Top Banner
2D FT Imaging MP/BME 574
47

2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Dec 23, 2015

Download

Documents

Tamsin Cobb
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

2D FT Imaging

MP/BME 574

Page 2: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Frequency Encoding

T

yy

yy

dssGtk

generalIn

TGk

0

)()(

,

Time (t)

Temporal Frequency (f)

FT

Proportionality

Position (x, or y)

FT

Proportionality

Spatial Frequency (k)

Page 3: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

2D Fast GRE Imaging

Gy

RF

Gx

TE

Dephasing/ Rewinder

Dephasing/ Rewinder

Shinnar-LaRoux RF

Phase Encode

Asymmetric Readout

Gz

TR = 6.6 msec

Page 4: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Summary

• Frequency encoding– Bandwidth of precessing frequencies

• Phase– Incremental phase in image space

• Implies shift in k-space

• Entirely separable– 1D column-wise FFT– 1D row-wise FFT

Page 5: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

2D FT

y

xk

k

Start

Finish

22

,

)()(

)()(

0

0

yy

y

T

yy

t

xx

Nn

Nwhere

kynTG

dssGtk

dssGtk

Page 6: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

3D FT

y

z

k

k

kx

Tscan =Ny Nz TR NEX

i.e. Time consuming!

Page 7: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Zero-padding/Sinc Interpolation

• Recall that the sampling theorem – Restoration of a compactly supported (band-

limited) function– Equivalent to convolution of the sampled

points with a sinc function

Page 8: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Case II

FT

k-space: Image Space:

kz

ky

Page 9: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Case III

FT

k-space: Image Space:

Methods: Sampling

kz

ky

Page 10: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Case II Nyquist Case III Corner

Page 11: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Case II: Zero-filled

FT

k-space: Image Space:kz

ky

Page 12: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

kz

ky

Case III: Zero-Filled

FT

k-space: Image Space:

Methods: Sampling

Page 13: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Case II: Nyquist Zero-filled Case III: Corner Zero-filled

Page 14: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Apodization

• Rect windowing implies covolution with a truncated sinc function leading to Gibbs’ Ringing

• Desire to smooth the windowing function so as to diminish ringing.– Gaussian is one option discussed by Prof.

Holden– MRI often uses “Fermi” Filter:

;a)./beta))-)exp((abs(x+1./(1 = f

Page 15: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

)()(),(1

1)(

2121 kHkHkkHe

kH

sep

k

),(),(),(

)(),(

212121

21 22

21

kkFkkHkkG

kHkkHkkkrradialradial

r

Page 16: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Point Spread Functions

Un-windowed: Radial Window:

),( 21 nnhsep ),( 21 nnhradial

Page 17: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Ref Corners Radial

),(),(),( 212121 nnfnnhnng sep ),(),(),( 212121 nnfnnhnng radial ),( 21 nnf

Page 18: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-5 15 35

Angle (degrees)

Re

solu

tio

n (

mm

/lp

)

Not windowed

Windowed

Cosine reference

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-5 15 35

Angle (degrees)

Re

solu

tio

n (

mm

/lp

)

Not Windowed

Windowed

Cosine reference

Angular Dependence w/o Zero-filling

)cos(

)cos(max

max

xres

x

res

k

k

r

x

Page 19: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Angular Dependence with Zero-filling

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-5 15 35

Angle (degrees)

Res

olut

ion

(mm

/lp)

Not windowed

Windowed

Cosine reference

Page 20: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Experimental Results

= 45º= 45º

0 Degrees

45 Degrees

Methods: Point response function

Page 21: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Summary

• Samples in 2D k-space represent 2D sinusoids at specific harmonics and at specific rotation angles

• Interpolation by zero-filling leads to:– Reduced partial volume artifact– Increased spatial resolution at specific angles

• Role of Apodization window– Increases SNR – Decreases ringing artifact– Choice effects the angular symmetry of the PSF

Page 22: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Point response function due to time-dependent contrast

• Example showing mapping on contrast-enhanced signal to model the point response function– Predict attainable resolution – Application to carotid artery MR angiography

Page 23: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, Bernstein MA, Huston J III, Riederer SJ

Point Spread Function (PSF) Analysis

• Step 1: Measure enhancement curves in patients

• Step 2: Map enhancement curves to k-space

• Step 3: Transform result to image space to obtain the point

spread function

Page 24: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Step 1: Enhancement Model

Fitted Two Phase Gamma VariateC

on

tras

t E

nh

ance

men

t

Time (sec)0 10 20 30 40 50 60 70 80

0

20

40

60

80

100

120

140

160

Composite FitFirst Pass Fit

Residual FitMeasured Data

/)( knekttb

Page 25: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Start

y

z

k

Finish

Overall ImageContrast

High DetailInformation

SampledPoints

k

Step 2: Mapping to k-Space

)(2 tkkk

TRt

zy

Page 26: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Step 2: Mapping to k-Space

Spatial Frequency (cycles/mm)

Co

ntr

ast

En

han

ce

me

nt

(se

c)-1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.01

0.02

0.03

0.04

0.05

0.06

k-Space Weighting

Composite k-SpaceFirst Pass Only

Residual

Measured Data

Page 27: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

The Hankel Transform

TR

kkM

tkkk

TRt

ekttb

zy

zy

kn

)(

)(

2

/

Page 28: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Step 3: Transform to Image Space

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-0.01

0

0.01

0.02

0.03

0.04

0.05

Analytical PSF for Fitted Curve

PS

F A

mp

litu

de

(mm

-sec

2 )-1

Radius (mm)

Composite PSF

First Pass PSF

Residual PSF

Image Contrast

Spatial Resolution

Page 29: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Analysis: Spatial Resolution

FWHM 2FOV y FOV z TR

1

Full Width at Half Maximum (FWHM) of the Point Spread Function is given by:

where,FOVy and FOVz are the phase encoding Fields of ViewTR is the repetition time1 is the time to peak enhancement of the bolus curve

Page 30: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

PSF Dependence on Acquisition Time

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Radius (mm)

PS

F a

mp

litu

de

(mm

2 -sec

)-1

Dependence of PSF on Acquisition Time

Infinite ScanTacq = 230 secTacq = 90 secTacq = 50 secTacq = 10 sec

Tacq = Acquisition Time in seconds

10

50

90

230 sec, Maximum Spatial Resolution

Page 31: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

213 sec1.2 1.6

2.0

2.6 3.2

4.2

5.2

Z

Y

10 sec50 sec

90 secLine Pairs/mm

Acquisition Time (sec)

PSF Dependence on Acquisition Time

Page 32: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Experiment: FOVz Reduction

13 cm X 6.4 cm

13 cm X 4.0 cm

Z

Y

Page 33: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Carotid and Vertebral Arteries: Acquisition Parameters

– FOV: 22 cm (S/I) X 15 cm (R/L) X 6 cm (A/P)– Matrix: 256 X 168 X 40-44– Acquired Voxel: 0.9 mm X 0.9 mm X 1.4 mm

– 2X Zerofilling in all three directions– TR/TE 6.6 msec/1.4 msec– Acquisition Time: 44-51 seconds– 20 cc Gd

Page 34: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Left Carotid Artery Stenosis: Reconstruction at Multiple Time Points

33 sec22 sec11 sec 44 secAcquisition Time:

X

Z

X

Z

Coronal MIP, Full Data Set:

MIP Reprojec-

tions

Page 35: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Right Carotid Artery Stenosis: Reconstruction at Multiple Time Points

11 sec 22 sec 33 sec 44 secAcquisition Time:

X

Z

X

Z

Page 36: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Decreased FOV

1.0 mm 1.2 mm 1.6 mm 2.0 mm 2.6 mm

15 cm X 6.0 cm

20 cm X 6.0 cm

FOVy

13 cm X 6.4 cm

13 cm X 4.0 cm

FOVz

Z

Y

Z

Y

Page 37: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Fain SB, et al., MRM 42 (1999)

Increased Scan Time

Z

Y

10 sec50 sec

90 sec213 sec1.2

1.6

2.0

2.6

3.2

4.2

5.2

Page 38: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

Partial k-Space Acquisition

• Means of accelerating image acquisition at the expense of minor artifacts– ¾ k-space– ½ k-space -> Hermetian symmetry

• Phase in the image space complicates matters– In practice, MR images have non-zero phase due to

magnetic field variations• Susceptibility• General field inhomogeneity

– “Homodyne” reconstruction required • Low spatial frequency estimation of the phase

Page 39: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

2D FT

y

xk

k

Start

Finish

22

,

)()(

)()(

0

0

yy

y

T

yy

t

xx

Nn

Nwhere

kynTG

dssGtk

dssGtk

Page 40: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

2D FT

y

xk

k

Start

Finish

22

,

)()(

)()(

0

0

yy

y

T

yy

t

xx

Nn

Nwhere

kynTG

dssGtk

dssGtk

2

N

4

N- where yy n

Page 41: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

FI = fftshift(fft(fftshift(I)));for i = 1:192,FI_34(i,:) =FI(i,:);endI_34 = fftshift(ifft(fftshift(FI_34)));figure;subplot(2,2,1),imagesc(abs(I_34));axis('image');colorbar;colormap('gray');title('Magnitude')subplot(2,2,2),imagesc(angle(I_34));axis('image');colorbar;colormap('gray');title('Phase')subplot(2,2,3),imagesc(abs(I-I_34));axis('image');colorbar;colormap('gray');title('Error')gtext('Three-quarter k-space')

Page 42: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

2D FT

y

xk

k

Start

Finish

22

,

)()(

)()(

0

0

yy

y

T

yy

t

xx

Nn

Nwhere

kynTG

dssGtk

dssGtk

2

N0 where yn

Page 43: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

for i = 1:129,FI_Herm(i,:) =FI(i,:);endI_Herm = fftshift(ifft(fftshift(FI_Herm)));figure;subplot(2,2,1),imagesc(abs(I_Herm2));axis('image');colorbar;colormap('gray');title('Magnitude')figure;subplot(2,2,1),imagesc(abs(I_Herm));axis('image');colorbar;colormap('gray');title('Magnitude')subplot(2,2,2),imagesc(angle(I_Herm));axis('image');colorbar;colormap('gray');title('Phase')subplot(2,2,3),imagesc(abs(I-I_Herm));axis('image');colorbar;colormap('gray');title('Error')gtext('One-half k-space')

Page 44: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

2D FT

y

xk

k

Start

Finish

22

,

)()(

)()(

0

0

yy

y

T

yy

t

xx

Nn

Nwhere

kynTG

dssGtk

dssGtk

2

N0

;12

N- where

y

''

y

n

n

Page 45: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

count2 = 128;for i = 130:256,FI_Herm(i,:) =conj(FI(count2,:));count2 = count2-1;endI_Herm2 = fftshift(ifft(fftshift(FI_Herm)));figure;subplot(2,2,1),imagesc(abs(I_Herm2));axis('image');colorbar;colormap('gray');title('Magnitude')save phase_phantomsubplot(2,2,2),imagesc(angle(I_Herm2));axis('image');colorbar;colormap('gray');title('Phase')subplot(2,2,3),imagesc(abs(I-I_Herm2));axis('image');colorbar;colormap('gray');title('Error')gtext('Hermetian k-space')

Page 46: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.
Page 47: 2D FT Imaging MP/BME 574. Frequency Encoding Time (t) Temporal Frequency (f) FT Proportionality Position (x, or y) FT Proportionality Spatial Frequency.

FIp = fftshift(fft(fftshift(IIII)));FIp_Herm = zeros(256);for i = 1:129,FIp_Herm(i,:) =FIp(i,:);endcount2 = 128;for i = 130:256,FIp_Herm(i,:) =conj(FIp(count2,:));count2 = count2-1;endIp_Herm = fftshift(ifft(fftshift(FIp_Herm)));figure;subplot(2,2,1),imagesc(abs(Ip_Herm));axis('image');colorbar;colormap('gray');title('Magnitude')subplot(2,2,2),imagesc(angle(Ip_Herm));axis('image');colorbar;colormap('gray');title('Phase')subplot(2,2,3),imagesc(abs(I-Ip_Herm));axis('image');colorbar;colormap('gray');title('Error')gtext('Attempt at Hermetian k-space for Image with Phase')