Top Banner
ECE-305: Spring 2016 MOS Band Bending Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 3/29/16 Pierret, Semiconductor Device Fundamentals (SDF) pp. 567-575
14

30 MOS Band bending - nanoHUB.org

Dec 18, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 30 MOS Band bending - nanoHUB.org

Lundstrom ECE 305 F16

ECE-305: Spring 2016

MOS Band Bending

Professor Mark Lundstrom Electrical and Computer Engineering

Purdue University, West Lafayette, IN USA [email protected]

3/29/16

Pierret, Semiconductor Device Fundamentals (SDF) pp. 567-575

Page 2: 30 MOS Band bending - nanoHUB.org

MOS capacitor

2

VG

p-Si

metal or

heavily doped “polysilicon”

SiO2

tox ≈ 1− 2 nm

Lundstrom ECE 305 F16

What happens as we sweep the gate voltage from negative to positive?

Page 3: 30 MOS Band bending - nanoHUB.org

band banding in an MOS device

3 Fig. 16.6, Semiconductor Device Fundamentals, R.F. Pierret Flat band Accumulation Depletion Inversion

′VG = 0 ′VG < 0 0 < ′VG <VT ′VG > ′VT

Page 4: 30 MOS Band bending - nanoHUB.org

MOS capacitor (flatband)

4

′VG = 0

p-Si

ρ = 0 p0 = NA−

No metal-semiconductor workfunction difference

′VG = 0

Page 5: 30 MOS Band bending - nanoHUB.org

MOS capacitor (accumulation)

5

′VG < 0

p-Si

ρ > 0 p0 > NA−

′VG < 0

Lundstrom ECE 305 F16

Page 6: 30 MOS Band bending - nanoHUB.org

MOS capacitor (depletion)

6

′VG > 0

p-Si

ρ ≈ −qNA p0 << NA−

W

0 < ′VG < ′VT

Lundstrom ECE 305 F16

Page 7: 30 MOS Band bending - nanoHUB.org

MOS capacitor (inversion)

7

′VG > ′VT

p-Si

ρ ≈ −qNA p0 << NA−

WT

electrons

′VG > ′VT

Lundstrom ECE 305 F16

Page 8: 30 MOS Band bending - nanoHUB.org

band banding in an MOS device

8 Fig. 16.6, Semiconductor Device Fundamentals, R.F. Pierret Flat band Accumulation Depletion Inversion

′VG = 0 ′VG < 0 0 < ′VG <VT ′VG > ′VT

Page 9: 30 MOS Band bending - nanoHUB.org

repeat for an N-type MOS-C

9

′VG

n-Si

metal or

heavily doped “polysilicon”

SiO2

tox ≈ 1− 2 nm

Lundstrom ECE 305 F16

Flatband Accumulation Depletion Inversion

Page 10: 30 MOS Band bending - nanoHUB.org

hole density in the bulk

10

EC

EV

Ei

EF

Si

qφ x( ) φ = 0

W

x

qφF

φF =kBTqln NA

ni

⎛⎝⎜

⎞⎠⎟

φS

depletion:

pbulk = NA = nieEi bulk( )−EF( ) kBT

pbulk = NA = nieqφF kBT

Lundstrom ECE 305 F16

Page 11: 30 MOS Band bending - nanoHUB.org

electron density at the surface

11

EC

EV

Ei

EF

Si

qφ x( ) φ = 0

W

x

qφF

nsurface = NA →φS = 2φF

φS

depletion:

nsurface = nieEF−Ei x=0( )( ) kBT

nsurface = nieEF−Ei bulk( )+qφS( ) kBT

= nbulkeqφS kBT

Lundstrom ECE 305 F16

Page 12: 30 MOS Band bending - nanoHUB.org

onset of inversion

12

EC

EV

Ei

EF

Si

qφ x( ) φ = 0

W

x

qφF

φS = 2φF

depletion:

φF =kBTqln NA

ni

⎛⎝⎜

⎞⎠⎟

Lundstrom ECE 305 F16

Page 13: 30 MOS Band bending - nanoHUB.org

accumulation, depletion, inversion

13

EC

EV

Ei

EF

Si

qφ x( ) φ = 0

W x

qφF

φF =kBTqln NA

ni

⎛⎝⎜

⎞⎠⎟

φS

φS < 0

0 < φS < 2φF

φS > 2φF

accumulation:

depletion:

inversion:

Lundstrom ECE 305 F16

Page 14: 30 MOS Band bending - nanoHUB.org

band banding in an MOS device

14 Fig. 16.6, Semiconductor Device Fundamentals, R.F. Pierret Flat band Accumulation Depletion Inversion

′VG = 0 ′VG < 0 0 < ′VG <VT ′VG > ′VT