Top Banner

of 21

3. Hydrothermal Fluids

Jun 03, 2018

Download

Documents

Donald Brown
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 3. Hydrothermal Fluids

    1/21

    Page 1

    Roberto Perez Xavier

    Departamento de Geologia e Recursos Naturais

    Instituto de Geocincias UNICAMP

    Campinas (SP) - Brasil

    HYDROTHERMAL FLUIDS: HOW THEY FORM ANDEVOLVE IN THE EARTHS CRUST

    Minerals Volatiles in the composition (wt %)

    Chlorite 10% H2O

    Actinolite/

    Hornblende

    2% H2O

    Biotite 3,2 % H2O

    Phlogopite 3,2 3,5% H2O

    Epidote 1% H2O

    Calcite 45% CO2

    Dolomite 40% CO2

    Pyrite 50% S

    Pyrrhotite 30% S

    Hydrous silicates (OH) + carbonates (CO2) + sulphides (H2S) - sulphates(SO4)

    FLUIDS IN THE LITHOSPHERE: INDIRECT EVIDENCE ?FLUIDS IN THE LITHOSPHERE: INDIRECT EVIDENCE ?

  • 8/12/2019 3. Hydrothermal Fluids

    2/21

    Page 2

    1 m

    Au-bearing quartz boudins Morro do Ouro (Paracatu/Brazil)

    FLUIDS IN THE LITHOSPHERE: INDIRECT EVIDENCE ?FLUIDS IN THE LITHOSPHERE: INDIRECT EVIDENCE ?

    Average grade of 0.3 g/t

    1 50 m

    Loriesfontein area (Karoo Basin,South Africa). Bright blobs hydrothermal pipes filled withbrecciated and metamorphosedshale CH4 degassed duringcontact metamorphism of black,organic-rich shale, some 182.5million years ago.

    Jamtveit & Austrheim 2010, Elements, 6

    Mesh texture generated duringserpentinization of olivine in aserpentinized peridotite from theLeka ophiolite complex, Norway

  • 8/12/2019 3. Hydrothermal Fluids

    3/21

    Page 3

    ACTIVE GEOTHERMAL SYSTEMS IN THEOCEANIC CRUST

    NEPR, SEPR = East Pacific Rise

    MAR = Mar Crest

    RR = Iceland

    SWIR and SEIR = Southwest andSoutheast Indian Ridge

    Fumaroles or black smokers

    FLUIDS IN THE LITHOSPHERE: DIRECT EVIDENCE ?FLUIDS IN THE LITHOSPHERE: DIRECT EVIDENCE ?

    HOT SPRINGS OR GEYSERS

    V

    L

    S1

    S3

    S2

    S4

    ACTIVE GEOTHERMAL SYSTEMS CONTINENTAL CRUST

    FLUID INCLUSIONS

    FLUIDS IN THE LITHOSPHERE: DIRECT EVIDENCE ?FLUIDS IN THE LITHOSPHERE: DIRECT EVIDENCE ?

  • 8/12/2019 3. Hydrothermal Fluids

    4/21

    Page 4

    WHAT IS A FLUID?

    H2O + salts + volatiles (CO2, CH4, N2, H2S, etc.) lIquid +

    vapor/gases + silicate melts (magma)

    Above critical point(Pc), there is no

    distinction betweenliquid and vaporphases similardensities =supercritical fluid

    Viscosity of magmabasltico 103 104 Pwhereas H2O = 10-2 P)

    Reviews in Mineralogy & GeochemistryVol. 76 pp. 165-218, 2013

    Pirajno (2009)

    FLUIDS IN THE LITHOSPHEREFLUIDS IN THE LITHOSPHERE

  • 8/12/2019 3. Hydrothermal Fluids

    5/21

    Page 5

    Wyborn 2005

    HYDROTHERMAL SYSTEMSHYDROTHERMAL SYSTEMS

    from the source to the ore !!from the source to the ore !!

    HYDROTHERMALHYDROTHERMAL FLUIDSFLUIDS:: HOWHOW DODO THEYTHEY FORM?FORM?

    Figure 1. Known sites of hydrothermal venting along mid-ocean ridges, in back-arc basins, rifted arcs, and at submergedisland-arc volcanoes (red), and areas of activity as indicated by mid-water chemical anomalies (yellow). EPR = East PacificRise. TA G= Trans Atlantic Geotraverse, MEF = Main Endeavour Field, and GR-14 = Sea Cliff hydrothermal field on thenorthern Gorda Ridge.

    Tivey, M. K.2007,Oceanography,20 (1)

  • 8/12/2019 3. Hydrothermal Fluids

    6/21

    Page 6

    P > 22 Mpa =0.22 kb

    T= 00C

    4000

    C

    pH ~ 3

    Seawater evolution within the oceanic crust

    Humphris et al. (1996)

    HYDROTHERMALHYDROTHERMAL FLUIDSFLUIDS:: HOWHOW DODO THEYTHEY FORM?FORM?

  • 8/12/2019 3. Hydrothermal Fluids

    7/21

    Page 7

    Seawater Hydrothermalfluid

    T (C) 2 360 - 365pH (25C) 7.8 3.35Na (mM) 464 537K (mM) 9.8 17.1Ca (mM) 10.2 30.8Mg (mM) 52.7 0Si (mM) 0.2 20.75

    Cl (mM) 541 636

    SO4(mM) 27.9 0H2S (mM) 0 2.3 3.5

    Fe (M) > S2-

    High Mg2+

    Metal poor

    3.2% NaCl

    Hydrothermal Fluid

    350C

    Acidic (pH 4.6)

    Reducing S2-

    >>SO42-

    Poor Mg2+

    Enriched in metals

    3.2% NaCl

    HYDROTHERMALHYDROTHERMAL FLUIDSFLUIDS:: HOWHOW DODO THEYTHEY FORM?FORM?

  • 8/12/2019 3. Hydrothermal Fluids

    8/21

    Page 8

    1. Acid pH2Ca2+ + Fe3+ + 2Al3+ + 3SiO2 + 7H2O = Ca2FeAl2Si3O12(OH) + 13H+

    Silicates in mafic fluid epidote

    rocks

    2. Oxidizing to reducing

    11Fe2SiO4 + 2SO42- + 4H+ = FeS2 + 7Fe3O4 + 11SiO2 + 2H2O

    Mafic fluid pyrite magnetite

    minerals

    3. Fluid- rock interaction = loss of Mg2+

    2NaAlSi3O8 + 5Mg2+ + 8H2O = Mg5Al2Si3O10(OH)8 + 2Na+ + 8H+ + 3SiO2

    Albite fluid chlorite quartz

    HYDROTHERMALHYDROTHERMAL FLUIDSFLUIDS:: HOWHOW DODO THEYTHEY FORM?FORM?

    SUBMARINE HYDROTHERMAL SYSTEMSSUBMARINE HYDROTHERMAL SYSTEMS

    Sulphides = 3.9 x 106 ton Fe = 2.3 x 106 ton Cu = 30 - 60 x 103 ton Zn = 15.2 x 103 ton Hydrothermal alteration zone = 0.4 0.7 km3

    Required energy = 1000 MW

    Humphris & Tivey (2000), GSA 349

    TAG = Trans-Atlantic Geotraverse (Cadeia Meso-Atlntica 2608N)

  • 8/12/2019 3. Hydrothermal Fluids

    9/21

    Page 9

    TYPES OF HYDROTHERMAL FLUIDSTYPES OF HYDROTHERMAL FLUIDS

    Barnicoat , A. (2009)

    8.7 x 1011 kg/year = mass of H2O incorporated into thelithosphere in subduction zones

    GEOTHERMAL FLUIDS: EVOLVED METEORIC HGEOTHERMAL FLUIDS: EVOLVED METEORIC H22OO

    high geothermal gradients orogenic (convergent margins) and non-orogenic areas (intracontinental rifts)Geothermal waters (250C. 1-2 km) are the present-d ay analogues ofepithermal Au-Ag deposits

    Mostly recycled rainwater

    nzic.org.nz/ChemProcesses/water/13A.pdf

  • 8/12/2019 3. Hydrothermal Fluids

    10/21

    Page 10

    omposition(mg/kg) Na-ClNearneutralchloride

    SO4 ClAcidsulphate

    Na-CO3Alkalicarbonate

    Seawater RiverH2O

    SiO2 660 490 175 0.005 0.01

    13

    Na 1200 485 220 10760 4.8Ca 17.5 1.2 37 411 15K 200 58,5 43 399 2Cl 2156 560 57 19350 5.7

    HBO2- 115 21.6 1.2 - -

    SO4- 25 88 < 1 2710 6,7

    HCO3- 32 167 3177 142 23

    pH 4.8 3.1 6.2 8.1 8.3 5 6.5

    Na Ca Mg - HCO3- alumino silicate rocks

    Ca Mg - HCO3- limestone/dolomite

    nzic.org.nz/ChemProcesses/water/13A.pdf

    GEOTHERMAL FLUIDS: EVOLVED METEORIC HGEOTHERMAL FLUIDS: EVOLVED METEORIC H22OO

    GEOTHERMAL FLUIDS: EVOLVED METEORIC HGEOTHERMAL FLUIDS: EVOLVED METEORIC H22OO

    Size of meteoric systems may be huge

    Transit time for fluid ~2 Myr

    Generally of low salinity (< 3.2 wt% NaCl) and dont carry a lot of metals,but can be directly important - mixing with other fluids = dilution

    2H+(aq) + 2KAlSi3O8 + 9H2O2K+(aq) + Al2Si2O5(OH)4 + 4H4SiO4(aq)feldspar rock kaolinite dissolved silica

    Similar reactions provide Na+(aq) and Ca2+(aq) to the geothermal waterthat becomes more acidic and oxidising.

    2H2S + 3O22SO2 + 2H2OH2S + 2O2 SO42- + 2H+

    Both hydrogen sulfide ions (HS-) and chloride ions (Cl-) can form

    complexes with metal cations derived from the magmas or by fluid-rockreactions stable at high temperatures and high concentrations ofmetals.

    PbCl3-(aq) + H2S(aq) PbS(s) + 2H+(aq) + 3Cl-(aq)

  • 8/12/2019 3. Hydrothermal Fluids

    11/21

    Page 11

    MAGMATIC FLUIDSMAGMATIC FLUIDS

    Vulcanos Augustine(Greece)

    Etna

    (Italy)

    St. Helens(USA)

    Magma andesitic basaltic dacitic

    T(C) 870 928 710

    H2O 83.9 91.9 98.6

    CO2 2.4 1.4 0.8

    SO2 5.72 2.8 6.7x10-2

    H2S 1.00 - 9.0x10-2

    HCl 6.0 0.1 7.6x10-2

    HF 8.6x10-2 0.5 0.03

    NaCl 1.4x10-3 1.3x10-3 4.1x10-4

    Analyses in moles/100 moles de gsSymonds (1992)

    MAGMATIC FLUIDSMAGMATIC FLUIDS

  • 8/12/2019 3. Hydrothermal Fluids

    12/21

    Page 12

    MAGMATIC FLUIDS AND VOLCANICMAGMATIC FLUIDS AND VOLCANICERUPTIONSERUPTIONS

    Hedenquist & Lowenster (1994)

    Etna (Italy) 1975 to 1987

    T (C) 900

    H2O 50 x 106 t / yr

    CO2 13 x 106 t / yr

    HCl 0.1 0.5 x 106 t / yr

    S 0.2 0.75 x 106 t / yr

    Cu 480 580 t / yr

    Au 80 1.200 kg / yr

    Salinity dependson DEPTH(PRESSURE) ofmagmacrystallization

    MAGMATICMAGMATICFLUIDS:FLUIDS:

    SALINITYSALINITY

  • 8/12/2019 3. Hydrothermal Fluids

    13/21

    Page 13

    MAGMATIC FLUIDS: VOLATILES (COMAGMATIC FLUIDS: VOLATILES (CO22 AND Cl)AND Cl)

    CO2 is 10 X less soluble thanH2O in silicate melts

    CO2 solubility increases linearlywith pressure CO2-rich fluidsare generated by magmas thatcrystallize at deep crustal levels

    Solubility plot for system rhyolite-H2O-CO2 at675C.

    Cl is less volatile than CO2 limited solubility in exsolvingvapors Fe, Na, K chloride complexes remain in the meltuntil saturation of an aqueous phase

    Addition of H2O to a meltdecreases the solubility of CO2

    Baker (2002)

    CO2- H2O Brine

    +

    v vv vvvv

    +++

    ++

    +

    +++

    +++

    ++

    +

    +++

    +

    ++

    +

    0 km

    5 km

    10 km

    MAGMATIC FLUIDS: VOLATILES (COMAGMATIC FLUIDS: VOLATILES (CO22 AND Cl)AND Cl)

  • 8/12/2019 3. Hydrothermal Fluids

    14/21

    Page 14

    FLUID PHASE SEPARATION: BOILING -IMMISCIBILITY

    Audtat et al. (2008)

    Efficient mechanism for the precipitation of metals byh drothermal fluids !!

    MAGMATIC HYDROTHERMAL SYSTEMS

  • 8/12/2019 3. Hydrothermal Fluids

    15/21

    Page 15

    Formation waterwater present in pores and fractures no

    significance to origin or age

    Connate water

    water trapped with the sediment andsubsequently unmodified.

    Sedimentary basin waters have a range of originsconnate,(modified) meteoric water

    BASINAL FLUIDS (OILBASINAL FLUIDS (OIL--FIELD BRINES)FIELD BRINES)

    Most basinal fluids (formation waters) are ofrecent meteoric origin

    Conc.(ppm)

    Louisiana Mississippi Seawater

    TDS 235.700 230.000 35.200Na

    +78000 54200 10760

    Ca+

    10250 27600 412K

    +1065 485 399

    Fe+

    84 181 0,002Mg

    +1140 1770 1294

    SiO2 48 42 6,2Zn+

    - 143 0,02Pb

    +- 28 0,00003

    Cl- 143000 143600 19350H2S 0.4 - -

    SO4-

    0.4 248 2712HCO3

    - 450 - 45T(C) 150 150 2pH 6.2 6.2 8,2

    salinity up to 6.6higher than

    seawater:origin of highsalinity?

    BASINAL FLUIDS (OILBASINAL FLUIDS (OIL--FIELD BRINES)FIELD BRINES)

    Hanor(1995)

    Variablecomposition, butgenerally Na-Ca-Cl-rich

    Fe, Zn, Pb 103 to 106 higher thanseawater

    Interaction withevaporites= halitedissolution

    Seawater evaporationto the halite saturationpoint = bittern fluids

  • 8/12/2019 3. Hydrothermal Fluids

    16/21

    Page 16

    Sediment-hosted Pb-Zn deposits:SEDEX and MVT

    BASINAL FLUIDS AND ORE DEPOSITSBASINAL FLUIDS AND ORE DEPOSITS

    PELITIC ROCKS

    Clay minerals (15-20 % H2O)

    chlorite (10-12 % H2O)

    biotite + muscovite (3-4 % H2O)

    staurolite + cordierite (2 % H2O)

    CaMg(CO3)2 + 2SiO2 = CaMgSi2O6 + 2CO2dolomite quartz diopside

    CARBONATE ROCKS

    METAMORPHIC FLUIDSMETAMORPHIC FLUIDS

    metamorphism

    metamorphism

  • 8/12/2019 3. Hydrothermal Fluids

    17/21

    Page 17

    GERAOGERAO DEDE FLUIDOSFLUIDOS NONO METAMORFISMOMETAMORFISMO

    Folhelho granada mica xisto

    (Jamtveit, 2010)

    Salinities may be higher if evaporites are involved in themetamorphic process

    Metamorphic fluids tend to be CO2-rich in highermetamorphic facies (e.g. granulite)

    H2O + (C O2 + CH4 + N2 + H2S), 5-6 % NaCl

    COMPOSITION OF METAMORPHIC FLUIDS

    Maximum fluid flux ~10-11 m3/m2/s (very small)

    Duration

  • 8/12/2019 3. Hydrothermal Fluids

    18/21

    Page 18

    METAMORPHIC FLUIDS AND OROGENIC GOLDDEPOSITS

    Low-salinity, mixed aqueous-carbonic fluid broadlyuniform over deposits formed at different crustal levels (6km to 20 km)

    Aqueous solutions

    Diluted (0.2 - 0.5% salts) to highly concentrated (> 25%salts) solutions abundant Na+ e Cl-

    Metals: ionic complexes [e.g. Au(HS)-2 ; AuCl-2 ] T, pHand redox control solubility

    Variable temperatures: 50C to >500C

    pH: acid to slightly alkaline

    Volatiles: CO2 (CH4, N2, H2S, SO2) control the redoxstate (O2) and metal solubility

    HYDROTHERMAL FLUIDS ?HYDROTHERMAL FLUIDS ?

    NO GENETIC IMPLICATION !!

  • 8/12/2019 3. Hydrothermal Fluids

    19/21

    Page 19

    MECHANISMS OF FLUID FLUX IN THE CRUST

    Etheridge et al. 1983

    -8 -6 -4 -2 0

    Deformation

    Convection

    Topographic/meteoric

    Metamorphism

    Compaction

    log fluid flux (m/yr)

    Heather Sheldon (2008 )

    Intrusions

    MECHANISMS OF FLUID FLUX IN THE CRUST

    There is considerable overlap in flow rates, making itdifficult to predict which one will dominate.

  • 8/12/2019 3. Hydrothermal Fluids

    20/21

    Page 20

    HYDROTHERMAL FLUIDS: SUMMARYHYDROTHERMAL FLUIDS: SUMMARY

    Kesler (2005)

    metamorphic

    magmatic +meteoric

    basinal

    Evolvedseawater

    Groves et al. (1998)

    Magmatic

    +

    meteoric

    TECTONIC SETTINGS, CRUSTAL FLUIDS AND ORETECTONIC SETTINGS, CRUSTAL FLUIDS AND OREDEPOSITSDEPOSITS

  • 8/12/2019 3. Hydrothermal Fluids

    21/21

    FLUIDS IN DIFFERENT CLASSES OF GOLDFLUIDS IN DIFFERENT CLASSES OF GOLDDEPOSITSDEPOSITS

    Ridley & Diamond (2000)