Top Banner
G. Leng, ME Dept, NUS 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue Problem Recall that the natural frequencies ω and modes a are found from [ - ω 2 M + K ] a = 0 or K a = ω 2 M a Where M and K are the mass and stiffness matrices of the MDOF system NB : M & K are symmetric matrices, M = M T and K = K T
23

3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

Aug 30, 2018

Download

Documents

truongdang
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

3. M

athe

mat

ical

Pro

pert

ies o

f MD

OF

Syst

ems

3.1

The

Gen

eral

ized

Eig

enva

lue

Prob

lem

Rec

all t

hat t

he n

atur

al fr

eque

ncie

s ωan

d m

odes

aar

e fo

und

from

[ -ω

2M

+

K ]

a=

0

orK

a=

ω2

M a

Whe

re M

and

K a

re th

e m

ass a

nd st

iffne

ss m

atric

es o

f the

MD

OF

syst

em

NB

: M

& K

are

sym

met

ric

mat

rices

, M =

MT

and

K =

KT

Page 2: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

This

is a

ctua

lly a

mor

e ge

nera

l ver

sion

of t

he e

igen

valu

epr

oble

m

A x

= λ

x

whe

re A

is a

squa

re m

atrix

and

the

unkn

owns

x a

nd λ

are

calle

d th

e ei

genv

ecto

r and

eig

enva

lue.

The

eige

nval

uesa

re o

btai

ned

by so

lvin

g a

char

acte

rist

ic e

quat

ion

det[

A -λ

I ]

=

0

And

for e

ach

eige

nval

ueyo

u ca

n fin

d th

e ei

genv

ecto

rs b

y so

lvin

g

[ A -λ

I ] x

=

0

Que

stio

n : W

here

’s th

e an

alog

y ?

Page 3: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

3.2

Ort

hogo

nal p

rope

rty

of n

atur

al m

odes

(eig

enve

ctor

s)

Ort

hogo

nal P

rope

rty:

The

nat

ural

mod

es a

re “

orth

ogon

al”

with

re

spec

t to

both

the

mas

s and

stiff

ness

mat

rices

Proo

f :

Con

side

r tw

o m

odes

i &

j of

the

syst

em

Prem

ultip

lyea

ch e

quat

ion

with

a m

ode

vect

or

Page 4: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Sinc

e M

and

K a

re sy

mm

etric

Hen

ce su

btra

ctin

g th

e tw

o eq

uatio

n yi

elds

Sinc

e th

e na

tura

l fre

quen

cies

are

dis

tinct

Page 5: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Hen

ce th

e na

tura

l mod

es a

re o

rthog

onal

with

resp

ect t

o th

e m

ass m

atrix

. Sim

ilarly

for t

he st

iffne

sssm

atrix

.

0=

a jT

Ka i

Hom

ewor

k : P

rove

this

Page 6: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Exa

mpl

e: V

erify

the

orth

ogon

al p

rope

rty fo

r the

2 D

OF

syst

em

m2m

kk

k

+ve

x 1x 2

Rec

all t

he m

ass a

nd st

iffne

ss m

atric

es a

re :

k

kk

km

m2

22

00

Page 7: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

and

the

natu

ral f

requ

enci

es a

nd n

orm

al m

odes

are

:

ω1

=

0.7

96 √

(k/m

)

ω

2=

1.

538 √(

k/m

)

=

1732

.01a

−=

1732

.22a

a 1T

M a

2=

Page 8: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Sim

ilarly

a 1T

K a

2=

Hom

ewor

k : V

erify

the

orth

ogon

al p

rope

rty fo

r oth

er e

xam

ples

Page 9: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Que

stio

n : C

an y

ou su

gges

t ano

ther

way

to n

orm

aliz

e m

odes

?

Ans

wer

:

Mod

es n

orm

aliz

ed th

is w

ay a

re c

alle

d or

thon

orm

alm

odes

Que

stio

n : S

o w

hat’s

the

big

deal

abo

ut o

rthog

onal

ity?

The

big

deal

:

Page 10: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

3.3

Dec

oupl

ing

a M

DO

F Sy

stem

Let

a 1, .

.., a

Nbe

the

mod

es o

f an

N D

OF

syst

em :

M x

’’+

K x

=F

with

initi

al c

ondi

tions

x(0

) = x

oan

d x’

(0) =

vo

The

mod

al m

atri

x P

is o

btai

ned

by p

laci

ng th

ese

mod

e ve

ctor

s to

geth

er c

olum

n w

ise

P=

[ a1

...

aN

]

Page 11: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Def

ine

a ch

ange

of c

oord

inat

es x

= P

y

Subs

titut

e in

the

EOM

:

and

initi

al c

ondi

tions

:

Page 12: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Pre

mul

tiply

EO

M b

y PT

Pre

mul

tiply

initi

al c

ondi

tions

by

PTM

Page 13: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

By

the

orth

ogon

ality

of th

e m

odes

, PT

M P

and

PT

K P

are

di

agon

alm

atric

es.

How

so ?

PTM

P=

a 1T

[ M

]

[ a 1

...

aN

] ... a N

T

Page 14: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

The

syst

em d

ecou

ples

into

N S

DO

F eq

uatio

ns !

miy

i’’

+ k i

y i=

a iT F

y i(0

) =

( aiT

M x

o) /

mi

y i’(

0)

= ( a

iTM

vo

) / m

ii =

1, .

.., N

whe

re m

i=

a iT

M a

ik i

=a i

TK

ai

Are

we

done

?

Page 15: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Que

stio

n : H

ow d

o w

e ge

t the

act

ual

resp

onse

x ?

Ans

wer

:

Page 16: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Exa

mpl

e : D

ecou

plin

g a

MD

OF

syst

em

mm

kx 1x 2 k

k

M=

m

0K

=2k

-k0

m

-k2k

ω1

= √

(k/m

2=

√(

3k/

m)

=

111a

−=

112a

Page 17: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Find

the

resp

onse

for i

nitia

l con

ditio

ns x

(0) =

{1,

0}T

and

x’(0

) =

{0,0

}T

Form

the

mod

al m

atrix

P=

The

mod

al m

ass m

atrix

PT M

P

Page 18: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

The

mod

al st

iffne

ss m

atrix

PT K

P

= Hen

ce th

e de

coup

led

EOM

for t

he m

odal

coo

rdin

ates

are

:

Wha

t els

e do

we

need

?

Page 19: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Get

the

initi

al c

ondi

tions

for y

1an

d y 2

.

( PT

M P

) y(

0)

= PT

M x

o

Page 20: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

So w

e ne

ed to

solv

e ?

SD

OF

equa

tions

:

2

y 1’’

+ k

/my 1

=

0y 1

(0)

= 1

/2y 1

’(0)

=

0

y 2’’

+ 3

k/m

y2

=0

y 2(0

) =

-1/2

y 2’(

0) =

0

The

solu

tion

is :

Page 21: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Fina

lly tr

ansf

orm

bac

k to

real

coo

rdin

ates

x 1= =

x 2= =

Page 22: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

Not

es

1. D

ecou

plin

g m

ay n

ot w

ork

if a

dam

ping

mat

rix is

pre

sent

.

Eg:

M x

'' +

C x

' +

K x

= F

An

exce

ptio

nal c

ase

is R

ayle

igh

dam

ping

whe

re

C

= a

M

+ b

K

Page 23: 3. Mathematical Properties of MDOF Systemsdynlab.mpe.nus.edu.sg/mpelsb/me4213/N3n2004.pdf · 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue G. Leng, ME

G. L

eng,

ME

Dep

t, N

US

2. T

he tr

ansf

orm

atio

n x

= P

yis

bas

ical

ly a

sum

mat

ion

of

natu

ral m

odes

x=

[ a1

...

aN

] y

1 ... y N

=

y 1a 1

+

...

+

y

Na N