Top Banner
3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory of Tensors, MSRI July 18, 2008 Shmuel Friedland Univ. Illinois at Chicago () 3-Tensors Geometry and Representation Theory of Tens / 24
170

3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Jun 28, 2018

Download

Documents

truongngoc
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

Shmuel FriedlandUniv. Illinois at Chicago

Geometry and Representation Theory of Tensors, MSRIJuly 18, 2008

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 1

/ 24

Page 2: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 3: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 4: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 5: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 6: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 7: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 8: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 9: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 10: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 11: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 12: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 13: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 14: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Overview

3-Tensors

Unfolding and (R1,R2,R3) ranks

Rank 3-tensor characterization

Generic rank of 3-tensor

An example

Algebraic geometry & tensor rank

Maximal tensor rank

Max.& gen. rank upper estimates

Results and conjectures

Generic rank of real 3-tensor

(R1,R2,R3)-rank approximation of 3-tensors

Algorithms to find best (R1,R2,R3)-rank approximations

Fast low rank approximations of tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 2

/ 24

Page 15: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 16: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.

3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 17: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 18: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 19: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3

Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 20: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 21: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z

[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 22: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of U

τ =∑m1,m2,m3

i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 23: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 24: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

3-Tensors

F = R,C.3-Tensor Space Fm1×m2×m3 := Fm1 × Fm2 × Fm3

Tensor T = [ti,j,k ]m1,m2,m3i=j=k=1 or simply T = [ti,j,k ].

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z[u1,j , . . . ,umj ,j ] basis of Uj j = 1,2,3ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,basis of Uτ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Rank τ denoted rank τ is the minimal k :τ =

∑ki=1 xi ⊗ yi ⊗ zi

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 3

/ 24

Page 25: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1Ti,1 := [ti,j,k ]m2,m3

j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)ρ1 := dim span(T1,1, . . . ,Tm1,1).Claim 1: ρ1 = R1Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 26: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1Ti,1 := [ti,j,k ]m2,m3

j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)ρ1 := dim span(T1,1, . . . ,Tm1,1).Claim 1: ρ1 = R1Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 27: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)ρ1 := dim span(T1,1, . . . ,Tm1,1).Claim 1: ρ1 = R1Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 28: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1Ti,1 := [ti,j,k ]m2,m3

j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)ρ1 := dim span(T1,1, . . . ,Tm1,1).Claim 1: ρ1 = R1Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 29: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1Ti,1 := [ti,j,k ]m2,m3

j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)

ρ1 := dim span(T1,1, . . . ,Tm1,1).Claim 1: ρ1 = R1Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 30: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1Ti,1 := [ti,j,k ]m2,m3

j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)ρ1 := dim span(T1,1, . . . ,Tm1,1).

Claim 1: ρ1 = R1Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 31: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1Ti,1 := [ti,j,k ]m2,m3

j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)ρ1 := dim span(T1,1, . . . ,Tm1,1).Claim 1: ρ1 = R1

Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 32: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1Ti,1 := [ti,j,k ]m2,m3

j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)ρ1 := dim span(T1,1, . . . ,Tm1,1).Claim 1: ρ1 = R1Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 33: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Vector ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1: dimension of column subspace spanned in direction 1Ti,1 := [ti,j,k ]m2,m3

j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)ρ1 := dim span(T1,1, . . . ,Tm1,1).Claim 1: ρ1 = R1Prf: View each matrix as a row vector in m2m3 coordinatesThen ρ1 is the rank of A1

Similarly, unfolding in directions 2,3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 4

/ 24

Page 34: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 35: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1

Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 36: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 37: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 38: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1

x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 39: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),

rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 40: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0

So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 41: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matrices

Hencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 42: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)

Note:R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 43: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Basic inequality

Claim rank T ≥ R1Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

View U1 ⊗ U2 ⊗ U3 as U1 ⊗ (U2 ⊗ U3) ∼ Fm1×(m2m3)

So T is viewed as A1 ∈ Fm1×(m2m3), R1 = rank A1x⊗ y⊗ z viewed as x⊗ (y⊗ z) ∈ Fm1×(m2m3),rank x⊗ (y⊗ z) = 1 if x⊗ y⊗ z 6= 0So any CANDEC of T induces a decomposition of Aas a sum of rank one matricesHencerank T ≥ max(R1,R2,R3) (WELL KNOWN)Note:

R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 5

/ 24

Page 44: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Rank 3-tensor characterization

OBSERVATION:∃Ui ⊂ Fmi ,dim Ui = Ri , i = 1,2,3 s.t. τ ∈ U1 ⊗ U2 ⊗ U3.

PROP : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

PROOF: Suppose τ =∑p

i=1 xi ⊗ yi ⊗ zi (1)Write zi =

∑m3j=1 zi,jej,3 then each Tk ,3 ∈ span(x1 ⊗ y1, . . . ,xp ⊗ yp).

Vise versa suppose Tk ,3 =∑p

i=1 ak ,ixi ⊗ yi , k = 1, . . . ,m3.Then (1) holds with zi :=

∑m3k=1 ak ,iek ,3.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 6

/ 24

Page 45: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Rank 3-tensor characterization

OBSERVATION:∃Ui ⊂ Fmi ,dim Ui = Ri , i = 1,2,3 s.t. τ ∈ U1 ⊗ U2 ⊗ U3.

PROP : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

PROOF: Suppose τ =∑p

i=1 xi ⊗ yi ⊗ zi (1)Write zi =

∑m3j=1 zi,jej,3 then each Tk ,3 ∈ span(x1 ⊗ y1, . . . ,xp ⊗ yp).

Vise versa suppose Tk ,3 =∑p

i=1 ak ,ixi ⊗ yi , k = 1, . . . ,m3.Then (1) holds with zi :=

∑m3k=1 ak ,iek ,3.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 6

/ 24

Page 46: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Rank 3-tensor characterization

OBSERVATION:∃Ui ⊂ Fmi ,dim Ui = Ri , i = 1,2,3 s.t. τ ∈ U1 ⊗ U2 ⊗ U3.

PROP : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

PROOF: Suppose τ =∑p

i=1 xi ⊗ yi ⊗ zi (1)Write zi =

∑m3j=1 zi,jej,3 then each Tk ,3 ∈ span(x1 ⊗ y1, . . . ,xp ⊗ yp).

Vise versa suppose Tk ,3 =∑p

i=1 ak ,ixi ⊗ yi , k = 1, . . . ,m3.Then (1) holds with zi :=

∑m3k=1 ak ,iek ,3.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 6

/ 24

Page 47: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Rank 3-tensor characterization

OBSERVATION:∃Ui ⊂ Fmi ,dim Ui = Ri , i = 1,2,3 s.t. τ ∈ U1 ⊗ U2 ⊗ U3.

PROP : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

PROOF: Suppose τ =∑p

i=1 xi ⊗ yi ⊗ zi (1)

Write zi =∑m3

j=1 zi,jej,3 then each Tk ,3 ∈ span(x1 ⊗ y1, . . . ,xp ⊗ yp).Vise versa suppose Tk ,3 =

∑pi=1 ak ,ixi ⊗ yi , k = 1, . . . ,m3.

Then (1) holds with zi :=∑m3

k=1 ak ,iek ,3.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 6

/ 24

Page 48: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Rank 3-tensor characterization

OBSERVATION:∃Ui ⊂ Fmi ,dim Ui = Ri , i = 1,2,3 s.t. τ ∈ U1 ⊗ U2 ⊗ U3.

PROP : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

PROOF: Suppose τ =∑p

i=1 xi ⊗ yi ⊗ zi (1)Write zi =

∑m3j=1 zi,jej,3 then each Tk ,3 ∈ span(x1 ⊗ y1, . . . ,xp ⊗ yp).

Vise versa suppose Tk ,3 =∑p

i=1 ak ,ixi ⊗ yi , k = 1, . . . ,m3.Then (1) holds with zi :=

∑m3k=1 ak ,iek ,3.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 6

/ 24

Page 49: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Rank 3-tensor characterization

OBSERVATION:∃Ui ⊂ Fmi ,dim Ui = Ri , i = 1,2,3 s.t. τ ∈ U1 ⊗ U2 ⊗ U3.

PROP : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

PROOF: Suppose τ =∑p

i=1 xi ⊗ yi ⊗ zi (1)Write zi =

∑m3j=1 zi,jej,3 then each Tk ,3 ∈ span(x1 ⊗ y1, . . . ,xp ⊗ yp).

Vise versa suppose Tk ,3 =∑p

i=1 ak ,ixi ⊗ yi , k = 1, . . . ,m3.

Then (1) holds with zi :=∑m3

k=1 ak ,iek ,3.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 6

/ 24

Page 50: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Rank 3-tensor characterization

OBSERVATION:∃Ui ⊂ Fmi ,dim Ui = Ri , i = 1,2,3 s.t. τ ∈ U1 ⊗ U2 ⊗ U3.

PROP : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

PROOF: Suppose τ =∑p

i=1 xi ⊗ yi ⊗ zi (1)Write zi =

∑m3j=1 zi,jej,3 then each Tk ,3 ∈ span(x1 ⊗ y1, . . . ,xp ⊗ yp).

Vise versa suppose Tk ,3 =∑p

i=1 ak ,ixi ⊗ yi , k = 1, . . . ,m3.Then (1) holds with zi :=

∑m3k=1 ak ,iek ,3.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 6

/ 24

Page 51: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:

THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 52: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.

That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 53: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).

RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 54: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).

RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 55: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)

RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 56: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 57: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 58: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .

3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 59: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 60: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 61: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of 3-tensor

Basic results of algebraic geometry imply:THM 1: A randomly chosen tensor T ∈ Cm1×m2×m3 with probability onehas a fixed rank denoted by grank(m1,m2,m3), called the generic rank.That is, there exists an algebraic variety X $ Cm1×m2×m3 such that forany T ∈ Cm1×m2×m3\X, rank T = grank(m1,m2,m3).RMK: Usually there exist a subvariety Y $ X such that for any T ∈ Yrank T > grank(m1,m2,m3).RMK: grank(m1,m2,m3) is easily computable (See later)RMK: For T ∈ Rm1×m2×m3 there is a finite number of open connectedsemi-algebraic sets Z1, . . . ,ZK ,K ≥ 1 with properties

1 Rm1×m2×m3\(∪Kl=1Zl) a real algebraic variety.

2 The rank of each T ∈ Zl is rl for l = 1, . . . ,K .3 r1 = grank(m1,m2,m3)

4 rl ≥ r1 for l = 2, . . . ,K

It is possible maxl rl > r1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 7

/ 24

Page 62: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An example-I

Claim: grank(m,m,2) = m for any m ≥ 2.Proof: τ = T = [ti,j,k ]m,m,2

i,j,k , in standard bases ofU1 = U2 = Cm,U3 = C2 is represented byA := [ti,j,1],B := [ti,j,2] ∈ Cm×m.If we change the bases of U1 = Cm,U2 = Cm using matrices P,Q thenτ represented by A′ = PAQ

>,B′ = PBQ

>

For randomly chosen T , A is invertible and A−1B is diagonable over C,(that defines X). So A−1B =

∑mi=1 λiui,2 ⊗ ui,2, Im =

∑mi=1 ui,2 ⊗ ui,2.

Choose a new basis in [u1,1, . . . ,um,1] in U1 = Cm given by A−1 andleave other bases as is. Then in new bases T represented byT ′ = Ime1,3 + A−1Be2,3 =

∑mi=1 ui,2 ⊗ ui,2 ⊗ e1,3 + λiui,2 ⊗ ui,2 ⊗ e2,3 =∑m

i=1 ui,2 ⊗ ui,3 ⊗ (e1,3 + λie2,3).So rank T ≤ m. Easy R1 = R2 = m for T ′. Hence rank τ = m.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 8

/ 24

Page 63: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An example-I

Claim: grank(m,m,2) = m for any m ≥ 2.

Proof: τ = T = [ti,j,k ]m,m,2i,j,k , in standard bases of

U1 = U2 = Cm,U3 = C2 is represented byA := [ti,j,1],B := [ti,j,2] ∈ Cm×m.If we change the bases of U1 = Cm,U2 = Cm using matrices P,Q thenτ represented by A′ = PAQ

>,B′ = PBQ

>

For randomly chosen T , A is invertible and A−1B is diagonable over C,(that defines X). So A−1B =

∑mi=1 λiui,2 ⊗ ui,2, Im =

∑mi=1 ui,2 ⊗ ui,2.

Choose a new basis in [u1,1, . . . ,um,1] in U1 = Cm given by A−1 andleave other bases as is. Then in new bases T represented byT ′ = Ime1,3 + A−1Be2,3 =

∑mi=1 ui,2 ⊗ ui,2 ⊗ e1,3 + λiui,2 ⊗ ui,2 ⊗ e2,3 =∑m

i=1 ui,2 ⊗ ui,3 ⊗ (e1,3 + λie2,3).So rank T ≤ m. Easy R1 = R2 = m for T ′. Hence rank τ = m.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 8

/ 24

Page 64: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An example-I

Claim: grank(m,m,2) = m for any m ≥ 2.Proof: τ = T = [ti,j,k ]m,m,2

i,j,k , in standard bases ofU1 = U2 = Cm,U3 = C2 is represented byA := [ti,j,1],B := [ti,j,2] ∈ Cm×m.

If we change the bases of U1 = Cm,U2 = Cm using matrices P,Q thenτ represented by A′ = PAQ

>,B′ = PBQ

>

For randomly chosen T , A is invertible and A−1B is diagonable over C,(that defines X). So A−1B =

∑mi=1 λiui,2 ⊗ ui,2, Im =

∑mi=1 ui,2 ⊗ ui,2.

Choose a new basis in [u1,1, . . . ,um,1] in U1 = Cm given by A−1 andleave other bases as is. Then in new bases T represented byT ′ = Ime1,3 + A−1Be2,3 =

∑mi=1 ui,2 ⊗ ui,2 ⊗ e1,3 + λiui,2 ⊗ ui,2 ⊗ e2,3 =∑m

i=1 ui,2 ⊗ ui,3 ⊗ (e1,3 + λie2,3).So rank T ≤ m. Easy R1 = R2 = m for T ′. Hence rank τ = m.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 8

/ 24

Page 65: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An example-I

Claim: grank(m,m,2) = m for any m ≥ 2.Proof: τ = T = [ti,j,k ]m,m,2

i,j,k , in standard bases ofU1 = U2 = Cm,U3 = C2 is represented byA := [ti,j,1],B := [ti,j,2] ∈ Cm×m.If we change the bases of U1 = Cm,U2 = Cm using matrices P,Q thenτ represented by A′ = PAQ

>,B′ = PBQ

>

For randomly chosen T , A is invertible and A−1B is diagonable over C,(that defines X). So A−1B =

∑mi=1 λiui,2 ⊗ ui,2, Im =

∑mi=1 ui,2 ⊗ ui,2.

Choose a new basis in [u1,1, . . . ,um,1] in U1 = Cm given by A−1 andleave other bases as is. Then in new bases T represented byT ′ = Ime1,3 + A−1Be2,3 =

∑mi=1 ui,2 ⊗ ui,2 ⊗ e1,3 + λiui,2 ⊗ ui,2 ⊗ e2,3 =∑m

i=1 ui,2 ⊗ ui,3 ⊗ (e1,3 + λie2,3).So rank T ≤ m. Easy R1 = R2 = m for T ′. Hence rank τ = m.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 8

/ 24

Page 66: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An example-I

Claim: grank(m,m,2) = m for any m ≥ 2.Proof: τ = T = [ti,j,k ]m,m,2

i,j,k , in standard bases ofU1 = U2 = Cm,U3 = C2 is represented byA := [ti,j,1],B := [ti,j,2] ∈ Cm×m.If we change the bases of U1 = Cm,U2 = Cm using matrices P,Q thenτ represented by A′ = PAQ

>,B′ = PBQ

>

For randomly chosen T , A is invertible and A−1B is diagonable over C,(that defines X). So A−1B =

∑mi=1 λiui,2 ⊗ ui,2, Im =

∑mi=1 ui,2 ⊗ ui,2.

Choose a new basis in [u1,1, . . . ,um,1] in U1 = Cm given by A−1 andleave other bases as is. Then in new bases T represented byT ′ = Ime1,3 + A−1Be2,3 =

∑mi=1 ui,2 ⊗ ui,2 ⊗ e1,3 + λiui,2 ⊗ ui,2 ⊗ e2,3 =∑m

i=1 ui,2 ⊗ ui,3 ⊗ (e1,3 + λie2,3).So rank T ≤ m. Easy R1 = R2 = m for T ′. Hence rank τ = m.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 8

/ 24

Page 67: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An example-I

Claim: grank(m,m,2) = m for any m ≥ 2.Proof: τ = T = [ti,j,k ]m,m,2

i,j,k , in standard bases ofU1 = U2 = Cm,U3 = C2 is represented byA := [ti,j,1],B := [ti,j,2] ∈ Cm×m.If we change the bases of U1 = Cm,U2 = Cm using matrices P,Q thenτ represented by A′ = PAQ

>,B′ = PBQ

>

For randomly chosen T , A is invertible and A−1B is diagonable over C,(that defines X). So A−1B =

∑mi=1 λiui,2 ⊗ ui,2, Im =

∑mi=1 ui,2 ⊗ ui,2.

Choose a new basis in [u1,1, . . . ,um,1] in U1 = Cm given by A−1 andleave other bases as is. Then in new bases T represented byT ′ = Ime1,3 + A−1Be2,3 =

∑mi=1 ui,2 ⊗ ui,2 ⊗ e1,3 + λiui,2 ⊗ ui,2 ⊗ e2,3 =∑m

i=1 ui,2 ⊗ ui,3 ⊗ (e1,3 + λie2,3).

So rank T ≤ m. Easy R1 = R2 = m for T ′. Hence rank τ = m.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 8

/ 24

Page 68: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An example-I

Claim: grank(m,m,2) = m for any m ≥ 2.Proof: τ = T = [ti,j,k ]m,m,2

i,j,k , in standard bases ofU1 = U2 = Cm,U3 = C2 is represented byA := [ti,j,1],B := [ti,j,2] ∈ Cm×m.If we change the bases of U1 = Cm,U2 = Cm using matrices P,Q thenτ represented by A′ = PAQ

>,B′ = PBQ

>

For randomly chosen T , A is invertible and A−1B is diagonable over C,(that defines X). So A−1B =

∑mi=1 λiui,2 ⊗ ui,2, Im =

∑mi=1 ui,2 ⊗ ui,2.

Choose a new basis in [u1,1, . . . ,um,1] in U1 = Cm given by A−1 andleave other bases as is. Then in new bases T represented byT ′ = Ime1,3 + A−1Be2,3 =

∑mi=1 ui,2 ⊗ ui,2 ⊗ e1,3 + λiui,2 ⊗ ui,2 ⊗ e2,3 =∑m

i=1 ui,2 ⊗ ui,3 ⊗ (e1,3 + λie2,3).So rank T ≤ m. Easy R1 = R2 = m for T ′. Hence rank τ = m.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 8

/ 24

Page 69: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).

The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 70: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.

The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 71: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 72: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.

Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 73: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertible

If A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 74: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.

If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 75: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.

If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 76: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.

(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 77: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)

For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 78: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

An Example-II

If B is not diagonable then rank τ > m (over C).The variety of all B ∈ Cm×m which are not diagonable is essentially thevariety of all complex matrices with one eigenvalue of multiplicity 2.Hence its codimension is 1.The case R2×2×2

0 6= τ = T = [ti,j,k ] ∈ R2×2×2 T = Ae1 + Be2,A,B ∈ R2×2.Suppose A invertibleIf A−1B has two distinct real eigenvalues, or A−1B = aI2 thenrank τ = 2.If A−1B has two distinct complex eigenvalues or it is not diagonablerank τ = 3.If the subspace spanned by A,B does not contain an invertible matrixthen rank τ = 1,2.(This can happen if either dim span(AR2,BR2) = 1 ordim span(A>R2,B>R2) = 1.)For example τ = u⊗ v⊗ e1 + u⊗w⊗ e2,u 6= 0If v,w linearly independent rank τ = 2

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 9

/ 24

Page 79: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ znote (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at mostI.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.fk ((Cm1 × Cm2 × Cm3)k ) = Xk\ZkdimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , kTerracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 80: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ z

note (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at mostI.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.fk ((Cm1 × Cm2 × Cm3)k ) = Xk\ZkdimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , kTerracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 81: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ znote (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).

fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at mostI.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.fk ((Cm1 × Cm2 × Cm3)k ) = Xk\ZkdimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , kTerracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 82: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ znote (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at most

I.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.fk ((Cm1 × Cm2 × Cm3)k ) = Xk\ZkdimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , kTerracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 83: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ znote (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at mostI.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.

fk ((Cm1 × Cm2 × Cm3)k ) = Xk\ZkdimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , kTerracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 84: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ znote (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at mostI.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.fk ((Cm1 × Cm2 × Cm3)k ) = Xk\Zk

dimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , kTerracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 85: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ znote (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at mostI.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.fk ((Cm1 × Cm2 × Cm3)k ) = Xk\ZkdimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).

THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , kTerracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 86: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ znote (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at mostI.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.fk ((Cm1 × Cm2 × Cm3)k ) = Xk\ZkdimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , k

Terracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 87: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Algebraic geometry & tensor rank

View tensor one rank matrices as the mapf : Cm1 × Cm2 × Cm3 → Cm1×m2×m3 : f (x,y, z) = x⊗ y⊗ znote (ax,by, cz) 7→ (abc)x⊗ y⊗ z⇒ 2-parameters lossfk : (Cm1 × Cm2 × Cm3)k → Cm1×m2×m3

fk (x1,y1, z1, . . . ,xk ,yk , zk ) :=∑k

i=1 f (xi ,yi , zi).fk ((Cm1 × Cm2 × Cm3)k )the irreducible quasi-variety of all 3-tensors of rank k at mostI.e. there exists an irreducible variety Xk , strict subvariety Zk $ Xk , s.t.fk ((Cm1 × Cm2 × Cm3)k ) = Xk\ZkdimC Xk=the maximal rank of the Jacobian matrix of J(fk )(x1, . . . , zk ),which is equal to dimC Xk for any random choice of (x1, . . . , zk ).THM 2:rank J(fk ) = dim span{ei1,1⊗xl,2⊗xl,3,xl,1⊗ei2,2⊗xl,3,xl,1⊗xl,2⊗ei3,3},ij = 1, . . . ,mj , j = 1,2,3, l = 1, . . . , kTerracini’s lemma ∼ 1915

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 10

/ 24

Page 88: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 89: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given in

THM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 90: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )

COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 91: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensors

COR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 92: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.

COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 93: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).

CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3m1+m2+m3−2e and

(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 94: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 95: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).

Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 96: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .

grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 97: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR : r(k ,m1,m2,m3) := dim Xk dimension of the subspace given inTHM 2, for a randomly chosen x1,y1, z1, . . . ,xk ,yk , zk .r(k ,m1,m2,m3) = rank J(fk )(x1,y1, z1, . . . ,xk ,yk , zk )COR : If r(k ,m1,m2,m3) = k(m1 + m2 + m3 − 2) then a generic tensorof rank k can be represented exactly in N(k ,m1,m2,m3) ways as asum of k rank one tensorsCOR : grank(m1,m2,m3) minimal k s.t. dim Xk = m1m2m3.COR : For k = 1, . . . , grank(m1,m2,m3)− 1 dim Xk < dim Xk+1.Furthermore dim Xk = m1m2m3 for k ≥ grank(m1,m2,m3).CLAIM: k? := grank(m1,m2,m3) ≥ d m1m2m3

m1+m2+m3−2e and(1): Xk? = Cm1×m2×m3\Zk?

PROOF Fact: Any quasi-variety in Cm of dimension m is of the formCm\Z for some subvariety Z $ Cm. Hence (1).Each factor x⊗ y⊗ z has m1 + m2 + m3 − 2 parameters. If all theparameters are independent we need at least d m1m2m3

m1+m2+m3−2e to obtainm1m2m3 parameters of Cm1×m2×m3 .grank(m1,m2,m3) ≥ grank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 11

/ 24

Page 98: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Maximal tensor rank

Lemma: fk−1((Cm1 × Cm2 × Cm3)k−1) $ fk ((Cm1 × Cm2 × Cm3)k )for k = 1, . . . ,mrank(m1,m2,m3) andfk ((Cm1 × Cm2 × Cm3)k ) = Cm1×m2×m3 for k ≥ mrank(m1,m2,m3).

mrank(m1,m2,m3) maximal (tensor) rank(of T ∈ Cm1×m2×m3)

grank(m1,m2,m3) ≤ mrank(m1,m2,m3) (usually <)

mrank(m1,m2,m3) ≥ mrank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

The computation of grank(m1,m2,m3) difficult,probably NP-hard

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 12

/ 24

Page 99: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Maximal tensor rank

Lemma: fk−1((Cm1 × Cm2 × Cm3)k−1) $ fk ((Cm1 × Cm2 × Cm3)k )for k = 1, . . . ,mrank(m1,m2,m3) andfk ((Cm1 × Cm2 × Cm3)k ) = Cm1×m2×m3 for k ≥ mrank(m1,m2,m3).

mrank(m1,m2,m3) maximal (tensor) rank(of T ∈ Cm1×m2×m3)

grank(m1,m2,m3) ≤ mrank(m1,m2,m3) (usually <)

mrank(m1,m2,m3) ≥ mrank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

The computation of grank(m1,m2,m3) difficult,probably NP-hard

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 12

/ 24

Page 100: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Maximal tensor rank

Lemma: fk−1((Cm1 × Cm2 × Cm3)k−1) $ fk ((Cm1 × Cm2 × Cm3)k )for k = 1, . . . ,mrank(m1,m2,m3) andfk ((Cm1 × Cm2 × Cm3)k ) = Cm1×m2×m3 for k ≥ mrank(m1,m2,m3).

mrank(m1,m2,m3) maximal (tensor) rank(of T ∈ Cm1×m2×m3)

grank(m1,m2,m3) ≤ mrank(m1,m2,m3) (usually <)

mrank(m1,m2,m3) ≥ mrank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

The computation of grank(m1,m2,m3) difficult,probably NP-hard

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 12

/ 24

Page 101: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Maximal tensor rank

Lemma: fk−1((Cm1 × Cm2 × Cm3)k−1) $ fk ((Cm1 × Cm2 × Cm3)k )for k = 1, . . . ,mrank(m1,m2,m3) andfk ((Cm1 × Cm2 × Cm3)k ) = Cm1×m2×m3 for k ≥ mrank(m1,m2,m3).

mrank(m1,m2,m3) maximal (tensor) rank(of T ∈ Cm1×m2×m3)

grank(m1,m2,m3) ≤ mrank(m1,m2,m3) (usually <)

mrank(m1,m2,m3) ≥ mrank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

The computation of grank(m1,m2,m3) difficult,probably NP-hard

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 12

/ 24

Page 102: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Maximal tensor rank

Lemma: fk−1((Cm1 × Cm2 × Cm3)k−1) $ fk ((Cm1 × Cm2 × Cm3)k )for k = 1, . . . ,mrank(m1,m2,m3) andfk ((Cm1 × Cm2 × Cm3)k ) = Cm1×m2×m3 for k ≥ mrank(m1,m2,m3).

mrank(m1,m2,m3) maximal (tensor) rank(of T ∈ Cm1×m2×m3)

grank(m1,m2,m3) ≤ mrank(m1,m2,m3) (usually <)

mrank(m1,m2,m3) ≥ mrank(l1, l2, l3) for m1 ≥ l1,m2 ≥ l2,m3 ≥ l3

The computation of grank(m1,m2,m3) difficult,probably NP-hard

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 12

/ 24

Page 103: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Exact generic rank values

THM 3: Any subspace L ⊂ Cm×n dim L = (m − k)(n − k) + 1has A s.t. 1 ≤ rank A ≤ k .

PROOF: Vm,n,k ⊂ Cm×n, variety of matrices of at most rank khas dimension k(m + n − k)⇒ PVm,n,k ∩ PL 6= ∅ �

Generic L of dim L = (m − k)(n − k) + 1 has exactly

γk ,m,n :=∏n−k−1

j=0( m+j

m−k)(m−k+j

m−k )=

∏n−k−1j=0

(m+j)! j!(k+j)! (m−k+j)! ,

matrices of rank k which span L.THM:For 2 ≤ l ≤ m ≤ n:

1 grank(l ,m,n) = n if (l − 1)(m − 1) + 1 ≤ n ≤ lm2 grank(l ,m,n) = mn if lm < n

PROOF For n ≥ (l − 1)(m − 1) + 1 span(T1,3, . . . ,Tn,3) = min(n,mn)and is spanned by rank one matricesCOR: (l − 1)(m − 1) + 1 = grank(l ,m, (l − 1)(m − 1) + 1) ≥grank(l ,m, (l − 1)(m − 1)) ≥ d lm(l−1)(m−1)

l+m+(l−1)(m−1)+2e = (l − 1)(m − 1) + 1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 13

/ 24

Page 104: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Exact generic rank values

THM 3: Any subspace L ⊂ Cm×n dim L = (m − k)(n − k) + 1has A s.t. 1 ≤ rank A ≤ k .PROOF: Vm,n,k ⊂ Cm×n, variety of matrices of at most rank khas dimension k(m + n − k)⇒ PVm,n,k ∩ PL 6= ∅ �

Generic L of dim L = (m − k)(n − k) + 1 has exactly

γk ,m,n :=∏n−k−1

j=0( m+j

m−k)(m−k+j

m−k )=

∏n−k−1j=0

(m+j)! j!(k+j)! (m−k+j)! ,

matrices of rank k which span L.THM:For 2 ≤ l ≤ m ≤ n:

1 grank(l ,m,n) = n if (l − 1)(m − 1) + 1 ≤ n ≤ lm2 grank(l ,m,n) = mn if lm < n

PROOF For n ≥ (l − 1)(m − 1) + 1 span(T1,3, . . . ,Tn,3) = min(n,mn)and is spanned by rank one matricesCOR: (l − 1)(m − 1) + 1 = grank(l ,m, (l − 1)(m − 1) + 1) ≥grank(l ,m, (l − 1)(m − 1)) ≥ d lm(l−1)(m−1)

l+m+(l−1)(m−1)+2e = (l − 1)(m − 1) + 1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 13

/ 24

Page 105: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Exact generic rank values

THM 3: Any subspace L ⊂ Cm×n dim L = (m − k)(n − k) + 1has A s.t. 1 ≤ rank A ≤ k .PROOF: Vm,n,k ⊂ Cm×n, variety of matrices of at most rank khas dimension k(m + n − k)⇒ PVm,n,k ∩ PL 6= ∅ �

Generic L of dim L = (m − k)(n − k) + 1 has exactly

γk ,m,n :=∏n−k−1

j=0( m+j

m−k)(m−k+j

m−k )=

∏n−k−1j=0

(m+j)! j!(k+j)! (m−k+j)! ,

matrices of rank k which span L.

THM:For 2 ≤ l ≤ m ≤ n:1 grank(l ,m,n) = n if (l − 1)(m − 1) + 1 ≤ n ≤ lm2 grank(l ,m,n) = mn if lm < n

PROOF For n ≥ (l − 1)(m − 1) + 1 span(T1,3, . . . ,Tn,3) = min(n,mn)and is spanned by rank one matricesCOR: (l − 1)(m − 1) + 1 = grank(l ,m, (l − 1)(m − 1) + 1) ≥grank(l ,m, (l − 1)(m − 1)) ≥ d lm(l−1)(m−1)

l+m+(l−1)(m−1)+2e = (l − 1)(m − 1) + 1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 13

/ 24

Page 106: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Exact generic rank values

THM 3: Any subspace L ⊂ Cm×n dim L = (m − k)(n − k) + 1has A s.t. 1 ≤ rank A ≤ k .PROOF: Vm,n,k ⊂ Cm×n, variety of matrices of at most rank khas dimension k(m + n − k)⇒ PVm,n,k ∩ PL 6= ∅ �

Generic L of dim L = (m − k)(n − k) + 1 has exactly

γk ,m,n :=∏n−k−1

j=0( m+j

m−k)(m−k+j

m−k )=

∏n−k−1j=0

(m+j)! j!(k+j)! (m−k+j)! ,

matrices of rank k which span L.THM:For 2 ≤ l ≤ m ≤ n:

1 grank(l ,m,n) = n if (l − 1)(m − 1) + 1 ≤ n ≤ lm2 grank(l ,m,n) = mn if lm < n

PROOF For n ≥ (l − 1)(m − 1) + 1 span(T1,3, . . . ,Tn,3) = min(n,mn)and is spanned by rank one matricesCOR: (l − 1)(m − 1) + 1 = grank(l ,m, (l − 1)(m − 1) + 1) ≥grank(l ,m, (l − 1)(m − 1)) ≥ d lm(l−1)(m−1)

l+m+(l−1)(m−1)+2e = (l − 1)(m − 1) + 1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 13

/ 24

Page 107: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Exact generic rank values

THM 3: Any subspace L ⊂ Cm×n dim L = (m − k)(n − k) + 1has A s.t. 1 ≤ rank A ≤ k .PROOF: Vm,n,k ⊂ Cm×n, variety of matrices of at most rank khas dimension k(m + n − k)⇒ PVm,n,k ∩ PL 6= ∅ �

Generic L of dim L = (m − k)(n − k) + 1 has exactly

γk ,m,n :=∏n−k−1

j=0( m+j

m−k)(m−k+j

m−k )=

∏n−k−1j=0

(m+j)! j!(k+j)! (m−k+j)! ,

matrices of rank k which span L.THM:For 2 ≤ l ≤ m ≤ n:

1 grank(l ,m,n) = n if (l − 1)(m − 1) + 1 ≤ n ≤ lm

2 grank(l ,m,n) = mn if lm < nPROOF For n ≥ (l − 1)(m − 1) + 1 span(T1,3, . . . ,Tn,3) = min(n,mn)and is spanned by rank one matricesCOR: (l − 1)(m − 1) + 1 = grank(l ,m, (l − 1)(m − 1) + 1) ≥grank(l ,m, (l − 1)(m − 1)) ≥ d lm(l−1)(m−1)

l+m+(l−1)(m−1)+2e = (l − 1)(m − 1) + 1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 13

/ 24

Page 108: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Exact generic rank values

THM 3: Any subspace L ⊂ Cm×n dim L = (m − k)(n − k) + 1has A s.t. 1 ≤ rank A ≤ k .PROOF: Vm,n,k ⊂ Cm×n, variety of matrices of at most rank khas dimension k(m + n − k)⇒ PVm,n,k ∩ PL 6= ∅ �

Generic L of dim L = (m − k)(n − k) + 1 has exactly

γk ,m,n :=∏n−k−1

j=0( m+j

m−k)(m−k+j

m−k )=

∏n−k−1j=0

(m+j)! j!(k+j)! (m−k+j)! ,

matrices of rank k which span L.THM:For 2 ≤ l ≤ m ≤ n:

1 grank(l ,m,n) = n if (l − 1)(m − 1) + 1 ≤ n ≤ lm2 grank(l ,m,n) = mn if lm < n

PROOF For n ≥ (l − 1)(m − 1) + 1 span(T1,3, . . . ,Tn,3) = min(n,mn)and is spanned by rank one matricesCOR: (l − 1)(m − 1) + 1 = grank(l ,m, (l − 1)(m − 1) + 1) ≥grank(l ,m, (l − 1)(m − 1)) ≥ d lm(l−1)(m−1)

l+m+(l−1)(m−1)+2e = (l − 1)(m − 1) + 1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 13

/ 24

Page 109: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Exact generic rank values

THM 3: Any subspace L ⊂ Cm×n dim L = (m − k)(n − k) + 1has A s.t. 1 ≤ rank A ≤ k .PROOF: Vm,n,k ⊂ Cm×n, variety of matrices of at most rank khas dimension k(m + n − k)⇒ PVm,n,k ∩ PL 6= ∅ �

Generic L of dim L = (m − k)(n − k) + 1 has exactly

γk ,m,n :=∏n−k−1

j=0( m+j

m−k)(m−k+j

m−k )=

∏n−k−1j=0

(m+j)! j!(k+j)! (m−k+j)! ,

matrices of rank k which span L.THM:For 2 ≤ l ≤ m ≤ n:

1 grank(l ,m,n) = n if (l − 1)(m − 1) + 1 ≤ n ≤ lm2 grank(l ,m,n) = mn if lm < n

PROOF For n ≥ (l − 1)(m − 1) + 1 span(T1,3, . . . ,Tn,3) = min(n,mn)and is spanned by rank one matrices

COR: (l − 1)(m − 1) + 1 = grank(l ,m, (l − 1)(m − 1) + 1) ≥grank(l ,m, (l − 1)(m − 1)) ≥ d lm(l−1)(m−1)

l+m+(l−1)(m−1)+2e = (l − 1)(m − 1) + 1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 13

/ 24

Page 110: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Exact generic rank values

THM 3: Any subspace L ⊂ Cm×n dim L = (m − k)(n − k) + 1has A s.t. 1 ≤ rank A ≤ k .PROOF: Vm,n,k ⊂ Cm×n, variety of matrices of at most rank khas dimension k(m + n − k)⇒ PVm,n,k ∩ PL 6= ∅ �

Generic L of dim L = (m − k)(n − k) + 1 has exactly

γk ,m,n :=∏n−k−1

j=0( m+j

m−k)(m−k+j

m−k )=

∏n−k−1j=0

(m+j)! j!(k+j)! (m−k+j)! ,

matrices of rank k which span L.THM:For 2 ≤ l ≤ m ≤ n:

1 grank(l ,m,n) = n if (l − 1)(m − 1) + 1 ≤ n ≤ lm2 grank(l ,m,n) = mn if lm < n

PROOF For n ≥ (l − 1)(m − 1) + 1 span(T1,3, . . . ,Tn,3) = min(n,mn)and is spanned by rank one matricesCOR: (l − 1)(m − 1) + 1 = grank(l ,m, (l − 1)(m − 1) + 1) ≥grank(l ,m, (l − 1)(m − 1)) ≥ d lm(l−1)(m−1)

l+m+(l−1)(m−1)+2e = (l − 1)(m − 1) + 1

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 13

/ 24

Page 111: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,n

THM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integerCON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 112: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1

CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integerCON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 113: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1e

Con 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integerCON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 114: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),

(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integerCON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 115: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),

(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integerCON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 116: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,

(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integerCON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 117: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4

(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lpl+2p+2q−2 is integer

CON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 118: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

CON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 119: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integerCON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)

CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 120: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank conjecture

COR: grank(2,m,n) = max(m,n) for 2 ≤ m,nTHM 4: Strassen For p ≥ 2grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1CON 1: For 3 ≤ l ≤ m ≤ n < (l − 1)(m − 1)not satisfying conditions THM 4grank(l ,m,n) = d lmn

l+m+n−1eCon 1 true for(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integerCON 2: For 3 ≤ l ≤ m ≤ n ≤ (l − 1)(m − 1)not satisfying conditions THM 4 and k < d lmn

l+m+n−1edim fk ((Cl × Cm × Cn)k ) = k(l + m + n − 2)CON 2 holds in above cases CON 1 holds

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 14

/ 24

Page 121: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Numerical verification of Conjectures 1 &2

We verified numerically1 the above two conjectures form1 ≤ m2 ≤ m3 ≤ 10, by finding random k ∈ [2, d m1m2m3

m1+m2+m3−2e] vectorsxl,i ∈ (Z ∩ [−99,99])mi , i = 1,2,3, l = 1, . . . , k such that the rank of theJacobian matrix at the corresponding rank k tensor

T =k∑

l=1

xl,1 ⊗ xl,2 ⊗ xl,3 (0.1)

was min(k(m1 + m2 + m3 − 2),m1m2m3).

We call (m1,m2,m3) regular if (m1,m2,m3) satisfies Conjecture 1 andb m1m2m3

m1+m2+m3−2c satisfies Conjecture 2.

1I thank M. Tamura for programming the software to compute grank(m1, m2, m3)and r(k , m1, m2, m3).

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 15

/ 24

Page 122: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Numerical verification of Conjectures 1 &2

We verified numerically1 the above two conjectures form1 ≤ m2 ≤ m3 ≤ 10, by finding random k ∈ [2, d m1m2m3

m1+m2+m3−2e] vectorsxl,i ∈ (Z ∩ [−99,99])mi , i = 1,2,3, l = 1, . . . , k such that the rank of theJacobian matrix at the corresponding rank k tensor

T =k∑

l=1

xl,1 ⊗ xl,2 ⊗ xl,3 (0.1)

was min(k(m1 + m2 + m3 − 2),m1m2m3).We call (m1,m2,m3) regular if (m1,m2,m3) satisfies Conjecture 1 andb m1m2m3

m1+m2+m3−2c satisfies Conjecture 2.

1I thank M. Tamura for programming the software to compute grank(m1, m2, m3)and r(k , m1, m2, m3).

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 15

/ 24

Page 123: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR:for n > m ≥ 2: m + 1 ≤ mrank(2,m,m) ≤ 2m − 1and mrank(2,m,n) ≤ 2m Eq. if n ≥ 2m

for m,n ≥ 3:1 grank(n,m,m) ≤ bn

2cm + (n − 2bn2c)(m − b

√n − 1c)

if m ≥ 2b√

n − 1c2 grank(n,m,m) ≤ n(m − b

√n − 1c)

if m < 2b√

n − 1c < 2(m − 1),3 mrank(n,m,m) ≤∑b

√n−1c

i=1 (2i − 1)(m − i + 1) + (m − b√

n − 1c2)(m − b√

n − 1c)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 16

/ 24

Page 124: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR:for n > m ≥ 2: m + 1 ≤ mrank(2,m,m) ≤ 2m − 1and mrank(2,m,n) ≤ 2m Eq. if n ≥ 2mfor m,n ≥ 3:

1 grank(n,m,m) ≤ bn2cm + (n − 2bn

2c)(m − b√

n − 1c)if m ≥ 2b

√n − 1c

2 grank(n,m,m) ≤ n(m − b√

n − 1c)if m < 2b

√n − 1c < 2(m − 1),

3 mrank(n,m,m) ≤∑b√

n−1ci=1 (2i − 1)(m − i + 1) + (m − b

√n − 1c2)(m − b

√n − 1c)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 16

/ 24

Page 125: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR:for n > m ≥ 2: m + 1 ≤ mrank(2,m,m) ≤ 2m − 1and mrank(2,m,n) ≤ 2m Eq. if n ≥ 2mfor m,n ≥ 3:

1 grank(n,m,m) ≤ bn2cm + (n − 2bn

2c)(m − b√

n − 1c)if m ≥ 2b

√n − 1c

2 grank(n,m,m) ≤ n(m − b√

n − 1c)if m < 2b

√n − 1c < 2(m − 1),

3 mrank(n,m,m) ≤∑b√

n−1ci=1 (2i − 1)(m − i + 1) + (m − b

√n − 1c2)(m − b

√n − 1c)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 16

/ 24

Page 126: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

COR:for n > m ≥ 2: m + 1 ≤ mrank(2,m,m) ≤ 2m − 1and mrank(2,m,n) ≤ 2m Eq. if n ≥ 2mfor m,n ≥ 3:

1 grank(n,m,m) ≤ bn2cm + (n − 2bn

2c)(m − b√

n − 1c)if m ≥ 2b

√n − 1c

2 grank(n,m,m) ≤ n(m − b√

n − 1c)if m < 2b

√n − 1c < 2(m − 1),

3 mrank(n,m,m) ≤∑b√

n−1ci=1 (2i − 1)(m − i + 1) + (m − b

√n − 1c2)(m − b

√n − 1c)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 16

/ 24

Page 127: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Proofs

(2,m,n) - Kronecker canonical form for (T1,1,T2,1) ∈ (Cm×n)2

For (1) and (2) assume that T1,1, . . . ,Tn,1 ∈ Cm×m generic

(2): l = b√

n − 1c. So n ≥ l2 + 1. THM 3 yields span(T1,1, . . . ,Tn,1) hasγm−l,m,m ≥ n linearly independent matrices of rank m − l .(1): spanT1,1, . . . ,Tn,1 ⊂ Cm×m

span(T2i−1,1,T2i,2) is contained in subspace spanned by m rank onematrices

(3): Assume the worst case:T1,1,T2,1, . . . ,Tn,1 lin. ind. Choose new base S1, . . . ,Sn inspan(T1,1, . . . ,Tn,1) s.t. rank S1 ≥ rank S2 ≥ . . . ≥ rank Sn andspan(S1, . . . ,Si) = span(T1,1, . . . ,Ti,1) for i = 1, . . . ,n.rank S1 = m, rank S2 = rank S3 = rank S4 = 2,rank S5 = . . . = rank S9 = 3, rank S10 = 4 . . ..

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 17

/ 24

Page 128: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Proofs

(2,m,n) - Kronecker canonical form for (T1,1,T2,1) ∈ (Cm×n)2

For (1) and (2) assume that T1,1, . . . ,Tn,1 ∈ Cm×m generic

(2): l = b√

n − 1c. So n ≥ l2 + 1. THM 3 yields span(T1,1, . . . ,Tn,1) hasγm−l,m,m ≥ n linearly independent matrices of rank m − l .(1): spanT1,1, . . . ,Tn,1 ⊂ Cm×m

span(T2i−1,1,T2i,2) is contained in subspace spanned by m rank onematrices

(3): Assume the worst case:T1,1,T2,1, . . . ,Tn,1 lin. ind. Choose new base S1, . . . ,Sn inspan(T1,1, . . . ,Tn,1) s.t. rank S1 ≥ rank S2 ≥ . . . ≥ rank Sn andspan(S1, . . . ,Si) = span(T1,1, . . . ,Ti,1) for i = 1, . . . ,n.rank S1 = m, rank S2 = rank S3 = rank S4 = 2,rank S5 = . . . = rank S9 = 3, rank S10 = 4 . . ..

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 17

/ 24

Page 129: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Proofs

(2,m,n) - Kronecker canonical form for (T1,1,T2,1) ∈ (Cm×n)2

For (1) and (2) assume that T1,1, . . . ,Tn,1 ∈ Cm×m generic

(2): l = b√

n − 1c. So n ≥ l2 + 1. THM 3 yields span(T1,1, . . . ,Tn,1) hasγm−l,m,m ≥ n linearly independent matrices of rank m − l .

(1): spanT1,1, . . . ,Tn,1 ⊂ Cm×m

span(T2i−1,1,T2i,2) is contained in subspace spanned by m rank onematrices

(3): Assume the worst case:T1,1,T2,1, . . . ,Tn,1 lin. ind. Choose new base S1, . . . ,Sn inspan(T1,1, . . . ,Tn,1) s.t. rank S1 ≥ rank S2 ≥ . . . ≥ rank Sn andspan(S1, . . . ,Si) = span(T1,1, . . . ,Ti,1) for i = 1, . . . ,n.rank S1 = m, rank S2 = rank S3 = rank S4 = 2,rank S5 = . . . = rank S9 = 3, rank S10 = 4 . . ..

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 17

/ 24

Page 130: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Proofs

(2,m,n) - Kronecker canonical form for (T1,1,T2,1) ∈ (Cm×n)2

For (1) and (2) assume that T1,1, . . . ,Tn,1 ∈ Cm×m generic

(2): l = b√

n − 1c. So n ≥ l2 + 1. THM 3 yields span(T1,1, . . . ,Tn,1) hasγm−l,m,m ≥ n linearly independent matrices of rank m − l .(1): spanT1,1, . . . ,Tn,1 ⊂ Cm×m

span(T2i−1,1,T2i,2) is contained in subspace spanned by m rank onematrices

(3): Assume the worst case:T1,1,T2,1, . . . ,Tn,1 lin. ind. Choose new base S1, . . . ,Sn inspan(T1,1, . . . ,Tn,1) s.t. rank S1 ≥ rank S2 ≥ . . . ≥ rank Sn andspan(S1, . . . ,Si) = span(T1,1, . . . ,Ti,1) for i = 1, . . . ,n.rank S1 = m, rank S2 = rank S3 = rank S4 = 2,rank S5 = . . . = rank S9 = 3, rank S10 = 4 . . ..

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 17

/ 24

Page 131: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Proofs

(2,m,n) - Kronecker canonical form for (T1,1,T2,1) ∈ (Cm×n)2

For (1) and (2) assume that T1,1, . . . ,Tn,1 ∈ Cm×m generic

(2): l = b√

n − 1c. So n ≥ l2 + 1. THM 3 yields span(T1,1, . . . ,Tn,1) hasγm−l,m,m ≥ n linearly independent matrices of rank m − l .(1): spanT1,1, . . . ,Tn,1 ⊂ Cm×m

span(T2i−1,1,T2i,2) is contained in subspace spanned by m rank onematrices

(3): Assume the worst case:T1,1,T2,1, . . . ,Tn,1 lin. ind. Choose new base S1, . . . ,Sn inspan(T1,1, . . . ,Tn,1) s.t. rank S1 ≥ rank S2 ≥ . . . ≥ rank Sn andspan(S1, . . . ,Si) = span(T1,1, . . . ,Ti,1) for i = 1, . . . ,n.rank S1 = m, rank S2 = rank S3 = rank S4 = 2,rank S5 = . . . = rank S9 = 3, rank S10 = 4 . . ..

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 17

/ 24

Page 132: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Theoretical bounds & explanations

4 ≤ grank(3,3,3) ≤ 5 = 1 · 3 + 2,mrank(3,3,3) ≤ 7 = 3 + 2 + 2

grank(3,3,4) = 5 (n = (m − 1)2), mrank(3,3,4) ≤ 9 = 3 + 2 + 2 + 2grank(3,3,5) = 5 (n = (m − 1)2 + 1),mrank(3,3,5) ≤ 10 = 3 + 2 + 2 + 2 + 16 ≤ grank(3,4,4) ≤ 7 = 4 + 3,mrank(3,4,4) ≤ 10 = 4 + 3 + 37 ≤ grank(4,4,4) ≤ 8 = 2 · 4,mrank(4,4,4) ≤ 13 = 4 + 3 + 3 + 38 ≤ grank(4,4,5) ≤ 10 = 2 · 4 + 2, mrank(4,4,5) ≤ 15 = 13 + 27 ≤ grank(3,5,5) ≤ 9 = 1 · 5 + 4, mrank(3,5,5) ≤ 13 = 5 + 4 + 49 ≤ grank(4,5,5) ≤ 10 = 2 · 5, mrank(4,5,5) ≤ 17 = 5 + 4 + 4 + 410 ≤ grank(5,5,5) ≤ 13 = 2·5+3,mrank(5,5,5) ≤ 20 = 5+4+4+4+3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 18

/ 24

Page 133: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Theoretical bounds & explanations

4 ≤ grank(3,3,3) ≤ 5 = 1 · 3 + 2,mrank(3,3,3) ≤ 7 = 3 + 2 + 2grank(3,3,4) = 5 (n = (m − 1)2), mrank(3,3,4) ≤ 9 = 3 + 2 + 2 + 2

grank(3,3,5) = 5 (n = (m − 1)2 + 1),mrank(3,3,5) ≤ 10 = 3 + 2 + 2 + 2 + 16 ≤ grank(3,4,4) ≤ 7 = 4 + 3,mrank(3,4,4) ≤ 10 = 4 + 3 + 37 ≤ grank(4,4,4) ≤ 8 = 2 · 4,mrank(4,4,4) ≤ 13 = 4 + 3 + 3 + 38 ≤ grank(4,4,5) ≤ 10 = 2 · 4 + 2, mrank(4,4,5) ≤ 15 = 13 + 27 ≤ grank(3,5,5) ≤ 9 = 1 · 5 + 4, mrank(3,5,5) ≤ 13 = 5 + 4 + 49 ≤ grank(4,5,5) ≤ 10 = 2 · 5, mrank(4,5,5) ≤ 17 = 5 + 4 + 4 + 410 ≤ grank(5,5,5) ≤ 13 = 2·5+3,mrank(5,5,5) ≤ 20 = 5+4+4+4+3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 18

/ 24

Page 134: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Theoretical bounds & explanations

4 ≤ grank(3,3,3) ≤ 5 = 1 · 3 + 2,mrank(3,3,3) ≤ 7 = 3 + 2 + 2grank(3,3,4) = 5 (n = (m − 1)2), mrank(3,3,4) ≤ 9 = 3 + 2 + 2 + 2grank(3,3,5) = 5 (n = (m − 1)2 + 1),mrank(3,3,5) ≤ 10 = 3 + 2 + 2 + 2 + 1

6 ≤ grank(3,4,4) ≤ 7 = 4 + 3,mrank(3,4,4) ≤ 10 = 4 + 3 + 37 ≤ grank(4,4,4) ≤ 8 = 2 · 4,mrank(4,4,4) ≤ 13 = 4 + 3 + 3 + 38 ≤ grank(4,4,5) ≤ 10 = 2 · 4 + 2, mrank(4,4,5) ≤ 15 = 13 + 27 ≤ grank(3,5,5) ≤ 9 = 1 · 5 + 4, mrank(3,5,5) ≤ 13 = 5 + 4 + 49 ≤ grank(4,5,5) ≤ 10 = 2 · 5, mrank(4,5,5) ≤ 17 = 5 + 4 + 4 + 410 ≤ grank(5,5,5) ≤ 13 = 2·5+3,mrank(5,5,5) ≤ 20 = 5+4+4+4+3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 18

/ 24

Page 135: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Theoretical bounds & explanations

4 ≤ grank(3,3,3) ≤ 5 = 1 · 3 + 2,mrank(3,3,3) ≤ 7 = 3 + 2 + 2grank(3,3,4) = 5 (n = (m − 1)2), mrank(3,3,4) ≤ 9 = 3 + 2 + 2 + 2grank(3,3,5) = 5 (n = (m − 1)2 + 1),mrank(3,3,5) ≤ 10 = 3 + 2 + 2 + 2 + 16 ≤ grank(3,4,4) ≤ 7 = 4 + 3,mrank(3,4,4) ≤ 10 = 4 + 3 + 37 ≤ grank(4,4,4) ≤ 8 = 2 · 4,mrank(4,4,4) ≤ 13 = 4 + 3 + 3 + 38 ≤ grank(4,4,5) ≤ 10 = 2 · 4 + 2, mrank(4,4,5) ≤ 15 = 13 + 2

7 ≤ grank(3,5,5) ≤ 9 = 1 · 5 + 4, mrank(3,5,5) ≤ 13 = 5 + 4 + 49 ≤ grank(4,5,5) ≤ 10 = 2 · 5, mrank(4,5,5) ≤ 17 = 5 + 4 + 4 + 410 ≤ grank(5,5,5) ≤ 13 = 2·5+3,mrank(5,5,5) ≤ 20 = 5+4+4+4+3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 18

/ 24

Page 136: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Theoretical bounds & explanations

4 ≤ grank(3,3,3) ≤ 5 = 1 · 3 + 2,mrank(3,3,3) ≤ 7 = 3 + 2 + 2grank(3,3,4) = 5 (n = (m − 1)2), mrank(3,3,4) ≤ 9 = 3 + 2 + 2 + 2grank(3,3,5) = 5 (n = (m − 1)2 + 1),mrank(3,3,5) ≤ 10 = 3 + 2 + 2 + 2 + 16 ≤ grank(3,4,4) ≤ 7 = 4 + 3,mrank(3,4,4) ≤ 10 = 4 + 3 + 37 ≤ grank(4,4,4) ≤ 8 = 2 · 4,mrank(4,4,4) ≤ 13 = 4 + 3 + 3 + 38 ≤ grank(4,4,5) ≤ 10 = 2 · 4 + 2, mrank(4,4,5) ≤ 15 = 13 + 27 ≤ grank(3,5,5) ≤ 9 = 1 · 5 + 4, mrank(3,5,5) ≤ 13 = 5 + 4 + 49 ≤ grank(4,5,5) ≤ 10 = 2 · 5, mrank(4,5,5) ≤ 17 = 5 + 4 + 4 + 410 ≤ grank(5,5,5) ≤ 13 = 2·5+3,mrank(5,5,5) ≤ 20 = 5+4+4+4+3

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 18

/ 24

Page 137: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of real 3-tensors

DEF: Semi-algebraic set in Rn is given by finite number of polynomialinequalities of the type gi(x) > 0 and/or hj(x) ≥ 0.

THM: A polynomial map F : Rn → Rm maps a semi-algebraic set tosemi-algebraic set

THM: Rl×m×n decomposes to finite number of open connectedsemi-algebraic sets C1, . . . ,CM :

Rl×m×n\ ∪Mi=1 Ci is a strict algebraic subvariety of Rl×m×n.

Each T ∈ Ci has rank ri for i = 1, . . . ,M.min(r1, . . . , rM) = grank(l ,m,n).mgrank(l ,m,n) := max(r1, . . . , rM) is the minimal k ∈ N such that theclosure of fk ((Rl × Rm × Rn)k ) is equal to Rl×m×n.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 19

/ 24

Page 138: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of real 3-tensors

DEF: Semi-algebraic set in Rn is given by finite number of polynomialinequalities of the type gi(x) > 0 and/or hj(x) ≥ 0.

THM: A polynomial map F : Rn → Rm maps a semi-algebraic set tosemi-algebraic set

THM: Rl×m×n decomposes to finite number of open connectedsemi-algebraic sets C1, . . . ,CM :

Rl×m×n\ ∪Mi=1 Ci is a strict algebraic subvariety of Rl×m×n.

Each T ∈ Ci has rank ri for i = 1, . . . ,M.min(r1, . . . , rM) = grank(l ,m,n).mgrank(l ,m,n) := max(r1, . . . , rM) is the minimal k ∈ N such that theclosure of fk ((Rl × Rm × Rn)k ) is equal to Rl×m×n.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 19

/ 24

Page 139: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of real 3-tensors

DEF: Semi-algebraic set in Rn is given by finite number of polynomialinequalities of the type gi(x) > 0 and/or hj(x) ≥ 0.

THM: A polynomial map F : Rn → Rm maps a semi-algebraic set tosemi-algebraic set

THM: Rl×m×n decomposes to finite number of open connectedsemi-algebraic sets C1, . . . ,CM :

Rl×m×n\ ∪Mi=1 Ci is a strict algebraic subvariety of Rl×m×n.

Each T ∈ Ci has rank ri for i = 1, . . . ,M.min(r1, . . . , rM) = grank(l ,m,n).mgrank(l ,m,n) := max(r1, . . . , rM) is the minimal k ∈ N such that theclosure of fk ((Rl × Rm × Rn)k ) is equal to Rl×m×n.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 19

/ 24

Page 140: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of real 3-tensors

DEF: Semi-algebraic set in Rn is given by finite number of polynomialinequalities of the type gi(x) > 0 and/or hj(x) ≥ 0.

THM: A polynomial map F : Rn → Rm maps a semi-algebraic set tosemi-algebraic set

THM: Rl×m×n decomposes to finite number of open connectedsemi-algebraic sets C1, . . . ,CM :

Rl×m×n\ ∪Mi=1 Ci is a strict algebraic subvariety of Rl×m×n.

Each T ∈ Ci has rank ri for i = 1, . . . ,M.

min(r1, . . . , rM) = grank(l ,m,n).mgrank(l ,m,n) := max(r1, . . . , rM) is the minimal k ∈ N such that theclosure of fk ((Rl × Rm × Rn)k ) is equal to Rl×m×n.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 19

/ 24

Page 141: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of real 3-tensors

DEF: Semi-algebraic set in Rn is given by finite number of polynomialinequalities of the type gi(x) > 0 and/or hj(x) ≥ 0.

THM: A polynomial map F : Rn → Rm maps a semi-algebraic set tosemi-algebraic set

THM: Rl×m×n decomposes to finite number of open connectedsemi-algebraic sets C1, . . . ,CM :

Rl×m×n\ ∪Mi=1 Ci is a strict algebraic subvariety of Rl×m×n.

Each T ∈ Ci has rank ri for i = 1, . . . ,M.min(r1, . . . , rM) = grank(l ,m,n).

mgrank(l ,m,n) := max(r1, . . . , rM) is the minimal k ∈ N such that theclosure of fk ((Rl × Rm × Rn)k ) is equal to Rl×m×n.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 19

/ 24

Page 142: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Generic rank of real 3-tensors

DEF: Semi-algebraic set in Rn is given by finite number of polynomialinequalities of the type gi(x) > 0 and/or hj(x) ≥ 0.

THM: A polynomial map F : Rn → Rm maps a semi-algebraic set tosemi-algebraic set

THM: Rl×m×n decomposes to finite number of open connectedsemi-algebraic sets C1, . . . ,CM :

Rl×m×n\ ∪Mi=1 Ci is a strict algebraic subvariety of Rl×m×n.

Each T ∈ Ci has rank ri for i = 1, . . . ,M.min(r1, . . . , rM) = grank(l ,m,n).mgrank(l ,m,n) := max(r1, . . . , rM) is the minimal k ∈ N such that theclosure of fk ((Rl × Rm × Rn)k ) is equal to Rl×m×n.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 19

/ 24

Page 143: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Examples

THM: mgrank(m1,m2,m3) > grank(m1,m2,m3) in cases

1: m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1,

2: m1 = m2 = 4,m3 = 11,12.Proof of 1: One constructs an (m − 1)2 + 1 real dimensional subspaceof L ⊂ Rm×m that does not have a rank one matrix.So there exists a neighborhood Λ ⊂ Gr((m − 1)2 + 1,Rm×m) such thatany subspace L1 ∈ Λ does not contain a rank one matrixLet T = [ti,j,k ] ∈ Rm×m×((m−1)2+1) such thatspan(T1,3, . . . ,T(m−1)2+1,3) ∈ Λ. Then rank T ≥ (m − 1)2 + 1Numerically, it is known mrank(3,3,5) = 6Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensionalsubspace of 4× 4 skew symmetric nonsingular nonzero matrices

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 20

/ 24

Page 144: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Examples

THM: mgrank(m1,m2,m3) > grank(m1,m2,m3) in cases

1: m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1,

2: m1 = m2 = 4,m3 = 11,12.Proof of 1: One constructs an (m − 1)2 + 1 real dimensional subspaceof L ⊂ Rm×m that does not have a rank one matrix.So there exists a neighborhood Λ ⊂ Gr((m − 1)2 + 1,Rm×m) such thatany subspace L1 ∈ Λ does not contain a rank one matrixLet T = [ti,j,k ] ∈ Rm×m×((m−1)2+1) such thatspan(T1,3, . . . ,T(m−1)2+1,3) ∈ Λ. Then rank T ≥ (m − 1)2 + 1Numerically, it is known mrank(3,3,5) = 6Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensionalsubspace of 4× 4 skew symmetric nonsingular nonzero matrices

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 20

/ 24

Page 145: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Examples

THM: mgrank(m1,m2,m3) > grank(m1,m2,m3) in cases

1: m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1,

2: m1 = m2 = 4,m3 = 11,12.

Proof of 1: One constructs an (m − 1)2 + 1 real dimensional subspaceof L ⊂ Rm×m that does not have a rank one matrix.So there exists a neighborhood Λ ⊂ Gr((m − 1)2 + 1,Rm×m) such thatany subspace L1 ∈ Λ does not contain a rank one matrixLet T = [ti,j,k ] ∈ Rm×m×((m−1)2+1) such thatspan(T1,3, . . . ,T(m−1)2+1,3) ∈ Λ. Then rank T ≥ (m − 1)2 + 1Numerically, it is known mrank(3,3,5) = 6Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensionalsubspace of 4× 4 skew symmetric nonsingular nonzero matrices

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 20

/ 24

Page 146: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Examples

THM: mgrank(m1,m2,m3) > grank(m1,m2,m3) in cases

1: m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1,

2: m1 = m2 = 4,m3 = 11,12.Proof of 1: One constructs an (m − 1)2 + 1 real dimensional subspaceof L ⊂ Rm×m that does not have a rank one matrix.

So there exists a neighborhood Λ ⊂ Gr((m − 1)2 + 1,Rm×m) such thatany subspace L1 ∈ Λ does not contain a rank one matrixLet T = [ti,j,k ] ∈ Rm×m×((m−1)2+1) such thatspan(T1,3, . . . ,T(m−1)2+1,3) ∈ Λ. Then rank T ≥ (m − 1)2 + 1Numerically, it is known mrank(3,3,5) = 6Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensionalsubspace of 4× 4 skew symmetric nonsingular nonzero matrices

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 20

/ 24

Page 147: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Examples

THM: mgrank(m1,m2,m3) > grank(m1,m2,m3) in cases

1: m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1,

2: m1 = m2 = 4,m3 = 11,12.Proof of 1: One constructs an (m − 1)2 + 1 real dimensional subspaceof L ⊂ Rm×m that does not have a rank one matrix.So there exists a neighborhood Λ ⊂ Gr((m − 1)2 + 1,Rm×m) such thatany subspace L1 ∈ Λ does not contain a rank one matrix

Let T = [ti,j,k ] ∈ Rm×m×((m−1)2+1) such thatspan(T1,3, . . . ,T(m−1)2+1,3) ∈ Λ. Then rank T ≥ (m − 1)2 + 1Numerically, it is known mrank(3,3,5) = 6Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensionalsubspace of 4× 4 skew symmetric nonsingular nonzero matrices

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 20

/ 24

Page 148: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Examples

THM: mgrank(m1,m2,m3) > grank(m1,m2,m3) in cases

1: m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1,

2: m1 = m2 = 4,m3 = 11,12.Proof of 1: One constructs an (m − 1)2 + 1 real dimensional subspaceof L ⊂ Rm×m that does not have a rank one matrix.So there exists a neighborhood Λ ⊂ Gr((m − 1)2 + 1,Rm×m) such thatany subspace L1 ∈ Λ does not contain a rank one matrixLet T = [ti,j,k ] ∈ Rm×m×((m−1)2+1) such thatspan(T1,3, . . . ,T(m−1)2+1,3) ∈ Λ. Then rank T ≥ (m − 1)2 + 1

Numerically, it is known mrank(3,3,5) = 6Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensionalsubspace of 4× 4 skew symmetric nonsingular nonzero matrices

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 20

/ 24

Page 149: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Examples

THM: mgrank(m1,m2,m3) > grank(m1,m2,m3) in cases

1: m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1,

2: m1 = m2 = 4,m3 = 11,12.Proof of 1: One constructs an (m − 1)2 + 1 real dimensional subspaceof L ⊂ Rm×m that does not have a rank one matrix.So there exists a neighborhood Λ ⊂ Gr((m − 1)2 + 1,Rm×m) such thatany subspace L1 ∈ Λ does not contain a rank one matrixLet T = [ti,j,k ] ∈ Rm×m×((m−1)2+1) such thatspan(T1,3, . . . ,T(m−1)2+1,3) ∈ Λ. Then rank T ≥ (m − 1)2 + 1Numerically, it is known mrank(3,3,5) = 6

Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensionalsubspace of 4× 4 skew symmetric nonsingular nonzero matrices

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 20

/ 24

Page 150: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Examples

THM: mgrank(m1,m2,m3) > grank(m1,m2,m3) in cases

1: m1 = m2 = m ≥ 2,m3 = (m − 1)2 + 1,

2: m1 = m2 = 4,m3 = 11,12.Proof of 1: One constructs an (m − 1)2 + 1 real dimensional subspaceof L ⊂ Rm×m that does not have a rank one matrix.So there exists a neighborhood Λ ⊂ Gr((m − 1)2 + 1,Rm×m) such thatany subspace L1 ∈ Λ does not contain a rank one matrixLet T = [ti,j,k ] ∈ Rm×m×((m−1)2+1) such thatspan(T1,3, . . . ,T(m−1)2+1,3) ∈ Λ. Then rank T ≥ (m − 1)2 + 1Numerically, it is known mrank(3,3,5) = 6Proof of 2: Radon-Hurwitz numbers, i.e existence of 3- dimensionalsubspace of 4× 4 skew symmetric nonsingular nonzero matrices

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 20

/ 24

Page 151: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:For F = C,R approximate well and fast T ∈ Fm1×m2×m3 by rank(R1,R2,R2) 3-tensor.

The best rank (R1,R2,R3) approximation of T is a hard optimizationproblem.

Cm1×m2×m3 has a standard inner product 〈sijk , tijk 〉 :=∑

i,j,k sijk t ijkinduced by the standard inner products on Cmp ,p = 1,2,3.

For subsp. Ui ⊂ Fmi , dim Ui = Ri , i = 1,2,3, let V = U1 ⊗ U2 ⊗ U3.PV(T ) orthogonal projection on V, obtained by orthonormal basesf1,i , . . . , fmi ,i ∈ Fmi , span(f1,i , . . . , fRi ,i) = Ui

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal ||PV (T )||.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 21

/ 24

Page 152: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:For F = C,R approximate well and fast T ∈ Fm1×m2×m3 by rank(R1,R2,R2) 3-tensor.

The best rank (R1,R2,R3) approximation of T is a hard optimizationproblem.

Cm1×m2×m3 has a standard inner product 〈sijk , tijk 〉 :=∑

i,j,k sijk t ijkinduced by the standard inner products on Cmp ,p = 1,2,3.

For subsp. Ui ⊂ Fmi , dim Ui = Ri , i = 1,2,3, let V = U1 ⊗ U2 ⊗ U3.PV(T ) orthogonal projection on V, obtained by orthonormal basesf1,i , . . . , fmi ,i ∈ Fmi , span(f1,i , . . . , fRi ,i) = Ui

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal ||PV (T )||.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 21

/ 24

Page 153: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:For F = C,R approximate well and fast T ∈ Fm1×m2×m3 by rank(R1,R2,R2) 3-tensor.

The best rank (R1,R2,R3) approximation of T is a hard optimizationproblem.

Cm1×m2×m3 has a standard inner product 〈sijk , tijk 〉 :=∑

i,j,k sijk t ijkinduced by the standard inner products on Cmp ,p = 1,2,3.

For subsp. Ui ⊂ Fmi , dim Ui = Ri , i = 1,2,3, let V = U1 ⊗ U2 ⊗ U3.PV(T ) orthogonal projection on V, obtained by orthonormal basesf1,i , . . . , fmi ,i ∈ Fmi , span(f1,i , . . . , fRi ,i) = Ui

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal ||PV (T )||.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 21

/ 24

Page 154: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:For F = C,R approximate well and fast T ∈ Fm1×m2×m3 by rank(R1,R2,R2) 3-tensor.

The best rank (R1,R2,R3) approximation of T is a hard optimizationproblem.

Cm1×m2×m3 has a standard inner product 〈sijk , tijk 〉 :=∑

i,j,k sijk t ijkinduced by the standard inner products on Cmp ,p = 1,2,3.

For subsp. Ui ⊂ Fmi , dim Ui = Ri , i = 1,2,3, let V = U1 ⊗ U2 ⊗ U3.

PV(T ) orthogonal projection on V, obtained by orthonormal basesf1,i , . . . , fmi ,i ∈ Fmi , span(f1,i , . . . , fRi ,i) = Ui

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal ||PV (T )||.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 21

/ 24

Page 155: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:For F = C,R approximate well and fast T ∈ Fm1×m2×m3 by rank(R1,R2,R2) 3-tensor.

The best rank (R1,R2,R3) approximation of T is a hard optimizationproblem.

Cm1×m2×m3 has a standard inner product 〈sijk , tijk 〉 :=∑

i,j,k sijk t ijkinduced by the standard inner products on Cmp ,p = 1,2,3.

For subsp. Ui ⊂ Fmi , dim Ui = Ri , i = 1,2,3, let V = U1 ⊗ U2 ⊗ U3.PV(T ) orthogonal projection on V, obtained by orthonormal basesf1,i , . . . , fmi ,i ∈ Fmi , span(f1,i , . . . , fRi ,i) = Ui

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal ||PV (T )||.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 21

/ 24

Page 156: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:For F = C,R approximate well and fast T ∈ Fm1×m2×m3 by rank(R1,R2,R2) 3-tensor.

The best rank (R1,R2,R3) approximation of T is a hard optimizationproblem.

Cm1×m2×m3 has a standard inner product 〈sijk , tijk 〉 :=∑

i,j,k sijk t ijkinduced by the standard inner products on Cmp ,p = 1,2,3.

For subsp. Ui ⊂ Fmi , dim Ui = Ri , i = 1,2,3, let V = U1 ⊗ U2 ⊗ U3.PV(T ) orthogonal projection on V, obtained by orthonormal basesf1,i , . . . , fmi ,i ∈ Fmi , span(f1,i , . . . , fRi ,i) = Ui

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal ||PV (T )||.

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 21

/ 24

Page 157: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 158: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:

Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 159: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 160: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 161: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1

B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 162: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 163: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1

U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 164: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 165: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 166: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Optimization methods

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Fm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

A1 ∈ Fm1×(m2·m3) -unfolding of T in direction 1B1 = A1Q, Q orthogonal matrix of change of orthogonal basis in Fm2m3

C1 ∈ Fm1×(R1R2) submatrix of B1U1 is subspace spanned by the first R1 left singular vectors of C1

Relaxation method converges to local maximal critical point

When close to a critical point switch to Newton method onGr(R1,Fm1)⊗ Gr(R2,Fm2)⊗ Gr(R3,Fm3)

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 22

/ 24

Page 167: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Fast low rank approximations

For matrix A ∈ Fm×n CUR approximation:

C ∈ Fm×R2 ,R ∈ FR1×m2 submatrices of Achosen using several random choices of columns and rows of A

Similar extensions of CUR approximation to tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 23

/ 24

Page 168: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Fast low rank approximations

For matrix A ∈ Fm×n CUR approximation:

C ∈ Fm×R2 ,R ∈ FR1×m2 submatrices of Achosen using several random choices of columns and rows of A

Similar extensions of CUR approximation to tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 23

/ 24

Page 169: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

Fast low rank approximations

For matrix A ∈ Fm×n CUR approximation:

C ∈ Fm×R2 ,R ∈ FR1×m2 submatrices of Achosen using several random choices of columns and rows of A

Similar extensions of CUR approximation to tensors

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 23

/ 24

Page 170: 3-Tensors - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/berkeleypause08.pdf3-Tensors Shmuel Friedland Univ. Illinois at Chicago Geometry and Representation Theory

References

1. 3-tensor theory:S.Friedland, On the generic rank of 3-tensors, arXiv:0805.3777

2. Best (R1,R2,R3) approximation of 3-tensorsa. S. Friedland and V. Mehrmann, Best subspace tensorapproximations, arXiv:0805.4220b. S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla, Fast lowrank approximations of matrices and tensors,www.matheon.de/preprints/4903c. Low Rank Approximations of Matrices and Tensors, lecture in 2008SIAM Annual Meeting, http://www2.math.uic.edu/∼friedlan/index.html

3. Newton algorithm on Grassmannians:Lars Eldén, A Newton-Grassmann method for computing the bestmulti-linear rank-(r1, r2, r3) approximation of a tensor,http://www.mai.liu.se/∼laeld/

Shmuel Friedland Univ. Illinois at Chicago () 3-TensorsGeometry and Representation Theory of Tensors, MSRI July 18, 2008 24

/ 24