Top Banner
69
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 3 glycolysis+kreb's pdf
Page 2: 3 glycolysis+kreb's pdf

Phosphorylation of Glucose

Glucose + ATP Glucose–6–phosphate + ADPGlucokinase

Glucose + ATP Glucose–6–phosphate + ADPHexokinase

• There are TWO enzymes

Page 3: 3 glycolysis+kreb's pdf

Trapping of Glucose by phosphorylation

Page 4: 3 glycolysis+kreb's pdf

Glucokinase enzyme

Glucose + ATP Glucose-6-phosphate + ADPGlucokinase

Page 5: 3 glycolysis+kreb's pdf
Page 6: 3 glycolysis+kreb's pdf

Comparison between Hexokinase & Glucokinas

GlucokinaseHexokinaseFactorNo

Glucose onlyAll HexosesSubstrate1

Liver onlyAll tissuesDistribution2

Not inhibited by

Glucose-6-phosphate

Inhibited by

Glucose-6-phosphate

Product

inhibition3

High Km

(Low affinity)

Low Km

(High affinity)

Km for

glucose4

ActivatedNot affectedEffect of

Insulin5

ActivatedNot affectedEffect of

Carbohydrate6

InhibitedNot affectedEffect of

Starvation7

Page 7: 3 glycolysis+kreb's pdf

(Sigmoidal Curve)

(Hyberbolic Curve)

(Substrate concentration)

Page 8: 3 glycolysis+kreb's pdf

Comparison between Glucokinase & Hexokinase

Tissue-specific distribution of the two

enzymes ensures that:

At low blood glucose concentrations, liver

is prevented from utilizing glucose until the

nutrient requirements of other tissues are

satisfied

Page 9: 3 glycolysis+kreb's pdf
Page 10: 3 glycolysis+kreb's pdf
Page 11: 3 glycolysis+kreb's pdf

(Lactate Fermentation)(Ethanol + CO2)

Page 12: 3 glycolysis+kreb's pdf

36

Page 13: 3 glycolysis+kreb's pdf
Page 14: 3 glycolysis+kreb's pdf

< TARGET="display">

Stages of Glycolysis

Page 15: 3 glycolysis+kreb's pdf

< TARGET="display">

Stages of Glycolysis

Page 16: 3 glycolysis+kreb's pdf
Page 17: 3 glycolysis+kreb's pdf

Stages of Glycolysis

Page 18: 3 glycolysis+kreb's pdf

Stages of

Glycolysis

Page 19: 3 glycolysis+kreb's pdf

< TARGET="display">

Page 20: 3 glycolysis+kreb's pdf

Substrate-Level

Phosphorylation

Rx 7 and 10

Page 21: 3 glycolysis+kreb's pdf

Substrate-Level Phosphorylation

Page 22: 3 glycolysis+kreb's pdf

PFK is the regulatory (key) enzyme in glycolysis!

• The second irreversible reaction of glycolysis

• Large negative ∆G, means PFK is highly regulated

• PFK is regulated by:

– Citrate is an allosteric inhibitor

– ATP also inhibits PFK, while AMP activates PFK

– Fructose-2,6-bisphosphate is allosteric activator

– PFK increases activity when energy status is low

– PFK decreases activity when energy status is high

Page 23: 3 glycolysis+kreb's pdf

1

2

3

5 4

6

89

Metabolic Significance of Glycolysis

Page 24: 3 glycolysis+kreb's pdf
Page 25: 3 glycolysis+kreb's pdf

< TARGET="display">

1

2

3

• The three irreversible enzymes (Glucokinase,

Phosphofructokinase, Pyruvate kinase) are

under the control of Insulin

• Insulin induces the synthesis of:

Page 26: 3 glycolysis+kreb's pdf

Regulation of Glycolysis

1- After carbohydrate meal:

Blood glucose level Stimulates insulin

secretion Increases synthesis of

glucokinase, phosphofructokinase & pyruvate kinase

Enhances glycolysis

2- During fasting:

Blood glucose level Inhibits insulin

secretion & stimulates glucocorticoid secretion

Increases the synthesis of the four enzymes that

reverse glycolysis (Stimulate gluconeogenesis)

Page 27: 3 glycolysis+kreb's pdf

3- Pasteur effect:

Increased oxygen inhibits glycolysis, since

increased citrate and ATP or increased ATP/ADP

ratio which inhibit phosphofructokinase (the rate

limiting enzyme of glycolysis)

Decreased ATP/ADP ratio or increased ADP, AMP

& Pi activates phosphofructokinase

4. Glycolysis inhibited by iodoacetate, fluroacetate &

arsenite, since they inhibit Kreb’s cycle

Page 28: 3 glycolysis+kreb's pdf
Page 29: 3 glycolysis+kreb's pdf

Fate of Pyruvate

Pyruvate Decarboxylase

& Alcohol DHLactate DHPyruvate DH

In CytoplasmIn Mitochondria

2 Pyruvate

Page 30: 3 glycolysis+kreb's pdf

< TD>

Page 31: 3 glycolysis+kreb's pdf

< TD>

We

Page 32: 3 glycolysis+kreb's pdf

< TD>

Lactate Dehydrogenase

For regeneration of NAD

Page 33: 3 glycolysis+kreb's pdf
Page 34: 3 glycolysis+kreb's pdf

• Lactate DH in Heart & Muscles:

Heart (H4) Muscle (M4)

H HHH

M MMM

H MMM

H HMH

H HMM

LDH5LDH1

LDH2 LDH3 LDH4

Different forms of Lactate Dehydrogenase

• Lactate DH in different tissues:

H3M H2M2 HM3

Page 35: 3 glycolysis+kreb's pdf

LDH

CPK

Page 36: 3 glycolysis+kreb's pdf

CatabolismAnabolism

LDH5 & LDH4LDH1 & LDH2

Page 37: 3 glycolysis+kreb's pdf

< TD>

TPP

Page 38: 3 glycolysis+kreb's pdf

12

Cyto

so

l

Acetaldehyde

Lactate & Ethanol Fermentation

Decarboxylase

Alcohol

Dehydrogenase

Page 39: 3 glycolysis+kreb's pdf

Rapoport-Luebering Cycle in RBCs

(R-L Cycle)

1,3- Diphosphoglycerate 2,3- Diphosphoglycerate

(2,3-DPG)

3- Phosphoglycerate

Mutase

Phoshatase

3-Phoshoglycerate

kinaseADP

ATP

Pi

• To meet this deficiency in ATP

synthesis, glycolysis rate in

RBCs increases.

7

Complete glycolysis

1

Page 40: 3 glycolysis+kreb's pdf

Rapoport-Luebering Cycle in RBCs

(R-L Cycle) 1

Page 41: 3 glycolysis+kreb's pdf

Pyruvate Kinase Deficiency in RBCs

1.The genetic deficiency of pyruvate kinase in

RBCs leads to hemolytic anemia.

2.This is due to inhibited (reduced rate of)

glycolysis and lowered level of ATP synthesis.

3.So the rate of synthesis of ATP is inadequate to

meet the energy needs of the cell to maintain

the structural integrity of erythrocytes.

3

Page 42: 3 glycolysis+kreb's pdf

1.Malate shuttle (Dicarboxylic Acid Shuttle).

2.Glycerol phosphate shuttle.

Two Shuttle Pathways for

Oxidation of Cytoplasmic NADH

Page 43: 3 glycolysis+kreb's pdf

(Dicarboxylic

Acid Shuttle)

Cytoplasm

(3 ATP)

(From glycolysis)1.Malate Shuttle

Page 44: 3 glycolysis+kreb's pdf

electron respiratory chain

2- -Glycerol Phosphate Shuttle

Cytosol

2 ATP(2 ATP)

Page 45: 3 glycolysis+kreb's pdf

2- -Glycerol Phosphate Shuttle

2 ATP

Page 46: 3 glycolysis+kreb's pdf

< TD>

Page 47: 3 glycolysis+kreb's pdf

Fate of Pyruvate

2 pyruvate + 2 NAD+ + 2 CoA ----> 2 acetyl CoA + 2 NADH + 2 carbon dioxide

H

Oxaloacetate

Alanine

Alanine

Cyto

pla

sm

Mit

och

on

dri

a

12

5

3

46

Acetaldehyde

Page 48: 3 glycolysis+kreb's pdf

1. Decarboxylation: Removal of CO2 (Decarboxylase,

TPP as coenzyme).

2. Oxidation of the remaining two-carbon compound

and reduction of NAD+ (Dehydrogenase, CoASH,

FAD & NAD+).

3. Trans-acetylating function: Attachment of CoA with

a high energy thio-ester bond to form Acetyl CoA

(Transacetylase, Lipoic acid).

Pyruvate + NAD+ + CoASH Acetyl CoA + NADH + CO2

• Pyruvate Dehydrogenase:

• A multienzyme complex has 3 Functions:

Page 49: 3 glycolysis+kreb's pdf

Pyruvate Acetyl CoA

FAD CoA-SH

NADH + CO2

NAD+ TPP

Lipoic acid

Pyruvate DH

1 2

3

5

4

Page 50: 3 glycolysis+kreb's pdf

NADH & ATP

Pyruvate Acetyl CoA1- Product inhibition

2- Covalent modification

(Protein kinase)

(directly)

3- Insulin

Pyruvate DH

Regulation of Pyruvate DH

-

--

+

Page 51: 3 glycolysis+kreb's pdf

Pyruvate Acetyl CoA

Insulin Allosterically

Pyruvate DH

Carboxylation of Pyruvate

-

+

Pyruvate OxaloacetateBiotin

ATP + CO2 ADP + Pi

Pyruvate

Carboxylase

-+

Page 52: 3 glycolysis+kreb's pdf
Page 53: 3 glycolysis+kreb's pdf

OH

(( ) )CH3

-Alanine Pantoic acid

Page 54: 3 glycolysis+kreb's pdf

Sources & Fate of

Acetyl CoA

12

3

5

Ketone

Bodies

4

Cholesterol

Page 55: 3 glycolysis+kreb's pdf

Tricarboxylic Acid Cycle (TCA)

Citric Acid Cycle, Kreb’s Cycle

Third Stage of Metabolism

Page 56: 3 glycolysis+kreb's pdf
Page 57: 3 glycolysis+kreb's pdf

2 Carbons4 Carbons

6 Carbons

5 Carbons4 Carbons

4 Carbons 4 Carbons

4 Carbons

3 Carbons

Page 59: 3 glycolysis+kreb's pdf

3 ATP

3 ATP

1 ATP

2 ATP

3 ATP

Page 60: 3 glycolysis+kreb's pdf

• It is the final pathway for oxidation (3rd stage) of

all foodstuffs to CO2 + H2O + Energy.

• It is important for the interconversion of

carbohydrates, fats & proteins.

• All reactions are reversible except: Citrate

synthase, Isocitrate DH & -Ketoglutarate DH.

• The rate limiting enzyme is Citrate synthase.

Comments & Biological

Significance of TCA Cycle

Page 61: 3 glycolysis+kreb's pdf

• Mitochondrial isocitrate DH is NAD+

linked, while cytoplasmic isocitrate DH is

NADP+ linked.

• TCA is the major source of succinyl Co A

which used for:

– Heme synthesis.

– Ketolysis.

– Detoxication reactions.

Comments & Biological

Significance of TCA Cycle

Page 62: 3 glycolysis+kreb's pdf

1. Insulin activates pyruvate DH & inhibits pyruvate

carboxylase, thus directing pyruvate towards complete

oxidation through kreb’s cycle.

2. Acetyl Co A inhibits pyruvate DH & activates pyruvate

carboxylase, thus directing pyruvate & glucose towards

formation of oxaloacetate to combine with excess Acetyl

Co A for the optimal activity of kreb’s cycle.

• During starvation (glucose supply is low & fat oxidation

provides excess Acetyl Co A), so oxaloacetate is

required.

Regulation of Kreb’s Cycle

Page 63: 3 glycolysis+kreb's pdf

3. So, Kreb’s cycle is inhibited by:

a) Starvation (No carbohydrates).

b) Diabetes mellitus (No insulin).

c) Anaerobic conditions (No oxygen).

4. It is inhibited in vitro by fluroacetate & iodoacetate

which form flurocitrate & iodocitrate that inhibits

aconitase.

5. Malonic acid is a competitive inhibitor of succinate

dehydrogenase.

6. Arsenite inhibits Kreb’s cycle.

Regulation of Kreb’s Cycle

Page 64: 3 glycolysis+kreb's pdf

Effect of Fluroacetate on TCA

• Flurocitrate inhibits aconitase

Page 65: 3 glycolysis+kreb's pdf

23

4

Metabolic Significance of Kreb’s Cycle

1

Page 66: 3 glycolysis+kreb's pdf

Sources of Oxaloacetate

1. Pyruvate, in mitochondria (Pyruvate

carboxylase).

2. Malate, in mitochondria, by malate DH.

3. Citric acid, in cytoplasm (ATP-Citrate lyase).

4. Aspartic acid, by transamination in both

cytoplasm & mitochondria.

Page 67: 3 glycolysis+kreb's pdf

aspartate -ketoglutarate oxaloacetate glutamate

Aminotransferase (Transaminase)

COO

CH2

CH2

C

COO

O

COO

CH2

HC

COO

NH3+

COO

CH2

CH2

HC

COO

NH3+

COO

CH2

C

COO

O + +

Page 68: 3 glycolysis+kreb's pdf

Fate of Oxaloacetate

1. Aspartic acid, by transamination.

2. Citric acid, by citrate synthase.

3. Malate, in mitochondria, by malate DH.

4. Phosphoenolpyruvate by reversal glycolysis

(Gluconeogenesis), in cytoplasm, by PEP

Carboxykinase.

Page 69: 3 glycolysis+kreb's pdf

1. Excretion through lungs (main fate).

2. Combined with ammonia to form urea.

3. Combined with ammonia to form pyrimidine.

4. Enters in the formation of C6 of purines.

5. Fixation into organic acids (Carboxylation):

1. Pyruvic acid + CO2 Oxaloacetic acid.

2. Acetyl Co A + CO2 Malonyl Co A.

3. Propionyl Co A + CO2 Methylmalonyl Co A.

Fate of CO2