u n t o f b r o k e n d e n d r i t e s o f P e a r l i t e a n d l e s s t r a n s f o r m e d l e d e b u r i t e , ( b ) M i c r o s t r u c t u r e o f h y p e r e u t e c t i c w h i t e c a s t i c o n h a v i n g m o r e c a r b o n t h a n ( a ) a s t h e a m o u n t o f b r o k e n d e n d r i t e s i s l e s t , ( c ) e u t e c t i c c a s t i r o n h a v i n g o n l y t r a n s f o r m e d l e d e b u r i t e , ( 4 ) H y p e r e u t e c t i c w h i t e i r o n . P r e s e n c e o f p l a t e s o f p r i m a r y c e m e n t i t e i n d i c a t e s t h i s .

Properties:

H ard and w ea r r e s i s t an t

The ha rdnes s and b r i t t l ene s s i nc r ea s e s a s t he ca rbon con t en t i nc r ea s e s .

H a rdnes s B r ine l l 375 t o 600 .

Tens i l e s t r eng th 20000 to 70000 p s i .

C ompres s ive s t r eng th 200000 to 250000 .

Page 16: 30852555 Seminar Report on Cast Iron

16

Limitations

B ecaus e o f ex t r eme b r i t t l en e s s and l a ck o f mach inab i l i t y , w h i t e i r ons

f i nd l im i t ed eng inee r ing app l i ca t i ons .

Application

The pa r t s w he re r e s i s t ance t o w ea r i s t he mos t impor t an t r equ i r emen t s uch a s l i ne r s o f c emen t mixe r s , ba l l m i l l s , pumps , w ea r ing p l a t e s . P a r t s o f s and - s l i nge r s , c e r t a in t ype o f d r aw ing d i e s , ex t ru s ion nozz l e s , g r ind ing ba l l s . Mos t pa r t s a r e s and -ca s t and don ’ t r equ i r e much mach in ing , wh ich can be done by g r ind ing . A l a rge t onnage o f w h i t e c a s t i r ons i s u s ed a s a s t a r t i ng ma te r i a l f o r t he p roduc t ion o f ma l l e ab l e ca s t i r on pa r t s .

• B rake shoes

• S ho t b l a s t i ng nozz l e s

• M il l l i ne r s

• C rus he r s

• P ump impe l l e r s and o the r ab r a s ion r e s i s t an t pa r t s .

II. GRAY CAST IRON

I r on -ca rbon a l l oys con t a in ing f l akes o f g r aph i t e embedded in s t e e l ma t r i x , w h ich show a g r ay -b l ack i s h co lou red f r ac tu r e due t o g r aph i t e ’—th e f r ee f oam o f c a rbon , a r e ca l l ed g r ay ca s t i r ons . The s t r eng th o f g r ay i r on depends on t he s t r eng th o f s t e e l ma t r i x and t he s i z e and cha r ac t e r o f g r aph i t e f l akes i n i t . A typ i ca l f e a tu r e o f g r ay i r on i s t ha t g r aph i t e i s i n t he fo rm o f f l akes i n mic ro s t ruc tu r e , F igu re 10 . Th i s mic ro s t ruc tu r e r ep r e s en t s t he i r appea rance on a p l ane s u r f ace , bu t f l akes a r e t h r ee d imens iona l p l a t e s , s ome t imes connec t ed .

Page 17: 30852555 Seminar Report on Cast Iron

17

Figure. – 10 Microstructure of gray cast iron

COMPOSITION OF GRAY IRONS

The g r ay ca s t i r ons a r e hypoeu tec t i c c a s t i r ons , t he t o t a l c a rbon con t en t l i e s be tw een 2 .4% to 3 .8%. The amoun t o f c a rbon does no t exceed 3 .8%, a s more t he ca rbon , more t he eu t ec t i c l i qu id , wh ich y i e ld s more g r aph i t e a s f l akes , r e s u l t i ng i n poo r mechan ic a l p rope r t i e s . C a rbon i s kep t a t l e a s t 2 . 4%. S o t ha t c a s t i r on ha s good f l u id i t y and ca s t ab i l i t y . S i l i con i s kep t be tw een1 .2% to 3 .5%. I t b e ing a g r aph i t i s e r con t ro l s a long w i th ca rbon and the r a t e o f coo l ing , t he na tu r e o f s t e e l ma t r i x . I n s uch i r on , g r aph i t i s a t i on o f a l l t h e cemen t i t e excep t t he eu t ec to id cemen t i t e t akes p l ace . The gene ra l i s ed r ange o f compos i t i on o f g r ay i r ons i s :

Total carbon : 2.4—3.8%

Silicon : 1.2—3.5%

Manganese : 0.5—1.0%

Sulphur : 0.06—0.12%

Phosphorus : 0.1—0.9%

In manufac tu r ing o f g r ay ca s t i r ons , t he t endency o f c emen t i t e t o s epa r a t e i n to g r aph i t e and aus t en i t e o r f e r r i t e i s f avou red by con t ro l l i ng a l l oy compos i t i on and coo l ing r a t e . Thes e a l l oys s o l i d i fy by

Page 18: 30852555 Seminar Report on Cast Iron

18

f i r s t f o rming p r imary aus t en i t e . The g r aph i t i z a t i on p rocess i s added by h igh ca rbon con t en t , h igh t empe ra tu r e and t he p rope r amoun t o f g r aph i t i z ing e l emen t s mos t ly s i l i con .

Figure.11 Iron-graphite equilibrium diagram

With p rope r con t ro l o f above f ac to r s a l l oy w i l l f o l l ow the s t ab l e i r on -g r aph i t e equ i l i b r ium d i ag ram ( Figu re .11 ) f o rming aus t en i t e and g r aph i t e a t t he eu t ec t i c t empe ra tu r e o f 1154° C a t any r a t e any cemen t i t e wh ich i s f o rmed w i l l g r aph i t i z e r ap id ly

D ur ing con t inuous coo l ing , t he r e i s add i t i ona l p r ec ip i t a t i on o f c a rbon becaus e o f t he dec r ea s e i n s o lub i l i t y o f c a rbon in au s t en i t e . t h i s c a rbon i s p r ec ip i t a t e a s g r aph i t e

S t r eng th o f g r ay ca s t i r on depends a lmos t en t i r e ly on t he ma t r i x i n w h ich t he g r aph i t e i s embedded . I f t he compos i t i on and coo l ing r a t e a r e s uch t ha t t he eu t ec to id cemen t i t e a l s o g r aph i t i z e s , t hen t he ma t r i x w i l l b e en t i r e ly F e r r i t i c . I f g r aph i t i z a t i on o f t he eu t ec to id cemen t i t e i s p r even t ed , t he M a t r ix w i l l b e en t i r e ly pea r l i t i c . The g r aph i t e - f e r r i t e mix tu r e i s t he so f t e s t and w eakes t g r ay i r on , t he s t r eng th and ha rdness i nc r ea s e w i th t he i n i nc r ea s e i n ca rb ide , r e ach ing a max imum w i th t he pea r l i t i c g r ay i r on .

Page 19: 30852555 Seminar Report on Cast Iron

19

P ea r l i t i c ma t r i x i s ob t a ined by p rope r con t ro l o f a l l oy compos i t i on r a t e o f coo l ing o r hea t t r e a tmen t . P rope r t i e s o f g r ay i r on depend on t he na tu r e o f ma t r i x , t he s i z e , cha r ac t e r and amoun t o f g r aph i t e f l akes . The c l a s s i f i c a t i on o f c a s t i r ons i s ba s ed on t he min imum t ens i l e s t r eng th pos s e ss ed by a ca s t i r on . i . e . , i s ba s ed on p rope r ty and no t t he compos i t i on .

Figure 12 Microstructure of gray irons. (a) Pearlitic gray iron, (b) Ferreto pearlitic gray iron x 250. (c) Gray phosphoric cast iron (CE, = 4.2%) (C = 3.4%, Si = 2.4%, Mn = 0.45%, S = 0.02%, P = 1.0%. showing ternary phosphide eutectic. Steadite, (d) Characteristic Herring bone structure of pseudo-binary eutectic (of dark Fe3P and ferrite)

P ea r l i t i c g r ay i r on hav ing h igh phos pho rus (0 .3 -0 .5%) u s ed fo r p i s ton r i ngs . H igh w ea r r e s i s t ance i s ob t a ined i n r i ngs due t o t i ne P ea r l i t e and un i fo rmly d i s t r i bu t ed phos ph ide eu t ec t i c w i th f ew f l akes o f g r aph i t e .

B ea r ings ma t ing w i th ha rdened (o r no rma l i s ed ) s t e e l s ha f t a r e o f g r ay i r on w i th a round 85% P ea r l i t e . ( 3 . 2 -3 .6 C , 1 . 6 -2 .4% S i . 0 . 6 -0 .9% Mn) . I f sha f t has no t been hea t t r e a t ed , t hen t he compos i t i on o f t he bea r ing : ( 3 . 2 -3 .8% C , 1 . 7 -2 .6% S i 0 . 4 -0 .7% M n , 0 . 1% T i , 0 . 3 -0 .5% C u) .

Page 20: 30852555 Seminar Report on Cast Iron

20

FORMATION OF FLAKES

N orma l ly commerc i a l g r ay i r on i s e i t he r hypoeu tec t i c o r eu t ec t i c i n na tu r e . N eg lec t i ng t he p r e s ence dend r i t e s o f p r imary aus t en i t e i n hypoeu tec t i c i r on , wh ich impos es cons t r a in t s l a t e r on i n t he r ad i a l g row th o f t he eu t ec t i c c e l l , F igu re .13 i l l u s t r a t e s t he s ucces s ive s t ages i n t he fo rma t ion o f g r aph i t e f l akes f r om the eu t ec t i c l i qu id p r e s en t . O nce g r aph i t e ha s nuc l ea t ed ( i t o ccu r s w i th in t he i n t e rdend r i t i c l i qu id and no t on aus t en i t e dend r i t e a rms ) , so l i d i f i c a t i on t akes p l ace a t nuc l e i F igu re 13a , f r om each o f w h ich i s f o rmed a r ough ly s phe r i ca l l ump ca l l ed t he eu t ec t i c c e l l . I t g row s in an app rox ima te ly r ad i a l manne r , w he re t he r e i t s imu l t aneous g row th o f au s t en i t e and g r aph i t e , t h e l a t t e r be ing i n con t inuous con t ac t w i th t he l i qu id . The f l akes bend , tw i s t and b r anch a s dep i c t ed i n F igu re13d .The re i s a con t inuous b r anched s ke l e ton o f g r aph i t e i n e ach eu t ec t i c c e l l l i k e a c abbage . When the r a t e o f coo l ing i s i nc r ea s ed , t he r e i s more

Figure.13 (a), (b), (C): Stages in the formation of graphite flakes, (d) Growth of flake graphite eutectic cell

U nder coo l ing , t hen t he s ke l e ton i s b r anched more f r equen t ly w i th t he r ap id r ad i a l g row th o f t he ce l l and t hus , f i ne r g r aph i t e f l akes a r e obs e rved . The d i ame te r o f t he eu t ec t i c c e l l d ec r ea s e s a s t he number o f c e l l s pe r un i t vo lume inc r ea s e , and t h i s r es u l t s i n h ighe r t en s i l e s t r eng th , t hough the s oundnes s o f t he ca s t i ng i s a f f ec t ed adve r s e ly . The number o f nuc l e i c an be i nc r ea s ed by i nocu l an t s a s w e l l a s by s u lphu r ( s u lphu r p romo te s cons t i t u t i ona l s upe rcoo l ing , i nc r ea s ing t he f r equency o f b r anch ing i . e . , c e l l d ens i t y a s w e l l a s p roduces coa r s e r f l akes ) . S upe rhea t i ng o r ho ld ing t ime o f mo l t en me ta l r educes t he number o f nuc l e i .

Page 21: 30852555 Seminar Report on Cast Iron

21

HEAT TREATMENT OF GRAY IRON

The s t r e s s - r e l i ev ing i s p robab ly t he mos t f r equen t ly app l i ed hea t t r e a tm en t t o g r ay i r ons . I n t he as - ca s t s t a t e , c a s t i ngs have r e s idua l s t r e s s e s deve loped due t o d i f f e r en t i a l coo l ing and d i f f e r en t i a l con t r ac t i on , e s pec i a l l y i n non -un i fo rm c ro ss - s ec t i oned ca s t i ngs . Thes e s t r e s s e s a r e comp le t e ly r emoved by soak ing a t 650° C , bu t g r a in g row th i s s e r ious a t and above 600° C . Annea l ing o f g r ay i r on i s done t o g r aph i t i s e c a rb ide , and t o homogen i s e t he ca s t i ngs . I t s o f t en s , i nc r ea s e s duc t i l i t y and mach inab i l i t y o f g r ay i r on . C as t i ngs a r e soaked fo r up t o 10 hou r a t 850 -950° C . N orma l i s ing may be done t o i nc r ea s e t he s t r eng th and ha rdnes s o f c a s t i r on by hea t i ng a t 900 -930° C fo r a s oak ing t ime o f 2 . 5 m/min o f max imum th i cknes s o f c a s t i ng and t hen a i r coo l ing . H a rden ing can be done by hea t i ng t o and s oak ing a t 800 -850° C , and t hen quench ing i n w a te r , o i l , ho t s a l t b a th , t hough fo r t h rough - ha rden ing , o i l i s common ly u s ed a s w a te r quench ing may caus e d i s to r t i on and c r ack ing . Temper ing i s done a t 150 t o 650° C . Tab le 1 i l l u s t r a t e s ha rdnes s o f c a s t i r ons ba s ed on t he mic ro s t ruc tu r e . Tab l e 2 i l l u s t r a t e s compos i t i on o f some g r ay i r ons w i th some app l i ca t i ons .

Table 1 Hardness of Gray Iron based on Matrix Microstructure

Nature of matrix

Ferritic Soft Low grade

Pearlitic Iron

Low Alloy

Pearlitic

Austenitic Martensitic Tempered Martensite

Hardness BHN

110-140 140-160 160-220 200-250 140-160 350-450 260-350

Table 2 Composition of Gray Irons with Applications

Applications C Si Mn P S Ni Cr Tensile Strength(MPa)

Break DrumPiston RingCylinder and PistonsHeavy CastingsClutch Casting

3.303.503.25

3.253.20

1.92.92.25

1.252.10

0.650.650.65

0.500.80

0.150.500.15

0.350.17

.08

.06

.10

.10

.05

1.25 0.5

0.32

150

To

350275

Page 22: 30852555 Seminar Report on Cast Iron

22

Properties of Grey Cast iron:

1. Low cost of production: I n f ac t , g r ay i r on , be ing t he l e a s t expens ive ca s t i ng ma te r i a l , i s a lw ays cons ide r ed f i r s t w hen a ca s t me ta l i s be ing chos en fo r a p roduc t , un l e s s mechan ica l and phys i ca l p rope r t i e s o f g r ay i r on a r e i nadequa t e .

2. Low melting point: ( 1150° —1250° C ) o f c a s t i r ons , s eve r a l hund red deg ree s l e s s t han s t ee l , r equ i r e s s imp le fu rnaces l i ke p i t f u rnace , c ruc ib l e f u rnace , cupo la , e t c . w h ich a r e s imp le , i nexpens ive t o f un and ma in t a in . The con t ro l o f impur i t i e s i s no t c r i t i c a l he r e a s i n s t e e l me l t i ng .

3. Good Castability: C as t i r ons have exce l l en t f l u id i t y and t ake good mou ld - impre s s ions ea s i l y . C as t i r ons ; a s compared t o s t e e l s s o l i d i t y ma in ly a t t he cons t an t eu t ec t i c t empe ra tu r e—a c r i t e r i on us ed fo r choos ing a l l oy compos i t i ons hav ing be s t c a s t ab i l i t y . G raph i t e hav ing l ow dens i t y i s vo luminous . I t s l a rge vo lume compens a t e s f o r t he s h r inkage . Gray i r on , t hus , does no t need sh r inkage a l l ow ance a t a l l t o t ake a lmos t exac t c a s t i ng impre s s ions .

4. Good machinability of gray cast iron i s due t o ea s y and d i s con t inuous ch ip fo rma t ion due t o b r i t t l e g r aph i t e f l akes . G raph i t e s e rves a s a s o l i d l ub r i can t dec r ea s ing coe f f i c i en t o f f r i c t i on . I t s mea r s t he cu t t i ng t oo l a l l ow ing f r ee s l i d ing o f ch ip s i nc r ea s ing t hus , t oo l l i f e t oo . (Whi t e c a s t i r ons , due t o h igh ha rdnes s , a r e unmach inab l e ) .

5. Good wear resistance of gray i ron i s due t o g r aph i t e a c t i ng a s so l i d l ub r i can t l aye r , avo id ing t he r eby me ta l t o me ta l d i r ec t con t ac t . O n o the r hand , w h i t e c a s t i r ons a r e w ea r r e s i s t an t due t o ’ t he i r h igh ha rdnes s .

6. High damping capacity i s due t o t he g r aph i t e f l akes , wh ich b r eaks t he con t inu i ty o f t he me ta l l i c ma t r i x , and t hus , v ib r a t i ons a r e no t a l l ow ed to t r an s f e r f r om one s ide o f f l ake t o o the r , i . e . , g r aph i t i c c r acks qu i ck ly dampen the v ib r a t i ons and r e s onance os c i l l a t i ons . G ray i r on s u i t s t hus t he mach ine beds a s compared t o s t e e l s .

7. High compressive strength of g r ay i r on - a lmos t 3 t o 5 t imes o f i t s t en s i l e s t r eng th (110 -350 N /mm2) , and a lmos t equa l t o t ha t o f s t e e l s makes i t s u i t ab l e f o r app l i ca t i ons , w he re componen t s a r e sub j ec t ed t o compres s ion such a s mach ine beds , e t c .

8. High thermal conductivity, and have ab i l i t y t o w i th s t and t he rma l shocks .

Page 23: 30852555 Seminar Report on Cast Iron

23

9. Good resistance to atmospheric corrosion due t o h igh s i l i con and pe rhaps o the r f ac to r s , t h an mi ld s t e e l s .

10. Notch-insensitive: La rge number o f f l akes i n g r ay i r on ac t s a s no t ches i n sp i t e o f t he s e no t ches , i f g r ay i r on ha s t he r equ i r ed s t r eng th , t hen add i t i ona l no t ch o r no t ches s ha l l have mino r , o r no e f f ec t , i . e . , g r ay i r on i s no t ch - in s ens i t i ve ; whe rea s i n s t e e l s . A no t ch ha s qu i t e a damag ing e f f ec t a s i t a c t s a s s t r es s - r a i s e r t o make t he s t e e l even b r i t t l e .

Table 3 Properties of Grey Cast Iron

Some other properties of Grey cast iron ASTM Chemical composition: C=2.7-4%, Mn=0.8%, Si=1.8-3%, S=0.07% max, P=0.2% max Property Value in metric unit Value unit Density 7.06 *10³-7.34 *10³ kg/m³ 441-458 lb/ft³ Modulus of elasticity 124 GPa 18000 ksi Thermal expansion (20 ºC) 9.0*10-6 ºCˉ¹ 5.0*10-6 in/(in* ºF) Specific heat capacity 840 J/(kg*K) 0.2 BTU/(lb*ºF) Thermal conductivity 53.3 W/(m*K) 370 BTU*in/(hr*ft²*ºF) Electric resistivity 1.1*10-7 Ohm*m 1.1*10-5 Ohm*cm Tensile strength 276 MPa 40000 psi Elongation 1 % 1 % Shear strength 400 MPa 58000 psi Compressive yield strength Min. 827 MPa Min. 120000 psi Fatigue strength 138 MPa 20000 psi Hardness (Brinell) 180-302 HB 180-302 HB Wear resistance Low Corrosion resistance Low Weldability Low Machinability Good Castability High

Limitations:

A par t f r om low duc t i l i t y and t oughness , g r ay i r ons a r e s ec t i on s ens i t i ve , i . e . , d epend ing on t he s ec t i on t h i cknes s o f t he ca s t i ng , t he mic ro s t ruc tu r e and t hus , t he p rope r t i e s va ry . Th i ck s ec t i ons have l ow s t r eng th (due t o f e r r i t i c ma t r i x ) and ca r e ha s t o be t aken , when des ign ing t he ca s t i ngs .

Applications: G ray ca s t i r ons have ex t ens ive app l i ca t i ons . The h igh damp ing capac i t y and h igh compres s ive s t r eng th make t hem s u i t ab l e f o r t he beds and

Page 24: 30852555 Seminar Report on Cast Iron

24

bas e s o f pow er fu l mach ines and f r ames . G ood w ea r r e s i s t ance , good mach inab i l i t y and damp ing capac i t y make t hem su i t ab l e f o r app l i ca t i ons l i ke l ocomot ive and i n t e rna l combus t ion eng ine cy l i nde r b locks and heads , p i s tons r i ngs , cy l i nde r s . The ea s e o f c a s t i ng and l ow cos t makes t hem s u i t ab l e f o r coun te r - w e igh t s f o r e l eva to r s , i ndus t r i a l f u rnace doo r s ;

• F ly w hee l s

• G uards and f r ames a round haza rdous mach ine ry

• G ear hous ings

• P ump hous ings

• S team tu rb ine hous ings

• M oto r f r ames

• S ew er cove r s

• Enc lo s u re s f o r e l ec t r i c a l equ ipmen t s .

III. CHILLED CAST IRON

C hi l l ed - i r on ca s t i ngs a r e made by ca s t i ng t he mo l t en me ta l aga in s t ch i l l e r s w h ich r e s u l t i n a s u r f ace o f wh i t e c a s t i r on . C h i l l ed i r on ha s s u r f ace l aye r s o f wh i t e i r on , wh i l e t he s t r uc tu r e o f t he co r e i s t ha t o f g r ay i r on . N orma l ly , ch i l l ed i r on ca s t i ngs a r e ob t a ined by ca s t i ng t he mo l t en a l l oy i n me ta l mou ld . C h i l l i ng t o ce r t a in dep th (12 t o 30 mm) i s becaus e o f t he f a s t coo l ing ( ch i l l i ng ) ob t a ined due t o h igh t he rma l conduc t iv i t y o f me ta l mou ld , The compos i t i on o f mo l t en a l l oy i s s o chos en t ha t no rma l coo l ing r e s u l t s i n g r ay i r on i n t he w ho le sec t i on , bu t f a s t coo l ing o f t he w ho le su r f ace , o r a pa r t o f t he s u r f ace y i e ld w h i t e i r on t he r e . The f a s t coo l ing ob t a ined by emp loy ing me ta l o r g r aph i t e p l a t e s —ca l l ed ch i l l s i n t he s and mou ld . A ch i l l ed ca s t i r on o f f o l l ow ing compos i t i on can ge t ch i l l ed ea s i l y :

C = 2.8—3.6%; Si =0.5 to 0.8%; Mn = 0.4 — 0.6%

Where t he deepe r ch i l l i s needed can be i nc r ea s ed by i nc r ea s ing t he t h i cknes s o f t he ch i l l p l a t e s . I t i s pos s ib l e t o choos e t he compos i t i on o f t he ca s t i r on s o t ha t t he no rma l coo l ing r a t e a t t he s u r f ace i s j u s t f a s t enough to y i e ld wh i t e i r on t he r e , and t he s low er coo l ing r a t e be low th i s s u r f ace p roduces mo t t l ed o r mo t t l ed and g r ay i r on . P r e s ence o f g r aph i t i s e r dec r ea s e s t he ch i l l d ep th and t he ca rb ide fo rming e l emen t s i nc r ea s e t he ch i l l d ep th .

Page 25: 30852555 Seminar Report on Cast Iron

25

Element Chill depth Hardness of chill depth

Other Facts

CSi

Mn as MnS

Dissolved MnP

Ni

Cr

Mo

Cu

Decrease DecreaseDecreaseIncreaseDecrease

Decrease

Increase

Increase

Decrease unto 4% then increase

IncreaseSlightly IncreaseIncreaseSlightly IncreaseIncrease Added unto 5%

Increase

Increase

Increase

Increase

0.1 % P decrease chill depth by 2.5% for constant C and Si

Refines Carbides Chilled structure and core. Helps to pearlitic structure in thick sections.

1-4% Cr as chromium carbide increases hardness and wear resistance 12-35% for corrosion and oxidation resistance at high temperaturesChilled layer has more resistance to spalling, heat checking, Chipping It decrease mottled layer

Table 4 Effect of Elements on Chill Depth, etc. of Chilled Iron

G ene ra l , ch i l l d ep th i s i nc r ea s ed by i nc r ea s ing ca rb ide fo rming e l emen t s and dec r ea s ing ca rbon and s i l i con . C as t i r on me l t i s a l l ow ed s o s o l i d i fy i n mou ld o f shape o f w edge . F igu re . ( 14b ) . The C oo l ing r a t e i s f a s t e r a t mo ld w a l l s , w h ich p r even t s g r aph i t i s a t i on t o y i e ld w h i t e c a s t i r on . The coo l ing r a t e dec r ea s e s a s t he cen t r e o f t he ca s t i ng i s app roached , a l l ow ing g r aph i t i s a t i on t o t ake p l ace t o y i e ld g r ay i r on . F igu re . ( 14a ) i l l u s t r a t e s changes i n ha rdnes s o f t he s t ep -ba r t e s t p i ece w h ich i s due t o changes i n mic ro s t ruc tu r e s . The dep th o f ch i l l d ec r ea s e s and t he ha rdnes s o f t he ch i l l ed zone i nc r ea s e s w i th i nc r ea s ing ca rbon con t en t . The dep th o f ch i l l i s dec r ea s ed w i th i nc r ea s ing s i l i con con t en t . P hos pho rus dec r ea s e s t he dep th o f ch i l l . Wi th ca rbon and s i l i con cons t an t , an i nc r ea s e o f 0 . 1 % P hos pho rus w i l l d ec r ea s e t he dep th o f ch i l l abou t 0 . 1 i n . N icke l r educes t he ch i l l d ep th and r e f ine s t he ca rb ide s t r uc tu r e . C h romium i s us ed i n s ma l l amoun t t o con t ro l ch i l l d ep th . M anganes e dec r ea s e s t he dep th o f ch i l l un t i l t h e f o rma t ion o f M anganes e su lph ide a f t e r t ha t i nc r ea s e s ch i l l d ep th and ha rdnes s . M o lybdenum improves t he r e s i s t ance o f t he ch i l l ed f ace t o s pa l l i ng , p i t t i ng , ch ipp ing and hea t check ing .

Page 26: 30852555 Seminar Report on Cast Iron

26

Figure. 14(a) Effect of elements on chill depth. (b) Step bar test piece for chill depth cast iron having 3-

3.3% C.

Properties: C as t ings have s ome good p rope r t i e s due t o w h i t e i r on

s u r f ace w h ich a r e h igh w ea r and ab ra s ion r e s i s t ance , and s ome good p rope r t i e s due g r ay i r on co re w h ich a r e damp ing capac i t y , l ow no t ch s ens i t i v i t y .

Application:

• Chilled cast irons used as

• Rail-freight car wheel

• Cane-crushing rolls

• Road rollers

• Grinding balls

• Liners

• Stamp shoes and dies

• Sprockets

• Ploughshares many other heavy-duty machinery parts

Page 27: 30852555 Seminar Report on Cast Iron

27

IV. MOTTLED IRON

I n a ch i l l ed ca s t i r on ca s t i ng , su r f ace l aye r s a r e o f w h i t e i r on and t he co r e i s o f g r ay i r on , bu t i n t he

Figure. 15 Microstructure of mottled cast iron

t r an s i t i on r eg ion , t he s t r uc tu r e cons i s t s bo th o f g r ay and w h i t e i r on , i . e . , h a s g r aph i t e f l akes , P ea r l i t e and s econda ry f r ee cemen t i t e , i . e . , m ixed i r on o r c a l l ed mo t t l ed i r on , The i n t e rmed ia t e coo l ing r a t e f o r c e r t a in ca rbon and s i l i con con t en t s cou ld no t g r aph i t i s e t he f r ee s econda ry cemen t i t e , D ue t o i nco r r ec t f ound ry con t ro l f o r c e r t a in compos i t i ons , The non un i fo rm f l akes i nc r ea s e b r i t t l ene s s o f t he ca s t i ngs , apa r t f r om the ex t r a b r i t t l en e s s due t o t he p r e s ence o f s econda ry cemen t i t e . M o t t l ed ca s t i r ons , t hus , don ’ t f i nd app l i ca t i ons . I f c a rbon and s i l i con con t en t o f t he ca s t i r on i s i nc r ea s ed , t hen t he ca s t i ng s ha l l so l i d i fy a s g r ay i r on . The t h i cknes s o f t he mo t t l ed zone i n ch i l l ed i r on can be r educed by i nc r ea s ing bo th t he g r aph i t i s e r and t he ca rb ide fo rming e l emen t s i n t he ca s t i r on . F igu re . 15 i l l u s t r a t e s mic ro s t ruc tu r e o f mo t t l ed ca s t i r on .

Page 28: 30852555 Seminar Report on Cast Iron

28

V. MEAHANITE CAST IRON

The mo l t en ca s t i r on i s t r e a t ed w i th ca l c ium s i l i c ide s a s i nocu l an t s t o p roduce a f i ne g r aph i t i c s t r uc tu r e . The f l akes a r e un i fo rmly d i s t r i bu t ed t o g ive h igh mechan ica l p rope r t i e s (Tens i l e s t r eng th = 25 — 40 K g /mm 2 ) . The compos i t i on i s so chos en t ha t w h i t e f r ac tu r e i s ob t a ined i n t he abs ence o f any t r ea tmen t , i . e . , t h e ca s t i r on i s l ow in s i l i con con t en t , mode ra t e ly l ow in ca rbon con t en t abou t 2 . 5 -3%. C a l c ium s i l i c ide s ac t a s g r aph i t i s e r , s o t ha t r e s u l t i ng ca s t i ng i s g r ay and merchan tab l e . M eahan i t e c a s t i r on f i nds app l i ca t i ons a s a g r ay i r on w i th h igh mechan ica l s t r eng th , such a s f o r heavy mach ine beds and f r ames .

VI. MALLEABLE CAST IRON

C emen t i t e ( i r on ca rb ide ) i s a c tua l l y a me ta s t ab l e phas e . The re i s a t endency fo r c emen t i t e t o decompos e i n to i r on and ca rbon , bu t unde r no rma l cond i t i ons i t t ends t o pe r s i s t i nde f in i t e ly i n i t s o r ig ina l f o rm. U p to t h i s po in t , c emen t i t e ha s been t r ea t ed a s a s t ab l e phas e ; how eve r , t h i s t endency to f o rm f r ee ca rbon i s t he ba s i s f o r t he manu fac tu r e o f

ma l l e ab l e ca s t i r on . The r eac t i on F e 3 C3F e + C i s f avou red by e l eva t ed t empe ra tu r e s , t he ex i s t ence o f so l i d non me ta l l i c impur i t i e s , h ighe r c a rbon con t en t s , and t he p r e s ence o f e l emen t s t ha t a id t he decompos i t i on o f F e 3 C On the i r on—iron ca rb ide equ i l i b r ium d i ag ram fo r t he me ta s t ab l e s y s t em, s how n in F igu re . 16 , a r e s upe r impos ed t he phas e bounda r i e s o f t he s t ab l e i r on -ca rbon (g r aph i t e ) s ys t em a s do t t ed l i ne s . The pu rpos e o f ma l l e ab i l i z a t i on i s t o conve r t a l l t h e comb ined ca rbon in w h i t e i r on i n to i r r egu l a r nodu le s o f t ampe r ca rbon (g r aph i t e ) and f e r r i t e . C ommerc i a l l y , t h i s p roces s i s c a r r i ed ou t i n tw o s t ep s know n a s t he f i r s t and s econd s t ages o f t he annea l .

Wh i t e i r ons s u i t ab l e f o r conve r s ion t o ma l l e ab l e i r on a r e o f t he fo l l ow ing r ange o f compos i t i on :

Components PercentageCarbon 2.00-2.65Silicon 0.90-1.40Manganese 0.25-0.55Phosphorus Less than 0.18Sulphur 0.05

Page 29: 30852555 Seminar Report on Cast Iron

29

Table 5 Composition of Malleable Iron

In t he f i r s t - s t age annea l ing , t he w h i t e - i r on ca s t i ng i s s l ow ly r ehea t ed t o a t empe ra tu r e be tw een 1660 and 1750°F . D ur ing hea t i ng , t he pea r l i t e i s conve r t ed t o au s t en i t e a t t he l ow er c r i t i c a l l i ne . The aus t en i t e t hus fo rmed d i s s o lve s some add i t i ona l c emen t i t e a s hea t ed t o t he annea l ing t empe ra tu r e

F i g u r e . 1 6 T h e s t a b l e i r o n - G r a p h i t e s y s t e m ( d o t t e d l i n e s ) s u p e r i m p o s e d o n t h e m e t a s t a b l e i r o n — i r o n c a r b i d e s y s t e m .

F igu re 16 show tha t t he aus t en i t e o f t he me ta s t ab l e s ys t em can d i s s o lve more ca rbon than can aus t en i t e o f t he s t ab l e s y s t em. The re fo r e , a d r iv ing fo r ce ex i s t s f o r t he ca rbon to p r ec ip i t a t e ou t o f t he aus t en i t e a s f r ee g r aph i t e . Th i s g r aph i t i z a t i on s t a r t s a t t he ma l l eab i l i s i ng t empe ra tu r e . The i n i t i a l p r ec ip i t a t i on o f a g r aph i t e nuc l eus dep l e t e s t he aus t en i t e o f c a rbon , and s o more i s d i s s o lved f rom the ad j acen t c emen t i t e , l e ad ing t o f u r the r c a rbon depos i t i on on t he o r ig ina l g r aph i t e nuc l eus . The g r aph i t e nuc l e i g row a t app rox ima te ly equa l r a t e s i n a l l d i r ec t i ons and u l t ima te ly appea r a s i r r egu l a r nodu le s o r s phe ro id s u s ua l l y ca l l ed t empe r ca rbon (F igu re . 17 ) . Temper ca rbon g r aph i t e i s

Page 30: 30852555 Seminar Report on Cast Iron

30

f o rmed a t t he i n t e r f ace be tw een p r imary ca rb ide and s a tu r a t ed aus t en i t e a t t he f i r s t - s t age annea l ing t empe ra tu r e , w i th g row th a round the nuc l e i by a r eac t i on i nvo lv ing d i f fu s ion and ca rb ide decompos i t i on . N uc l ea t i on and g r aph i t i z a t i on a r e acce l e r a t ed by t he p r e s ence o f s ub mic ro s cop ic pa r t i c l e s t ha t c an be i n t roduced in to t he i r on by t he p rope r me l t i ng p r ac t i c e . H igh s i l i con and ca rbon con t en t s p romo te nuc l ea t i on and g r aph i t i z a t i on , bu t t he s e e l emen t s mus t be r e s t r i c t ed t o ce r t a in max imum l eve l s s i nce t he i r on mus t s o l i d i fy a s w h i t e i r on . The re fo r e , g r aph i t i z ing nuc l e i a r e be s t p rov ided by p rope r annea l ing p r ac t i c e

F i g u r e . 1 7 M a l l e a b l e i r o n , u n e t c h e d . I r r e g u l a r n o d u l e s o f g r a p h i t e c a l l e d t e m p e r c a r b o n , b o x . ( b ) F e r r i t i c m a l l e a b l e i r o n , t e m p e r c a r b o n b l a c k ) i n a f e r r i t e m a t r i x .

The r a t e o f annea l ing depends on chemica l compos i t i on , nuc l ea t i on t endency , and t empe ra tu r e o f annea l ing . The t empe ra tu r e o f f i r s t - s t age annea l ing exe r t s cons ide r ab l e i n f luence on t he number o f t empe r -ca rbon pa r t i c l e s p roduced . I nc r ea s ing annea l ing t empe ra tu r e acce l e r a t e s t he r a t e decompos i t i on o f p r imary ca rb ide and p roduces more g r aph i t e pa r t i c l e s pe r un i t a r ea . H ow eve r , h igh f i r s t - s t age annea l ing t empe ra tu r e s r e s u l t i n exces s ive d i s to r t i on o f c a s t i ngs du r ing annea l ing and t he need fo r - s t r a igh t en ing ope ra t i ons a f t e r hea t t r e a tmen t A nnea l ing t empe ra tu r e s a r e ad ju s t ed t o p rov ide max imum p rac t i c a l annea l ing r a t e s and min imu m d i s to r t i on and a r e t he r e fo r e con t ro l l ed be tw een 1650 and 1750° F . The w h i t e - i r on ca s t i ng i s he ld a t t he f i r s t -s t age annea l ing t empe ra tu r e un t i l a l l mas s ive ca rb ide s have been decompos ed . S ince g r aph i t i z a t i on i s a r e l a t i v e ly s low p roces s , t he ca s t i ng mus t be soaked a t t empe ra tu r e f o r a t l e a s t 20 h , and l a rge l oads may r equ i r e a s much a s 72 h . The s t r uc tu r e a t comp le t i on o f f i r s t - s t age g r aph i t i z a t i on cons i s t s o f t empe r - ca rbon nodu le s d i s t r i bu t ed t h roughou t t he ma t r i x o f s a tu r a t ed aus t en i t e .A f t e r f i r s t - s t age annea l ing , t he ca s t i ngs a r e coo l ed a s r ap id ly as p r ac t i c a l t o abou t 1400° F in p r epa ra t i on fo r t he s econd s t age o f t he annea l ing t r e a tmen t . The f a s t coo l ing cyc l e us ua l l y r equ i r e s 2 t o 6 h , depend ing on t he equ ipmen t u s ed . I n t he s econd - s t age annea l ing , t he ca s t i ngs a r e coo l ed s low ly a t a r a t e o f 5 t o 15° F /h t h rough the c r i t i c a l r ange a t w h ich t he eu t ec to id r eac t i on

Page 31: 30852555 Seminar Report on Cast Iron

31

w ou ld t ake p l ace . Dur ing t he s low coo l ing , t he ca rbon d i s s o lved i n t he aus t en i t e i s conve r t ed t o g r aph i t e on t he ex i s t i ng t empe r - ca rbon pa r t i c l e s , and t he r ema in ing aus t en i t e t r an s fo rms in to f e r r i t e . Once g r aph i t i z a t i on i s comp le t e , no fu r the r s t r uc tu r a l changes t ake p l ace du r ing coo l ing t o r oom t empe ra tu r e , and t he s t r uc tu r e cons i s t s o f t empe r - ca rbon nodu le s i n a f e r r i t e ma t r i x (F igu re . 17 ) . Th i s t ype i s know n a s s t anda rd o r F e r r i t i c ma l l eab l e i r on . The changes i n mic ro s t ruc tu r e du r ing t he ma l l eab i l i s i ng cyc l e a r e s how n s chema t i ca l l y i n F igu re . 18 ..

F i g u r e . 1 8 T h e c h a n g e s i n m i c r o s t r u c t u r e a s a f u n c t i o n o f t h e m a l l e a b i l i s i n g c y c l e r e s u l t i n g i n t e m p e r c a r b o n i n a f e r r i t e m a t r i x .

TYPES OF MALLEABLE CAST IRONS

1. Ferrite malleable iron: The s t r uc tu r e cons i s t s o f nodu le s o f

t empe r ca rbon embedded in f e r r i t e ma t r i x ( due t o s l ow coo l ing i n eu t ec to id t empe ra tu r e r ange ) . As t he s e nodu le s b r eak t he con t inu i ty t o l e s s e r damag ing ex t en t o f t ough f e r r i t e . The ca s t i ngs a r e coo l ed a t s l ow ly a t t he r a t e o f 5 t o 15 ° F /h r . Th rough the c r i t i c a l r ange a t w h ich t he eu t ec to id r eac t i on w ou ld t ake p l ace . Dur ing t he s low coo l ing t he ca rbon d i s s o lved i n t he aus t en i t e i s conve r t ed t o g r aph i t e on t he ex i s t i ng t empe r –ca rbon pa r t i c l e s & r ema in ing aus t en i t e t r an s fo rms in to f e r r i t e . O nce g r aph i t i z a t i on i s comp le t e no fu r the r s t r uc tu r a l changes t akes p l ace du r ing coo l ing t o r oom t empe ra tu r e and t he s t r uc tu r e cons i s t o f t empe r - c a rbon nodu le s i n a f e r r i t e ma t r i x . Th i s know n as f e r r i t e ma l l eab l e C . I .

Page 32: 30852555 Seminar Report on Cast Iron

32

Properties

• I n t he fo rm o f compac t nodu le s , t he t empe r ca rbon does no t b r eak up t he con t inu i ty o f t he t ough F e r r i t i c ma t r i x . Th i s r e s u l t s i n a h ighe r s t r eng th and duc t i l i t y t han exh ib i t ed by g r ay ca s t i r on . The g r aph i t e nodu le s a l s o s e rve t o l ub r i ca t e cu t t i ng t oo l s , w h ich accoun t s f o r t he ve ry h igh mach inab i l i t y o f ma l l eab l e i r on .

• The F e r r i t i c ma l l eab l e i r on show s h ighe r s t r eng th and duc t i l i t y t han g r ay ca s t i r on .

• G raph i t e nodu le s l ub r i ca t e t he cu t t i ng t oo l s l e ad ing t o good mach inab i l i t y o f ma l l eab l e i r on .

Application

F er r i t i c ma l l eab l e i r on ha s been u s ed fo r p ipe f i t t i ngs , expans ion j o in t s , r a i l i ng ca s t i ng on b r idges , n -ho i s t a s s emb l i e s , bea r ing b locks , va lve s , f a rm equ ipmen t , cha in s , au tomob i l e pa r t s , i n gene ra l ha rdw are , r educ ing gea r hous ings , r e a r - ax l e hous ings , hubs , hooks , shack l e s , l e ads , yokes , nu t s , muf f l e r s , f l anges , coup l ings .

2. Pearlitic malleable iron: To ob t a in pea r l i t i c ma t r i x , 1% manganes e i s added to ca s t i r on , o r s econd - s t age g r aph i t i s a t i on i s r ep l aced by a quench , us ua l l y a i r , w h ich coo l s t he ca s t i ngs t h rough the eu t ec to id r ange f a s t enough to r e t a in comb ined ca rbon th roughou t t he ma t r i x . The amoun t o f P ea r l i t e f o rmed depends upon the t empe ra tu r e a t w h ich t he quench s t a r t s and r a t e o f coo l ing . I f t he a i r quench p roduces a f a s t enough coo l ing r a t e t h rough the eu t ec to id r ang , t he ma t r i x w i l l b e comp le t e ly pea r l i t i c .

A fu l l y f e r r i t i c ma l l eab l e i r on may be conve r t ed i n to pea r l i t i c ma l l e ab l e i r on by r ehea t i ng above t he l ow er c r i t i c a l t empe ra tu r e , f o l l ow ed by r ap id coo l ing . A t h ighe r t empe ra tu r e ca rbon w i l l b e d i s s o lved f rom the g r aph i t e nodu le s and s ubs equen t coo l ing r e t a in s t he comb ined ca rbon . The coo l ing f rom t empe ra tu r e o f f i r s t - s t age g r aph i t i s a t i on ( cu rve I I i n F igu re 19 ) . N orma l ly , a f t e r a i r coo l ing , t he pea r l i t i c ma l l e ab l e ca s t i r on ca s t i ngs a r e hea t ed t o h ighe r t empe ra tu r e s ( ca l l ed d r aw ing p roces s ) a t 550 - 650° C o r s o t o s phe ro id i s e t he P ea r l i t e t o improve t he mach inab i l i t y , duc t i l i t y and t oughnes s w i th s l i gh t d rop i n ha rdness and s t r eng th . P ea r l i t i c ma l l eab l e i r on can be ha rdened and

Page 33: 30852555 Seminar Report on Cast Iron

33

t empe red . We ld ing o f pea r l i t i c ma l l eab l e i r on i s r a r e ly u s ed due t o t he fo rma t ion o f b r i t t l e and l ow s t r eng th w h i t e i r on unde r t he w e ld bead .

P r e s ence o f l a rge r amoun t o f s i l i con i n wh i t e c a s t i r on ca s t i ngs he lp s t o g r aph i t i s e i t du r ing ma l l e ab l e hea t t r e a tmen t . B u t a t h i ck ca s t i ng hav ing h ighe r s i l i con may r e s u l t i n g r ay i r on i n t he cen t r e w h i l e c a s t i ng i t . A s t he ca s t i ng shou ld he o f w h i t e i r on up t o t he cen t r e be fo r e ma l l e ab l e hea t t r e a tm en t i s g iven , s i l i con con t en t ha s t o be kep t l ow in t he compos i t i on , w h ich makes g r aph i t i s a t i on du r ing ma l l eab l e t r e a tmen t a l ong and d i f f i cu l t p roces s .

Figure 19 Typical Malleabilising iron

Application:

D ue to h igh s t r eng th and ha rdnes s , pea r l i t i c ma l l eab l e i r on i s u s ed fo r c am s ha f t s , c r ank - sha f t s , ax l e s , d i f f e r en t i a l hous ing i n au tomob i l e i ndus t ry , r o l l s , pumps , nozz l e s , gea r s , l i nks , s p rocke t s , e l eva to r b r acke t s i n conveye r equ ipmen t , hammers , w renches , show s , s w i t ch gea r pa r t s , f i t t i ngs f o r h igh and l ow vo l t age t r an s mis s ion and d i s t r i bu t ion s ys t em, j aw s o f un ive r s a l - j o in t s ha f t s , l i nk s and ro l l e r s o f conveye r cha in s , bus h ings , coup l ings b r ake - s hoes . M a l l eab l e i r ons a r e

Page 34: 30852555 Seminar Report on Cast Iron

34

us ed ch i e f ly f o r t h in w a l l ed ca s t i ngs becaus e t he r e a r e r e s t r i c t i ons i n

s ec t i on t h i cknes s .

Properties:

The ma l l eab l e ca s t i r ons have r ea s onab le duc t i l i t y , h igh s t r eng th , t oughnes s and even a r e bendab le . The ma in r ea s ons o f u s ing ma l l eab l e i r ons a r e l ow cos t and ea s e o f mach in ing w i th above p rope r t i e s . M a l l eab l e i r on ha s l im i t a t i ons o f s ec t i on t h i cknes s , l ow er damp ing capac i t y and impac t r e s i s t ance .

VII. SPHEROIDAL GRAPHITE IRON (S.G. IRON) Th i s ca s t i r on a l s o know n a s nodu la r c a s t i r on . I n an o rd ina ry g r ey ca s t i r on g r aph i t e i s p r e s en t a s ' f l ake s ' w h ich t end t o have sha rp - edged r ims . S ince t he s e f l akes have neg l ig ib l e s t r eng th t hey ac t a s w ide - f aced d i s con t inu i t i e s i n t he s t r uc tu r e w h i l s t t he sha rp - edged r ims i n t roduce r eg ions o f s t r es s - concen t r a t i on . I n S G ca s t i r on t he g r aph i t e f l akes a r e r ep l aced by sphe r i ca l pa r t i c l e s o f g r aph i t e (F igu re . 20 a ) , s o t ha t t he me ta l l i c ma t r i x i s much l e s s b roken up , and t he sha rp s t r e s s r a i s e r s a r e e l im in a t ed .

Figure 20 a) A Spheroidal-graphite cast iron. Here the graphite has been made to precipitate in nodular form by adding a nickel-magnesium alloyb) A compacted graphite cast iron. Unetched to show the rounded edges of the graphite flakes,

The fo rma t ion o f t h i s S phe ro ida l g r aph i t e i s e f f ec t ed by add ing s ma l l amoun t s o f c e r ium o r magnes ium to t he mo l t en i r on j u s t be fo r e ca s t i ng .

S ince bo th o f t he s e e l emen t s have s t r ong ca rb ide - fo rming t endenc i e s , t he s i l i con con t en t o f t he i r on mus t be h igh enough ( a t l e a s t 2 . 5%) in o rde r t o p r even t t he fo rma t ion o f wh i t e i r on (by ch i l l i ng ) i n t h in s ec t i ons . M agnes ium i s t he more w ide ly u s ed , and i s u s ua l l y added ( a s a n i cke l - magnes ium a l l oy ) i n amoun t s su f f i c i en t t o g ive a r e s idua l

Page 35: 30852555 Seminar Report on Cast Iron

35

magnes ium con ten t o f 0 . 1% in t he i r on . SG ca s t i r ons p roduced by t he magnes ium p roces s have t en s i l e s t r eng th s o f up t o 900 N /mm 2 o r even h ighe r i n s ome hea t - t r e a t ed i r ons . The t e rm 4S G i ron ' r e a l l y de s c r ibe s a f ami ly o f c a s t i r ons , w h ich i nc lude s ome a l l oy i r ons , bu t i n a l l c a s e s t r e a tm en t by i nocu l an t s i s emp loyed to p roduce Sphe ro ida l - g r aph i t e

pa r t i c l e s . Some S G i ron p roduced by us ing t he fo l l ow ing s ubs t ances i n s t ead o f c e r ium o r magnes ium: ca l c iu m, ca l c ium ca rb ide , c a l c iu m f luo r ide , l i t h ium, s t r on t ium, ba r ium and a rgon . Thos e i r ons cons i s t i ng o f g r aph i t e nodu le s i n a f e r r i t e ma t r i x w i l l h ave h igh duc t i l i t y and

t oughnes s w h i l s t t hos e cons i s t i ng o f g r aph i t e nodu le s i n a pea r l i t e ma t r i x w i l l b e cha r ac t e r i s ed by h igh s t r eng th . S ome o f t he s e i r ons a r e hea t - t r e a t ed t o g ive even be t t e r mechan ic a l p rope r t i e s . Thus , A mer i can mo to r i ndus t ry ha rdens s ome o f t he i r SG i ron gea r s by t he us e o f ' i n t e r rup t ed aus t empe r ing ' . Th i s i nvo lves au s t en i t i s i ng t he gea r s a t 9000C fo r 3 . 5 h i n a n i t r ogen a tmos phe re fo l l ow ed by quench ing t o 235° C and ho ld ing a t t ha t t empe ra tu r e f o r 2 hou r . S ince t r an s fo rma t ion f rom aus t en i t e occu r s i s o the rma l ly a t 235° C the r e i s l i t t l e d i s to r t i on i n s hape . I t i s c l a imed tha t S G i ron hypo id r i ng and p in ion gea r s a r e comparab l e w i th t hos e o f s t e e l i n t e rms o f f a t i gue and a l s o have a g r ea t e r t o r s iona l s t r eng th .

Tens i l e s t r eng th s o f t he o rde r o f 1600 N /mm2 (w i th an e longa t ion o f . 1%) can be ob t a ined by aus t empe r ing SG i ron a t 2500C , f o l l ow ing an i n i t i a l au s t en i t i s i ng a t 9000C ; wh i l s t h ighe r aus t empe r ing t empe ra tu r e s up t o 4500C w i l l y i e ld ba in i t i c s t r uc tu r e s o f l ow er s t r eng th s ( 900 -1200 N /mm 2 ) bu t e longa t ions up t o 14%. SG i ron c r anks ha f t s c a s t t o nea r f i na l shape a r e l e s s expens ive and some 10% l igh t e r t han equ iva l en t f o rged componen t s . They a r e hea t - t r e a t ed i n a s imi l a r way to t he gea r s men t ioned above .

Properties of S.G. Iron:

S .G . i r ons have h ighe r mechan ica l p rope r t i e s , a lmos t equa l t o c a s t c a rbon s t ee l s ( t hus u s ed fo r p ipe s ) , s uch a s t en s i l e s t r eng th , duc t i l i t y and t oughnes s (Tab le 6 ) , comb ined w i th f avou rab l e p rope r t i e s o f g r ay ca s t i r ons , l i ke good mach inab i l i t y , damp ing capac i t y , h igh w ea r r e s i s t ance , r e a s onab le ca s t ab i l i t y , bu t do no t s u f f e r f r om the de f ec t s o f g r ay i r ons such a s g row th and f i r e c r aze s , w hen u s ed a t e l eva t ed

t empe ra tu r e s , and i s l e s s s ec t i on - s ens i t i ve .

Table 6 Properties of S.G. Iron

Grade Minimum Tensile

strengthMN/m2

Minimum, 0.2% Proof

BHN % Elongations

Matrix HeatTreatment

Page 36: 30852555 Seminar Report on Cast Iron

36

stress MN/m2

350/22 350 220 130 22 Ferrite Annealed420/12 420 270 150 12 Mainly Ferritic Annealed500/7 500 320 275 7 Ferrite+Pearlite Annealed800/7 800 480 320 2 Tempered

martensiteQuenched and Tempered

400/40 400 200 130 40 Austenite Cast

STEPS IN PRODUCTION OF S.G. IRON

1. Desulphurisat ion : S u lphu r he lp s t o f o rm g raph i t e a s f l akes .

Thus , t he r aw ma te r i a l f o r p roduc ing i r on s hou ld have l ow s u lphu r ( l e s s t ha t 0 . 1%) , o r r emove su lphu r f r om i ron du r ing me l t i ng , o r by mix ing i r on w i th a de s u lphu r i s ing agen t s uch as c a l c ium ca rb ide , o r s oda a s h ( s od ium ca rbona t e ) .

2. Nodul is ing : M agnes ium i s added to r emove s u lphu r and oxygen

s t i l l p r e s en t i n t he l i qu id a l l oy and p rov ides 0 . 04% magnes ium, w h ich caus e s g row th o f g r aph i t e t o be S phe ro ida l . Magnes ium t r ea tmen t de s u lphu r i s e s t he i r on t o be low 0 .02% S be fo r e a l l oy ing w i th i t . M agnes ium and s uch e l emen t s have s t r ong a f f i n i t y f o r s u lphu r , and t hus s cavenge s u lphu r f r om the mo l t en a l l oy ’ s an i n i t i a l s t ep o r , p roduc ing S .G . i r on . Thes e add i t i ons a r e expens ive t o i nc r ea s e t he cos t o f S .G . i r on p roduced . Thus , su lphu r S mo l t en a l l oy (o r t he r aw ma te r i a l u s ed ) , be fo r e nodu l i s i ng , s hou ld be kep t l ow .

M agnes ium i s added w hen me l t i s nea r 1500° C bu t magnes ium vapo r i s e s a t 1 150° C . M agnes ium, be ing l i gh t e r f l oa t s on t he t op o f t he ba th , and be ing r eac t i ve bu rn o f f a t t he su r f ace . I n s uch ca s e s magnes ium i s added a s N i -Mg , N i -S i -M g a l l oy o r magnes ium coke t o r educe v io l ence o f r e ac t i on and t o have s av ing i n magnes ium. Magnes ium me ta l c an be added a s me ta l i t s e l f The me thod o f add i t i on i nc lude l ad l e t r an s f e r , cove red l ad l e t e chn ique , po rous p lug s t i r r i ng , and i n -mou ld t e chn ique . A dd i t i on o f magnes ium and f e r ro s i l i con i s done sho r t l y be fo r e ca s t i ng .

3 . Inoculation : As magnes ium i s c a rb ide fo rmer , f e r ro s i l i con i s

added immed ia t e ly as i nocu l an t . R eme l t i ng caus e s r eve r s ion t o f l ake g r aph i t e due t o t he l o s s o f magnes ium. S t i r r i ng o f mo l t en a l l oy a f t e r add i t i on o f nodu l i s i ng e l emen t evo lves a l o t o f ga s , w h ich ge t s d i s s o lved i n l i qu id a l l oy , and fo rms b low -ho le s i n so l i d ca s t i ng . The con t r ac t i on du r ing s o l i d i f i c a t i on o f nodu la r c a s t i r on ca s t i ngs i s much

Page 37: 30852555 Seminar Report on Cast Iron

37

g rea t e r t han o f g r ay i r on ca s t i ngs , w h ich needs ca r e fu l de s ign o f mou lds t o avo id sh r inkage cav i t i e s i n so l i d i f i ed ca s t i ngs .

In s p i t e o f t he s e d r aw backs , nodu la r c a s t i r on i s r ep l ac ing g r ay i r on and s t ee l s i n app l i ca t i ons . A nodu le o f g r aph i t e ( hav ing min imum su r f ace a r ea pe r un i t vo lume) w eakens t he s t e e l ma t r i x t o a l e s s e r ex t en t t han g r ay i r on f l akes . The nodu le s don ’ t a c t ve ry much a s s t r e s s - r a i s e r s . F igu re .19 I l l u s t r a t e s r ange o f c a rbon and s i l i con i n S .G . i r on . O ne o f t he compos i t i on o f S .G . i r on can be :

C = 3 .7%, S i = 2 .5%, Mn = 0 .3% S = 0 .01%, P = 0 .01%, Mg = 0 .04%

Range of carbon and silicon for S.G irons. Figure 21

Helpful Neutral InhibitorsMg,Ce,Ca,Ba,Li,Zr Fe,C,Ni,Si,Mo Al,Ti,Sb,As,Pb,Bi

Table 7 illustrates effect of some elements in the production of S.G. iron.

Page 38: 30852555 Seminar Report on Cast Iron

38

Figure. 22 illustrates various C.E.V. depending on the maximum thickness of the casting in sand moulds and in metal moulds.

The ma t r i x o f a s - ca s t S .G . i r on depends on t he compos i t i on and t he r a t e o f coo l ing . C omple t e F e r r i t i c o r ma t r i x hav ing a max imum o f 10% P ea r l i t e , s t i l l c a l l ed F e r r i t i c ma t r i x , pos s es s e s max imum duc t i l i t y , t oughnes s and mach inab i l i t y , F igu re . 23 (a ) . A l a rge ly pea r l i t i c ma t r i x 23 (b ) , ob t a ined i n a s - ca s t , o r by no rma l i s i ng ( a i r coo l ing f rom 850 to 900° C ) makes S .G . i r on s t r onge r bu t l e s s duc t i l e . O i l o r w a te r quench ing f rom 900° -950° C y i e ld s mar t ens i t e ma t r i x , w h ich i s t empe red t o de s i r ed s t r eng th , ha rdnes s and t oughnes s . Aus t en i t i c duc t i l e ma t r i x , F igu re .21 (d ) (w h ich can be r e t a ined up t o 25° C ) i s ob t a ined by a l l oy ing (15 -36% N i , 1 . 8 -6% C r ) t he ca s t i r on t o have h igh co r ro s ion r e s i s t ance and good c r eep r e s i s t ance a t h igh t empe ra tu r e s . F igu re .21 (c ) i l l u s t r a t e s , bu l l s eye S .G . i r on , w he re f e r r i t e i n immed ia t e v i c in i t y o f g r aph i t e i s p r e s en t i n ma in ly P ea r l i t e ma t r i x .

Figure.23 Microstructures of S.G. irons. (a) Ferrite S.G. iron. x 250, (b) Pearlitic S.G. Iron. x 500, (c) Bull’s eye S.G. Iron. x 100, (d) Austenitic S.G. iron (Ni-Resist 21.06% Ni, 2.20% Cr,0.06% Mg) as cast. X 500 (nital)

Page 39: 30852555 Seminar Report on Cast Iron

39

Application of S.G. Iron:

S .G . i r on i s us ed fo r gea r pumps fo r p roces s ing and t r an s po r t o f s u lphu r i c a c id , pumps and va lve s i n s ea w a te r app l i ca t i ons , componen t s u s ed i n s t e am s e rv i ce s , and i n t he hand l ing o f a lka l i , c aus t i c and ammon ia - ca l s o lu t i ons , and fo r pumping and hand l ing o f s ou r c rude o i l s i n pe t ro l eum indus t ry . O the r w ide app l i ca t i ons a r e -

• C rank - sha f t s

• P i s tons and cy l inde r heads i n au tomob i l e and d i e s e l eng ines

• P res s u re ca s t i ngs l i ke gea r s and ro l l e r s l i de s

• S tee r ing knuck le s

• R ocke r a rms

• P ape r mi l l d rye r r o l l s

• B ear ing

VIII. COMPACTED/VERMICULAR CAST IRON

Th i s i s t he l a t e s t member t o j o in t he f ami ly o f c a s t i r ons i n w h ich g r aph i t e occu r s a s worm- l ike b lun t - edged s tubby f l akes ( r ounded rods , w h ich a r e i n t e r connec t ed w i th in eu t ec t i c c e l l ) ; embedded in s t e e l ma t r i x , F igu re .24 The fo rma t ion o f compac t ed i r on depends on t he chemica l compos i t i on , s ec t i on t h i cknes s . and t he p roces s us ed fo r p roduc t ion . Norma l ly , 10 -20% o f t he s phe ro ida l g r aph i t e may be p r e s en t , w h ich r equ i r e s C .E .V . o f 4 . 00 , and f l ake - g r aph i t e shou ld be avo ided . I n one o f t he p roduc t ion me thods , n i t r ogen (—0.015%) i s added to l i qu id a l l oy i n l ad l e by add ing n i t r i de F e r ro -manganes e

Page 40: 30852555 Seminar Report on Cast Iron

40

Figure.24 Microstructure of compacted vermicular cast iron.

(80% M n, 4% N , r e s t F e ) . Th i s me thod g ive s non -un i fo rmi ty o f s t r uc tu r e and uns oundnes s i n ca s t i ngs . I n ano the r me thod , an a l l oy (4 -5% M g , 8 . 5 -10 .5% T i , 4 -5 .5% C a , 1 -1 .5% A l , 0 . 2 -0 ,5% C e , 48 -52% S i , r e s t F e ) i n amoun t s 0 . 6 -1 .6% i s added , a s add i t i ons a r e made t o p roduce S .G . i r on . S u lphu r con t en t o f i r on shou ld no t be more t han 0 .035%. Th i s me thod i s s ec t i on - s ens i t i ve a s sphe ro id s ge t f o rmed in t h in s ec t i ons . The compac t ed g r aph i t e pe rmi t s s t r eng th . S t i f f ne s s and

duc t i l i t y t ha t exceeds t hos e o f g r ay i r on .

Properties:

C ompac ted ca s t i r on t o r e t a in good damp ing capac i t y , and t he rma l conduc t iv i t y . I t s r e s i s t ance t o c r az ing , t r a ck ing and d i s to r t i on i s s upe r io r t o bo th S .G . i r on and g r ay i r on . As t he sh r inkage du r ing ca s t i ng i s l e s s t han i n S .G . i r on . Th i s c a s t i r on hav ing i n f e r io r mechan ic a l p rope r t i e s hu t s imi l a r p roduc t ion cos t s a s S .G . I r on ha s l im i t ed r ep l acem en t po t en t i a l t o S .G . i r on pa r t s . How eve r , becaus e o f g r ea t e r s t r eng th and t oughnes s , i t c an r ep l ace more expens ive a l l oyed g r ay ca s t i r ons .

Applications:

Compacted cast iron is used for making thick sections.

Page 41: 30852555 Seminar Report on Cast Iron

41

• H ydrau l i c va lve s

• I ngo t mou lds

• C yl inde r heads

• Exhaus t man i fo ld s ,

• B rake d rums

• D is cs and p i s ton r i ngs a r e made f rom th i s i r on a s i t h a s good e l eva t ed t empe ra tu r e p rope r t i e s .

Figure. 25 Types of cast irons (a) Gray iron, (b) White iron, (c) Malleable iron, (d) S.G. iron, compacted graphite iron.

IX. ALLOYED CAST IRONS

O ne o r more o f t he e l emen t s l i ke , N i , C r , C u , S i , M o , V e t c . (> 3%) a r e added in to g r aph i t e f r ee , o r g r aph i t e - bea r ing ca s t i r ons t o improve co r ro s ion , e l eva t ed t empe ra tu r e and w ea r and ab ra s ion r e s i s t ance p rope r t i e s .

1. Ni-hard: I n t he w h i t e i r on compos i t i on , 3 -5% N i and 1 -3% C r a r e added , p roduc ing a mic ro s t ruc tu r e cons i s t i ng o f mas s ive con t inuous ca rb ide s i n t he ma t r i x o f mar t ens i t e and s ome r e t a ined aus t en i t e on coo l ing a f t e r s o l i d i f i c a t i on . M ar t ens i t e i s ob t a ined due t o i nc r ea s ed ha rdenab i l i t y , due t o t he p r es ence o f t he s e e l emen t s , w h ich a long w i th ca rbon low er t he M f t empe ra tu r e t o be low room t empe ra tu r e t o r e t a in

Page 42: 30852555 Seminar Report on Cast Iron

42

s ome aus t en i t e . H a rdness a t t a in ed i s 550 -700 B H N . As n i cke l i s ha l f a s pow er fu l a g r aph i t i s e r a s s i l i con , t he r i s k o f g r aph i t i s a t i on i s p r even t ed by add ing ca rb ide - fo rmer , ch romium. The poo r impac t s t r eng th and f a t i gue r e s i s t ance due t o t he con t inuous ne tw ork o f c a rb ide s can be improved by i nc r ea s ing N i and C r con t en t . The mod i f i ed N i -ha rd hav ing 4 -8% N i and 4 -15% C r , a f t e r hea t t r e a tmen t ha s a mic ro s t ruc tu r e o f d i s con t inuous ca rb ide s i n t he ma t r i x o f t empe red mar t ens i t e and B a in i t e .

Figure . 26 Ni-Hard cas t i ron micrography

Propert ies:

• V ery good u s u ry s t r eng th un t i l 700° C

• Thes e ca s t i r ons have exce l l en t w ea r r e s i s t ance .

2. Ni-Resist: N i (13 -36%) and C r (1 .8 -6%) a r e added to p roduce aus t en i t i c ma t r i x w i th f l ake o r S phe ro ida l g r aph i t e , t o ge t good co r ro s ion r e s i s t ance . The l a t t e r o f f e r s be t t e r mechan ica l p rope r t i e s bu t a r e more expens ive . N i be ing aus t en i t e s t ab i l i s e r makes t he ma t r i x au s t en i t i c , and t hus , t he s e a r e ca l l ed aus t en i t i c c a s t i r ons . The concen t r a t i on o f t he e l emen t s depends on t he na tu r e o f t he co r ro s ion env i ronmen t . C h romium in comb ina t ion w i th n i cke l f o rms an e f f ec t i ve ox ida t i on r e s i s t an t s ca l e . N i - r e s i s t s comb ine good co r ro s ion r e s i s t ance , exce l l en t e ro s ion r es i s t ance t o t he f l ow o f l i qu id s w i th hea t r e s i s t i ng p rope r t i e s . Some N i - r e s i s t s con t a in 5 .5 -8 .0% coppe r . Though , t he s e a l l oys cou ld be us ed up t o 800° C , bu t a f t e r s t ab i l i s a t i on a t 950° C . Thes e a l l oys cou ld be u s ed a t t empe ra tu r e s h ighe r t han 800° C . Ave rage p rope r t i e s a r e :

Page 43: 30852555 Seminar Report on Cast Iron

43

T.S . = 247 — 485 M N &2

B H N = 120 - 250

%E =2-15%

Impor t an t app l i ca t i ons a r e gea r pumps ( fo r p roces s ing and t r an s po r t o f s u lphu r i c a c id ) , pumps and va lve s i n s ea -w a te r app l i ca t i ons , pa r t s u s ed i n s t e am and fo r hand l ing o f a lka l i , c aus t i c , f o r pumping and hand l ing o f s ou r c rude o i l s i n pe t ro l eum indus t ry . F u rnace pa r t s , cy l i nde r l i ne r s , exhaus t man i fo ld s , e t c .

Figure. 27 Ni-Resist cast iron micrography

3. Silal and Nicrosilal: S i l a l i s t he cheapes t ox ida t i on and g row th -r e s i s t an t c a s t i r on , pa r t i cu l a r ly t he l ow ca rbon ca s t i r on r e s i s t s up t o 750° C . Thy compos i t i on on an ave r age i s :

C = 2 .3%; S i= 5 .5 -7 .0%; M n= 0 .5 -0 .8%; S =0 .06%; P= 0 .1 -0 .3%

T.S . = 139—263 N mm - 2

B H N 220 — 255

The mic ro s t ruc tu r e o f S i l a l cons i s t s o f f e r r i t e and f i ne g r aph i t e ‘D ’ t ype f l akes . Thes e ca s t i r ons a r e ve ry b r i t t l e . S i l i con i nc r ea s e ox ida t i on r e s i s t ance by fo rming a r e s i s t i t ox ide f i lm , and w i th more s i l i con , an impe rme ab le s i l i c a t e f i lm . N ic ro s i l a l i s N i -C r added . S i l a l w h ich g ive s au s t en i t i c ma t r i x r educ ing t he b r i t t l ene s s , and can be u s ed a t 650 -900° C . The compos i t i on i s :

C 1 .5 -2 .0%; S i = 4 .5 -5 .0%, M n = 0 .6 -1 .0%; S = 0 .10%; p <0 .1%,

Page 44: 30852555 Seminar Report on Cast Iron

44

N i = 18— 23%; C r = 2 -2 .4%

T.S . 139 -247 N mm - 2

B H N = 150 -200

N ic ro s i l a l o f f e r s exce l l en t co r ro s ion r e s i s t ance . C ommon app l i ca t i ons a r e : I ngo t -mou lds . C y l inde r heads exhaus t man i fo ld s , a lumin iu m me l t i ng c ruc ib l e s , r e to r t s , g l a s s -mou lds , ga s - tu rb ine pa r t s .

Table (8) Comparative qualities of cast irons

Comparative qualities of cast ironsName Nominal

composition [% by

weight]

Form and condition

Yield strength

ksi (0.2% offset)]

Tensile strength

[ksi]

Elongation [% (in

2 inches)]

Hardness [Brinell scale]

Uses

Grey cast iron

(ASTM A48)

C 3.4, Si 1.8, Mn 0.5

Cast — 25 0.5 180 Engine cylinder blocks, flywheels, gears, machine-tool bases

White cast iron

C 3.4, Si 0.7, Mn 0.6

Cast (as cast)

— 25 0 450 Bearing surfaces

Malleable iron

(ASTM A47)

C 2.5, Si 1.0, Mn 0.55

Cast (annealed)

33 52 12 130 Axle bearings, track wheels, automotive crankshafts

Ductile or nodular

iron

C 3.4, P 0.1, Mn 0.4, Ni 1.0, Mg 0.06

Cast 53 70 18 170 Gears, camshafts, crankshafts

Ductile or nodular

iron (ASTM A339)

— cast (quench tempered)

108 135 5 310 —

Ni-hard type 2

C 2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0

Sand-cast — 55 — 550 High strength applications

Ni-resist type 2

C 3.0, Si 2.0, Mn 1.0, Ni 20.0, Cr 2.5

Cast — 27 2 140 Resistance to heat and corrosion

Page 45: 30852555 Seminar Report on Cast Iron

45

HEAT TREATMENT OF CAST IRONS

The common heat t rea tments g iven to cas t i rons are :

I . STRESS-RELIEVING TREATMENT

R es idua l - s t r e s s e s deve lop du r ing so l i d i f i c a t i on and d i f f e r en t i a l coo l ing and t hus caus e d i f f e r en t i a l con t r ac t i on . The rma l g r ad i en t s and r e s idua l -s t r e s s e s a r e more p ronounced in ca s t i ngs w i th non -un i fo rm c ro s s -s ec t i ons . P has e t r an s fo rma t ions accompan ied w i th vo lume changes agg rava t e t he s i t ua t i on fu r the r . C as t i ngs a r e s l ow ly hea t ed t o a t empe ra tu r e 480 -650° C , no rma l ly a t 600° C and then fu rnace coo l ed t o

200° C , f o l l ow ed by a i r coo l ing .

II . ANNEALING

The a im i s t o decompos e ca rb ide s and P ea r l i t e f r om the a s c a s t -s t r uc tu r e . Th i s g ive s g r aph i t e i n F e r r i t i c ma t r i x . Gray ca s t i r on and S .G . i r ons ge t so f t ened i nc r ea s ing duc t i l i t y and mach inab i l i t y . Whi t e c a s t i r on ge t s ma l l e ab l i s ed .

A typ i ca l tw o s t age p roces s pa r t i cu l a r ly f o r S .G . i r on cou ld be u s ed : F i r s t au s t en i t i s i ng a t 900° C and then coo l t o t r an s fo rm to P ea r l i t e t o 675° C and then f e r r i t i z a t i on o f P ea r l i t e i s done a t 760° C . A i r coo l ing may be done un l e s s c a s t i ng i s s us cep t ib l e t o r es idua l - s t r e s s e s .

III . NORMALISING

I t i s hea t i ng t he ca s t i ngs t o t empe ra tu r e s above t he c r i t i c a l r ange , s oak ing a t i t and coo l ing i n s t i l l a i r as i nduced by l a rge f ans . N orma l i s ing g ive s h ighe r ha rdness and s t r eng th by ob t a in ing f i ne pea r l i t i c ma t r i x . Tab l e 9 g ive s no rma l i s i ng t empe ra tu r e r ange fo r s ome ca s t i r ons .

Malleable Iron High Strength Gray Iron

Low strength Gray iron

S.G. Iron

Temperature Range

800-830°C 810-870°C 840-900°C 820-900°C

Page 46: 30852555 Seminar Report on Cast Iron

46

Table 9

IV. HARDENING AND TEMPERING

H arden ing and t empe r ing i nduce h ighe r s t r eng th s , and good w ea r r e s i s t ance . The t ime and t empe ra tu r e au s t en i t i s i ng depends on t he o r ig ina l ma t r i x o f t he ca s t i r on . The t empe ra tu r e i s up t o 50° C above c r i t i c a l t empe ra tu r e r ange , bu t t ime i s impor t an t i n l ow combined -ca rbon - ma t r ix and t hus , soak ing i s con t inued t i l l d es i r ed amoun t o f c a rbon has been d i s s o lved i n au s t en i t e f r om f r ee g r aph i t e . H igh s i l i con ca s t i r ons a r e l e s s r e s pons ive t o quench ing and p rone t o c r ack ing a s s i l i con r educes so lub i l i t y o f c a rbon in au s t en i t e neces s i t a t i ng h igh t empe ra tu r e s o f au s t en i t i s i ng , bu t wh ich can caus e c r ack ing due t o more s eve r e quench ing . Wa te r quench ing o f c a s t i ngs ( comp lex s hapes and d i f f e r en t s ec t i oned ) caus e s quench c r acks . O i l quench i s no rma l ly us ed o r even a i r -quench , i f l a rge amoun t s a l l oy ing e l emen t s a r e p r e s en t . Temper ing improves t en s i l e s t r eng th , r educ ing ha rdnes s , t hough depends on t empe r ing t empe ra tu r e and t ype o f i r on .

V. MARTEMPERING

I t r educes chances o f d i s to r t i on and c r acks . Th in - wa l l ed cy l i nde r l i ne r s f o r d i e s e l eng ines (B HN needed 390 -430 ) a r e mar t empe red . The ca s t i ng i s quenched in a ho t s a l t b a th , o r o i l k ep t s l i gh t l y above M s , t empe ra tu r e ( f r om aus t en i t i s i ng t empe ra tu r e ) t i l l t h e cen t r e o f t he ca s t i ng t oo a t t a in s t he ba th t empe ra tu r e , and t hen a i r coo l ed . Temper ing may be done a s u s ua l .

VI. AUSTEMPERING

C as t ings aus t en i t i s ed a t 850 -950° C , quenched in to , s a l t o r o i l b a th , kep t a t t empe ra tu r e 450 -250° C fo r a round 4 h r s . Low er S .G . i r on i s tw ice a s s t r ong w i th s ame toughnes s . As i t app roaches p rope r t i e s o f s t e e l s , c r ank s ha f t s , c ams ha f t s , g ea r s o f S .G . i r on a r e u s ed i n au s t empe red s t a t e .

VII. SURFACE HARDENING

Page 47: 30852555 Seminar Report on Cast Iron

47

I t i s an economic a l me thod to ge t w ea r r e s i s t ance i n s e l ec t ed a r ea s . Excep t ing w h i t e and h igh ly a l l oyed ca s t i r ons , mos t c a s t i r ons cou ld be s u r f ace ha rdened by i nduc t ion , f l ame , l a s e r e t c . F e r r i t i c ma t r i x i s no t u s ed , neces s i t a t i ng a pea r l i t i c ( even bu l l s eye ) , o r t empe red mar t ens i t i c ma t r i x . F l ame ha rden ing r equ i r e s comb ined ca rbon o f 0 . 5 -0 .7% in ma t r i x . I nduc t ion ha rden ing i s good fo r mas s p roduc t ion . E l ec t ron beam, p l a s ma and l a s e r a r e i nc r ea s ing ly us ed me thods fo r su r f ace ha rden ing . G ene ra l M o to r s have been us ing g r ay i r on d i e s e l eng ine cy l i nde r l i ne r s , w h ich a r e l a s e r ha rdened .

Page 48: 30852555 Seminar Report on Cast Iron

48

References

1. Physical Metallurgy by Vijendra Singh (Standard publications)

2. A Introduction to Physical Metallurgy by Sidney H Avner (Tata McGraw-Hill Publications)

3. Physical Metallurgy for Engineers by Clark Donald

4. Engineering metallurgy Raymond Higgins

5. http://en.wikipedia.org/wiki/Cast_iron