Top Banner
Copyright © 2012 Pearson Education Inc. PowerPoint ®  Lectures for University Physics , Thirteenth Editio n    H ugh D. Y oung an d Roge r A . F r e e dman Lectures by Wayne Anderson Chapter 30 Inductance
66

30 Lecture Outline

Jun 04, 2018

Download

Documents

Gra Vity
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 1/66

Copyright © 2012 Pearson Education Inc.

PowerPoint® Lectures for

Univers i ty Physics , Thir teenth Edit io n

 –  Hugh D. Young and Roger A. Freedman

Lectures by Wayne Anderson

Chapter 30

Inductance

Page 2: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 2/66

Copyright © 2012 Pearson Education Inc.

Energy through space for free??

• A puzzler!

Increasing

current in

time

Creates

increasing flux

INTO ring

Page 3: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 3/66

Copyright © 2012 Pearson Education Inc.

Energy through space for free??

• A puzzler!

Increasing

current in

time

Creates

increasing flux

INTO ring

Induce

counter-clockwise

current and

B field OUT

of ring

Page 4: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 4/66

Copyright © 2012 Pearson Education Inc.

Energy through space for free??

• But… If wire loop has resistance R, current

around it generates energy! Power = i2

/R!!

Increasing

current in

time

Induced currenti around loop of

resistance R

Page 5: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 5/66

Copyright © 2012 Pearson Education Inc.

Energy through space for free??

• Yet…. NO “potential difference”!

Increasing

current in

timeInduced current

i around loop ofresistance R

Page 6: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 6/66

Copyright © 2012 Pearson Education Inc.

Energy through space for free??

• Answer? Energy in B field!!

Increasing

current in

time

Increased fluxinduces EMF in

coil radiating

power

Page 7: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 7/66Copyright © 2012 Pearson Education Inc.

Goals for Chapter 30 - Inductance

• To learn how current in one coil can induce anemf in another unconnected coil

• To relate the induced emf to the rate of changeof the current

• To calculate the energy in a magnetic field

Page 8: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 8/66Copyright © 2012 Pearson Education Inc.

Goals for Chapter 30

• Introduce circuit components calledINDUCTORS

• Analyze circuits containing resistors and

inductors

• Describe electrical oscillations in circuits and

why the oscillations decay

Page 9: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 9/66Copyright © 2012 Pearson Education Inc.

Introduction

• How does a coil induce a

current in a neighboring coil.

• A sensor triggers the traffic

light to change when a car

arrives at an intersection. How

does it do this?

• Why does a coil of metal

 behave very differently from a

straight wire of the same metal?

• We’ll learn how circuits can be

coupled without being

connected together.

Page 10: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 10/66Copyright © 2012 Pearson Education Inc.

Mutual inductance

•  Mutual inductance: A changing current in one coil

induces a current in a neighboring coil.

Increase current

in coil 1

Page 11: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 11/66Copyright © 2012 Pearson Education Inc.

Mutual inductance

•  Mutual inductance: A changing current in one coil

induces a current in a neighboring coil.

Increase current

in coil 1

Increase B flux

Page 12: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 12/66Copyright © 2012 Pearson Education Inc.

Mutual inductance

•  Mutual inductance: A changing current in one coil

induces a current in a neighboring coil.

Increase current

in coil 1

Increase B flux

Induce current in

loop 2

Induce fluxopposing change

Page 13: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 13/66Copyright © 2012 Pearson Education Inc.

Mutual inductance

• EMF induced in single loop 2 = - d (B2 )/dt

 –  Caused by change in flux through second loop of B field

 –  Created by the current in the single loop 1

• So… B2 is proportional to i1

• What does that proportionality constant depend upon? 

Page 14: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 14/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance

•  B2 is proportional to i1 and is affected by: 

 –  # of windings in loop 1

 –  Area of loop 1

 –  Area of loop 2

• Define “M” as mutual inductance of coil 1 on coil 2 

Page 15: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 15/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance

• Define “M” as mutual inductance on coil 2 from coil 1 

•  B2 = M21 I

• But what i f loop 2 also has many turns?  

Increase #turns in

loop 2? =>

increase flux!

Page 16: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 16/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance

•  IF you have N turns in

coil 2,

each with flux B ,

total flux is Nx larger

• Total Flux = N2 B2 

Page 17: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 17/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance

•   B2 proportional to i1

So

 N2

 B

= M21

i1

 M 21 is the “Mutual Inductance”

[Units] = Henrys = Wb/Amp 

Page 18: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 18/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance

• EMF2 = - N2 d [B2 ]/dt 

and

•  N2 B = M21i1 

so

• EMF2 = - M21d [i1]/dt 

• Because geometry is

“shared” M21  = M12 = M 

Page 19: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 19/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance

•  Define Mutual inductance: 

A changing current in one

coil induces a current in a

neighboring coil.

• M = N2 B2/i1 

M = N1 B1/i2 

Page 20: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 20/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance examples

• Long solenoid with length l, area A, wound with N1 turns of wire

 N2 turns surround at its center. What is M?

Page 21: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 21/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance examples

• M = N2 B2/i1

We need B2 from the first solenoid (B1 = m oni1 )

• n = N 1 /l

•   B2 = B1 A

• M = N2 m oi1 A N 1 /l i1

• M = m oA N 1 N2  /l  

•  All geometry!

Page 22: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 22/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance examples

• M = m oA N 1 N2  /l  

 If N 1 = 1000 turns, N 2 = 10 turns, A = 10 cm2

 , l = 0.50 m –   M = 25 x 10-6  Wb/A

 –   M = 25 m  H

Page 23: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 23/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance examples

• Using same system ( M = 25 m  H)

Suppose i2 varies with time as = (2.0 x 106

 A/s)t

• At t = 3.0 ms, what is average flux through each turn of coil 1?

• What is induced EMF in solenoid?

Page 24: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 24/66

Copyright © 2012 Pearson Education Inc.

Mutual inductance examples

• Suppose i2 varies with time as = (2.0 x 106 A/s)t

At t = 3.0 ms, i2 = 6.0 Amps

• M = N1 B1/i2 = 25 m  H

•   B1= Mi2/N1 = 1.5x10-7 Wb

• Induced EMF in solenoid?

 –  EMF1 = -M(di2/dt)

 –  -50Volts

S lf i d

Page 25: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 25/66

Copyright © 2012 Pearson Education Inc.

Self-inductance

• Self-inductance: A varying current in a circuit induces an emf

in that same cir cuit.

• Always opposes the change!

• Define L = N  B/i

Li = N  B 

• I f i changes in time:

• d(L i)/dt = Nd B /dt = -EMF

or

• EMF = -Ldi/dt

I d i i l !

Page 26: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 26/66

Copyright © 2012 Pearson Education Inc.

Inductors as circuit elements!

• Inductors ALWAYS oppose change:

• In DC circuits:

 –  Inductors maintain steady current flow

even if supply varies

• In AC circuits:

 –  Inductors suppress (filter) frequencies

that are too fast.

P t ti l i d t

Page 27: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 27/66

Copyright © 2012 Pearson Education Inc.

Potential across an inductor

The potential across aninductor depends on the

rate of change of the

current through it.

• The self-induced emf

does not  oppose current,

 but opposes a change in

the current.

V ab  = -Ld i/dt

M ti fi ld

Page 28: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 28/66

Copyright © 2012 Pearson Education Inc.

Magnetic field energy

• Inductors store energy in the magnetic field:

U = 1/2 LI 2

 

• Units: L = Henrys (from L = N  B/i )

• N  B/i = B-field Flux/current through inductor that

creates that fluxWb/Amp = Tesla-m2/Amp

• [U] = [Henrys] x [Amps]2

• [U] = [Tesla-m2/Amp] x [Amps]2 = Tm2Amp 

• But F = qv x B gives us definition of Tesla

• [B] = Teslas= Force/Coulomb-m/s = Force/Amp-m

M ti fi ld

Page 29: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 29/66

Copyright © 2012 Pearson Education Inc.

Magnetic field energy

• Inductors store energy in the magnetic field:

U = 1/2 LI 2

 

• [U] = [Tesla-m2/Amp] x [Amps]2 = Tm2Amp 

• [U] = [Newtons/Amp-m] m2Amp 

= Newton-meters = Joules = Energy! 

M ti fi ld

Page 30: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 30/66

Copyright © 2012 Pearson Education Inc.

Magnetic field energy

• The energy stored in an inductor is U = 1/2 LI 2.

• The energy density in a magnetic field (Joule/m3) is

•  u = B2/2m0  (in vacuum)

• u = B2/2m  (in a magnetic material)

• Recall definition of m0 (magnetic permeability)

• B = m0 i/2pr (for the field of a long wire)

•   m0 = Tesla-m/Amp

• [u] = [B2/2m0] = T2/(Tm/Amp) = T-Amp/meter

Page 31: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 31/66

C l l ti lf i d t d lf i d d f

Page 32: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 32/66

Copyright © 2012 Pearson Education Inc.

Calculating self-inductance and self-induced emf

• Toroidal solenoid with area A, average radius r, N turns.

• Assume B is uniform across cross section. What is L?

Calculating self inductance and self induced emf

Page 33: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 33/66

Copyright © 2012 Pearson Education Inc.

Calculating self-inductance and self-induced emf

• Toroidal solenoid with area A, average radius r, N turns.

L = N  B/i

•   B = BA = (mo Ni/2pr)A

• L = mo N2A/2pr (self inductance of toroidal solenoid)

• Why N 2 ??

• If N =200 Turns, A = 5.0 cm2,

r = 0.10 m

L = 40 mH

Potential across an inductor

Page 34: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 34/66

Copyright © 2012 Pearson Education Inc.

Potential across an inductor

• The potential across a

resistor drops in the

direction of current flow

Vab = Va-V b > 0

• The potential across an

inductor depends on the

rate of change of the

current through it.

Potential across an inductor

Page 35: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 35/66

Copyright © 2012 Pearson Education Inc.

Potential across an inductor

• The potential across an

inductor depends on the

rate of change of the

current through it.

• The self-induced emf

does not  oppose current, but opposes a change in

the current.

Potential across an inductor

Page 36: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 36/66

Copyright © 2012 Pearson Education Inc.

Potential across an inductor

• The potential across an

inductor depends on the

rate of change of the

current through it.

• The self-induced emf does

not  oppose current, butopposes a change in the

current.

• The inductor acts like atemporary voltage source

 pointing OPPOSITE to the

change.

Potential across an inductor

Page 37: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 37/66

Copyright © 2012 Pearson Education Inc.

Potential across an inductor

The inductor acts like atemporary voltage source

 pointing OPPOSITE to the

change.

• This implies the inductor

looks like a battery

 pointing the other way!

•  Note Va > V b!

Direction of current flow

from a battery oriented

this way

Potential across an inductor

Page 38: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 38/66

Copyright © 2012 Pearson Education Inc.

Potential across an inductor

• What if current was

decreasing?

• Same result! The inductor

acts like a temporary voltage

source pointing OPPOSITE

to the change.

•  Now inductor pushes current

in original direction

•  Note Va < V b!

The R L circuit

Page 39: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 39/66

Copyright © 2012 Pearson Education Inc.

The R-L  circuit

• An R-L circuit  contains aresistor and inductor and

 possibly an emf source.

• Start with both switches open

• Close Switch S1:

• Current flows

•  Inductor resists flow

•  Actual current less thanmaximum E/R

•   E      –  i(t)R- L(di/dt) = 0

• di/dt = E     /L –  (R/L)i(t)

The R L circuit

Page 40: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 40/66

Copyright © 2012 Pearson Education Inc.

The R-L  circuit

• Close Switch S1:

•   E    

  – 

 i(t)R- L(di/dt) = 0• di/dt = E     /L –  (R/L)i(t)

 Boundary Conditions

•  At t=0, di/dt = E     /L

• i(   ) = E     /R

Solve this 1 st  order diff eq:

• i(t) = E     /R (1-e -(R/L)t  ) 

Current growth in an R-L circuit

Page 41: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 41/66

Copyright © 2012 Pearson Education Inc.

Current growth in an R-L  circuit

• i(t) = E     /R (1-e -(R/L)t  )

• The time constant  for an R-L circuit is  = L/R.

• [   ]= L/R = Henrys /Ohm

• = (Tesla-m2/Amp)/Ohm

•  = ( Newtons/Amp-m) (m2/Amp)/Ohm

• = (Newton-meter) / (Amp2-Ohm)

• = Joule/Watt

• = Joule/(Joule/sec)

• = seconds! 

Current growth in an R-L circuit

Page 42: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 42/66

Copyright © 2012 Pearson Education Inc.

Current growth in an R-L  circuit

• i(t) = E     /R (1-e -(R/L)t  )

• The time constant  for an R-L circuit is  = L/R.

• [   ]= L/R = Henrys /Ohm

• EMF = -Ldi/dt

• [L] = Henrys = Volts /Amps/sec

• Volts/Amps = Ohms (From V = IR)

•  Henrys = Ohm-seconds

• [   ]= L/R = Henrys /Ohm = seconds!   

V ab  = -Ld i/dt

The R-L circuit

Page 43: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 43/66

Copyright © 2012 Pearson Education Inc.

The R-L  circuit

•   E      = i(t)R+ L(di/dt)

• Power in circuit = E     I

•   E     i = i2 R+ Li(di/dt)

• Some power radiated  in resistor

• Some power stored  in inductor

The R-L circuit example

Page 44: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 44/66

Copyright © 2012 Pearson Education Inc.

The R L  circuit example

•  R = 175 W ; i = 36 mA; currentlimited to 4.9 mA in first 58 m  s.

• What is required EMF

• What is required inductor

• What is the time constant?

Page 45: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 45/66

Current decay in an R-L circuit

Page 46: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 46/66

Copyright © 2012 Pearson Education Inc.

Current decay in an R L  circuit

•  Now close the secondswitch!

• Current decrease is opposed by inductor

• EMF is generated to keep

current flowing in the samedirection

• Current doesn’t drop to zeroimmediately

Current decay in an R-L circuit

Page 47: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 47/66

Copyright © 2012 Pearson Education Inc.

Current decay in an R L  circuit

•  Now close the secondswitch!

•   – i(t)R -  L(di/dt) = 0

•  Note di/dt is NEGATIVE!

• i(t) = -L/R(di/dt)

• i(t) = i(0)e -(R/L)t

• i(0) = max current before

second switch is closed

Current decay in an R-L circuit

Page 48: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 48/66

Copyright © 2012 Pearson Education Inc.

Current decay in an R L  circuit

• i(t) = i(0)e -(R/L)t

Current decay in an R-L circuit

Page 49: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 49/66

Copyright © 2012 Pearson Education Inc.

Current decay in an R L  circuit

• Test yourself!

• Signs of Vab and Vbc whenS1 is closed?

• Vab >0; Vbc >0

• Vab >0, Vbc <0• Vab <0, Vbc >0

• Vab <0, Vbc <0

Current decay in an R-L circuit

Page 50: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 50/66

Copyright © 2012 Pearson Education Inc.

Current decay in an R L  circuit

• Test yourself!

• Signs of Vab and Vbc whenS1 is closed?

• Vab >0; Vbc >0

• Vab >0, Vbc <0• Vab <0, Vbc >0

• Vab <0, Vbc <0

• WHY?

• Current increases suddenly, so inductorresists change

Current decay in an R-L circuit

Page 51: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 51/66

Copyright © 2012 Pearson Education Inc.

Current decay in an R L  circuit

• Test yourself!

• Signs of Vab and Vbc whenS1 is closed?

• Vab >0; Vbc >0

• WHY?• Current still flows

around the circuitcounterclockwise

through resistor•  EMF generated in L is

 from c to b

• So Vb> Vc!

Current decay in an R-L  circuit

Page 52: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 52/66

Copyright © 2012 Pearson Education Inc.

Cu e dec y c cu

• Test yourself!

• Signs of Vab and Vbc whenS2 is closed, S1 open?

• Vab >0; Vbc >0

• Vab >0, Vbc <0• Vab <0, Vbc >0

• Vab <0, Vbc <0

Current decay in an R-L  circuit

Page 53: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 53/66

Copyright © 2012 Pearson Education Inc.

y

• Test yourself!

• Signs of Vab and Vbc whenS2 is closed, S1 open?

• Vab >0; Vbc >0

• Vab >0, Vbc <0

• WHY?

• Current still flowscounterclockwise

• di/dt <0; EMF generated in Lis from b to c!So Vb < Vc!

The L-C  circuit

Page 54: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 54/66

Copyright © 2012 Pearson Education Inc.

• An L-C circuit  contains an inductor and a capacitor and is anoscillating  circuit.

• Initially capacitor fully charged; close switch

• Charge flows FROM capacitor, but inductorresists that increased flow.

• Current builds in time.

• At maximum current, charge flow nowdecreases through inductor

• Inductor now resists decreased flow, andkeeps pushing charge in the original direction

i

The L-C  circuit

Page 55: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 55/66

Copyright © 2012 Pearson Education Inc.

• An L-C circuit  contains an inductor and a capacitor and is anoscillating  circuit.

• Initially capacitor fully charged; close switch

• Charge flows FROM capacitor, but inductorresists that increased flow.

• Current builds in time.

• Capacitor slowly discharges

• At maximum current, no charge is left on

capacitor; current now decreases throughinductor

• Inductor now resists decreased flow, andkeeps pushing charge in the original direction

i

The L-C  circuit

Page 56: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 56/66

Copyright © 2012 Pearson Education Inc.

• An L-C circuit  contains an inductor and a capacitor and is anoscillating  circuit.

The L-C  circuit

Page 57: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 57/66

Copyright © 2012 Pearson Education Inc.

• An L-C circuit  contains an inductor and a capacitor and is anoscillating  circuit.

•  Now capacitor fully drained;

• Inductor keeps pushing charge in theoriginal direction

• Capacitor charge builds up on other sideto a maximum value

• While that side charges, “back EMF” from 

capacitor tries to slow charge build-up 

• Inductor keeps pushing to resist that change.

i

The L-C  circuit

Page 58: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 58/66

Copyright © 2012 Pearson Education Inc.

• An L-C circuit  contains an inductor and a capacitor and is anoscillating  circuit.

The L-C  circuit

Page 59: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 59/66

Copyright © 2012 Pearson Education Inc.

• An L-C circuit  contains an inductor and a capacitor and is anoscillating  circuit.

•  Now capacitor charged on opposite side;

• Current reverses direction! System repeatsin the opposite direction

i

The L-C  circuit

Page 60: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 60/66

Copyright © 2012 Pearson Education Inc.

• An L-C circuit  contains an inductor and a capacitor and is anoscillating  circuit.

Electrical oscillations in an L-C  circuit

Page 61: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 61/66

Copyright © 2012 Pearson Education Inc.

• Analyze the current and

charge as a function of time.

• Do a Kirchoff Loop around

the circuit in the direction

shown.

• Remember i can be +/-

• Recall C = q/V

• For this loop:

-Ldi/dt –  qC = 0

Electrical oscillations in an L-C  circuit

Page 62: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 62/66

Copyright © 2012 Pearson Education Inc.

• -Ldi/dt –  qC = 0

• i(t) = dq/dt

•  Ld 2q/dt 2 + qC = 0

• Simple Harmonic Motion!

•  Pendulums

• Springs

• Standard solution!

• q(t)= Qmax cos( w t+f  )

where w = 1/(LC)½

Electrical oscillations in an L-C  circuit

Page 63: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 63/66

Copyright © 2012 Pearson Education Inc.

• q(t)= Qmax cos( w t+f  )

• i(t) = - w Qmax sin( w t+f  )

(based on this ASSUMED

direction!!)

• w = 1/(LC)½ =

angular frequency 

The L-C  circuit

Page 64: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 64/66

Copyright © 2012 Pearson Education Inc.

• An L-C circuit  contains an inductor and a capacitor and is anoscillating  circuit.

Electrical and mechanical oscillations

Page 65: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 65/66

Copyright © 2012 Pearson Education Inc.

• Table 30.1 summarizes the analogies between SHM and L-C  

circuit oscillations.

The L-R-C  series circuit

Page 66: 30 Lecture Outline

8/13/2019 30 Lecture Outline

http://slidepdf.com/reader/full/30-lecture-outline 66/66

• An L-R-C  circuit exhibitsdamped harmonic motion

if the resistance is not toolarge.