Top Banner

of 4

276-279

Jul 07, 2018

Download

Documents

Sinhroo
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 276-279

    1/4

    CONCLUSIONS

    i. Being an austeni te-form ing element, nitrogen (up to 0.36%) hardens austenite into

    austeni tic-fer ritic steels, but significan tly reduces the amount of ferrite - from 65 to 35%.

    The overall effect of this influence of nitrogen is to reduce the strength properties of the

    steels under investigation.

    2. A reduction in the amount of a-phase in the structure of dual-phase steels with the

    introduction of nitrogen is accompan ied by pronounced enrichment of the ferrite with ferrite-

    forming elements, primar ily with chromium and molybdenum, and its impoveris hment with austenite-

    forming elements. This contributes to the formation of o-phase, which leads to embrittlemen t

    of the steel.

    LITERATURE CITED

    i. N. V. Korolev, V. V. Ryukhin, and S. A. Gorbunov, Spect ral Emis sion Micro anal ysis [in

    Russian], Mashinostroenie, Leningrad (1971).

    2. N. V. Korolev, G. G. Kolchin, and A. N. Podust, Appara tus for elec tri cal- dis char ge spectral

    microan alysis and its use, in: Machine Buil ding - A Progress ive Technolo gy and High Com-

    ponent Qual ity [in RussianJ , Tol' yatti (1983), pp. 16-17.

    3. R. Scherer, G. Riedrich, and H. Kessner, Die wirkung von stickstoff in austeniti schen

    und austenit isch - ferritisc hen chrom- nickel-s tahlen, Stahl Eisen, 62, No. 17, 347-352

    (1942).

    4. A. G. Alton, An Fe-C r-Mo -Ni si gma phase, J. Met., 6, No. 8, 904-905 (1954).

    5. H. T. Shirley, Micr ostr uctu ral char acte rist ics of acid corro sion in 18% Cr, 8-14% Ni,

    3% Mo steels , J. Iron Steel Inst., 174, No. 3, 242-249 (1953).

    6. J. J. Gilman, Harde ning of hig h-c hro miu m steels by sigm a-ph ase formation , Trans. Am.

    Soc. Met., 43, 161-192 (1951).

    7. I. Ya. Sokol, Dual-P has e Steels [in Russian], M etall urgiy a, M osc ow (1974).

    SOLUBILITY OF TITANIUM AND NIOBIUM CARBIDES IN

    HIGH-CHROMIUM FERRITE

    N. A. Gorokhova, V. I. Sarrak,

    and S. O. Suvorova

    UDC 668.15'26'71:539.67:661.665

    Steels alloyed with ch romium and aluminum are widely used for high-temperatu re operations.

    The stability of these steels depends heavi ly on their carbon content [1-3], and deteriorates

    as it increases. Alloyi ng of type Khl5Yu5 steels with such carbide-for ming elements as

    titanium and niobiu m leads to the formation of diffic ult-to -dissol ve carbides and nitrides

    and to a reduction in the carbon content in the solid solution. Data on carbon content in the

    solid solution of these steels are limited.

    The purpose of the present study was to investigate the solubility of titanium and

    niobiu m carbides in type Khl5Yu5 steels. The chemical compositi on of the steels investigated

    is presented in Table i.

    The method of investigating the temperatur e depen dence of internal friction (TDIF) was

    used to de te rm in e the carbon content in the solid solution. For this purpose, we employed a

    reverse torsion pendul um-typ e relax ation unit and wire specimens 0.8 mm in diameter; the

    vibrati on frequency was 1H z. All specimens were prequench ed in water from 1250°C (holding

    for 1 h) to produce a similar grain size, and then quenched repeatedly from different temper-

    ature s -- from 1350°C to 550°C (after each 100°C). The TDIF curves of the steels that we in-

    vestigated, which were prequenched from 1350°C in water, are presented in Fig. i. In con-

    formity with the results of a theoretica l investiga tion conducted earlier [4], the maximu m

    observed on these TDIF curves at 260...380°C is the Snoek peak, and is governed by

    I. P. Bardin Central Scientific -Rese arch Institute of Ferrous Metallurgy. Translate d

    from Metall oveden ie i Termich eskaya Obrabotka Metallov, No. 4, pp. 38-40, April, 1986.

    276 0026-0673/86/0304-0276512.50 © 1986 Plenum Publishing Corporation

  • 8/18/2019 276-279

    2/4

    TABLE i.

    Element content,

    Melt

    Nb

    C Cr AI [ Ti

    0 03 15,1 4,9 [

    0,06 14,6 4,6 0~-40

    0 03 17 2 5 5 [ 0 28

    0,04 15,5 5,5

    0,03 14,8 5,5 0736

    0,24

    Q-7.IO4 ,,

    8o

    I

    i \

    20

    ~

    0 100 200 300 ~QO~c,

    Fig. i. Tempera ture dependen ce

    of internal friction, obtained

    after quenching specimens from

    1350°C. Melt numbers are indi-

    cated near curves

    the presence of carbon atoms in the solid solution (high-chr omium ferrite); in this case, the

    height of this maxim um is proporti onal to the carbon content in the solid solution. The

    presence of nitrogen in the steels investigated did not affect the shape of the TDIF curves,

    since virtually all the nitrogen is bonded in di fficul t-to-d issolve alumin um nitrides or titani

    or niobiu m carbides, and its content in the solid solution is negligible. Proceeding from th

    solu bili ty p rodu ct of alumi num nit ride [5] for a total A1 content of 5% in the steel, it is

    possible to calculate the amount of nitrogen in the solid solution using the following

    equation:

    7500

    log

    ~ |AI] [NIl ----T--- 1 , 4 8 , I

    wher e L is the solubi lity product, and T is the temper atur e in °K.

    The nitroge n content in the solid solution is 2.5 10-4% at 1200°C. This amount of nitro

    gen does not affect the shape of the TDIF maximum.

    The results of phase analysis conducted on type Khl5Yu5 steels after holding at 780°C

    for 20 min (cooling in water) are presented below.

    Steel

    Khl5Yu5

    KhI5Yu5T

    KhI5Yu5TB

    Excess phases

    (Fe, Cr)TC s

    (Fe, Cr)TCa; TiC, TiN

    (Fe, Cr)TCs; (Ti, NB) (C, N)

    Carbon-solubility curves, which are plotted for the type Khl5Yu5 steels alloyed with

    titanium and niobium and niobiu m jointly with titanium, are presented in Fig. 2. The intro-

    duction of up to 0.47% and 0.28% Ti in the steel with 0.06 and 0.03% C, respectively, leads

    to a reduction in carbon solubility as compared with its solubility in the unalloyed steel

    to 0.012...0. 015% at I150°C. For a combined alloying of 0.36% Ti and 0.24 % Nb and

    a total carbon content of 0.03% in the steel, the carbon solubility is reduced to 0.03% at

    277

  • 8/18/2019 276-279

    3/4

    . / /

    , . ; p t / .

    71

    ~ i

    i

    i

    3

    ~

    7

    6 ~

    0 o,07 o ,02 o,03 ,o,o~ o,05 Cso.s

    Fig. 2.

    log L

    -I

    -2

    -

    I

    / e

    7,0 6,f 70 /T, o K_ 1

    Fig. 3.

    Fig. 2. Carbon content in solid solution of steels with

    different alloying additives. Melt numbers are indicated

    near curves.

    Fig. 3. Temper ature depend ence of solubility product of

    titaniu m and niobi um carbides: i, 3) data from Tomilin

    and Shor [6]; 2, 4) data obtain ed by authors.

    I150°C. It must be considered that according to phase-ana lysis data, complex titanium and

    niobium carbonitri des, the thermody namic properties of which differ from similar properties

    of simple titanium carbides and nitrides, form in steel containing titanium and niobium.

    The lowest carbon solubility (approxima tely 0.0015%) at I150°C is characteris tic for the

    0.03% C steel alloyed with niobium. It is apparent from the carbon- solubil ity curves obtained

    (Fig. 2) that a reduc tion in the overall carbo n cont ent in tbe steel from 0.06 to 0.03% and

    also a certain increase in titaniu m content shift the solubility curves into the region of

    lower carbo n conc entr atio ns (Fig. 2).

    Let us calculate the solubility product of the titanium and niobium carbides contained

    in Cr-A1 steels. It is possible to determin e the carbon content from the solubilit y curve

    (Fig. 2), and then calculate the titanium and niobiu m concent ration in the solid solution at

    1150, 1250, and 1350°C. The temperatu re de pendence of the solubility pr oduct of the titanium

    and niobium carbides for steels 2 and 4 is presented in Fig. 3.

    For convenience of calculat ion and comparison of the carbide solubility, the content

    of elements is expressed in atom percents. Data on the solubility of titanium and niobium

    carbides in austenit e [6] are presented here, however, since there are no data on the solu-

    bility of similar carbides in ferrite in the literature.

    It is poss ible on the basis of the data obta ined (Fig. 3) to deriv e equat ions descr ibin g

    the temperatu re depende nce of the solubilit y products. For the titanium carbide contained

    in steel KhI5Yu5T (melt 2) with 0.06% C, for example, the temperature dependence of the

    solubility product is as follows:

    825O

    l p g L [ T i ] [ c ] = - - T 4,11, 2 )

    For the niobium carbide contained in steel KhlSYu5B (melt 5) with 0.03% C, this relationship

    is described by the equation

    95O0

    log LlN bl [C| ---- - ~ + 3, 4, 3 )

    278

  • 8/18/2019 276-279

    4/4

    A c c o r d i n g t o N a r i t a [ 7] a n d G o l d s c h m i d t [ 8 ] , t h e s o l u b i l i t y p r o d u c t s o f t i t a n i u m a n d

    n i o b i u m c a r b i d e s i n a u s t e n i t e c a n b e d e s c r i b e d b y t h e f o l l o w i n g e q u a t i o n s :

    I 0 4 7 5

    l o g L I T i ] I t ] = - - ~ + 5 , 3 3 4 )

    ( f o r s t e e l w i t h 0 . 1 % C a n d 0 . 0 3 . . . 0 . 1 0 % T i ) , a n d

    7 7 0 0

    l o g L IN bl [C ] ---- - - ~ + 3 ,1 8 5 )

    ( f o r s t e e l c o n t a i n i n g u p t o 0 . 1 % C a n d u p t o 0 . 8 % N b) .

    I t s h o u l d b e n o t e d t h a t a c c o r d i n g t o E q s . ( 2 ) - ( 5 ) , s t r a i g h t l i n e s e x i s t i n t he r e g i o n

    o f d i f f i c u l t - t o - d i s s o l v e c a r b i d e s i n c o n f o r m i t y w i t h t h e c l a s s i f i c a t i o n p r e s e n t e d b y T o m i l i n

    a n d S h o r [ 6 ] .

    C O N C L U S I O N S

    I . T h e i n t r o d u c t i o n o f n i o b i u m ( 0 . 7 3 % ) in 0 . 0 3 % C s t e e l l e a d s t o a r e d u c t i o n f r o m

    0 . 0 3 4 t o 0 . 0 0 3 % i n c a r b o n s o l u b i l i t y a t I 1 5 0 ° C , w h e r e a s u p t o 1 . 1 3 % C m a y b e c o n t a i n e d i n t h e

    s t e e l a t t h e t e m p e r a t u r e i n d i c a t e d w i t h o u t a l l o y i n g a d di t i v e s . W i t h t h e i n t r o d u c t i o n o f

    t i t a n i u m , t h e c a r b o n s o l u b i l i t y a l s o d e c r e a s e s a n d a m o u n t s t o 0 . 0 1 5 % a t I 5 0° C w i t h a t o t a l

    c a r b o n c o n t e n t o f 0 . 0 6 % i n t h e s t e e l .

    2 . T h e s o l u b i l i t y c u r v e i s s h i f t ed i n t o t h e r e g i o n of h i g h c a r b o n c o n c e n t r a t i o n s w i t h

    i n c r e a s i n g t o t a l c a r b o n c o n t e n t i n t h e s t e e l a l l o y e d w i t h t i t a n i u m o r n i o b i u m .

    3 . A c c o r d i n g t o r e s u l t s of t he c o m p u t a t i o n o f t h e s o l u b i l i t y p r o d u c t s o f t i t a n i u m a n d

    n i o b i u m c a r b i d e s i n h i g h - c h r o m i u m f e r r i t e i n t h e I 1 5 0 . . . 1 3 5 0 ° C i n t e r va l , n i o b i u m c a r b i d e i s

    m o r e s t a b l e t h a n t i t a n i u m c a r b i d e .

    L I T E R A T U R E C I T E D

    i . I . I . K o r n i l o v , I r o n A l l o y s [ i n R u s s i a n ] , V o l . i , I zd . A k a d . N a u k S S S R , M o s c o w ( 1 9 4 5 ) .

    2 . E . G u d r e m o n , S p e c i a l S t e e l s [ in R u s s i a n ] , V o l. I , G o s u d a r s t v e n n o e N a u c h n o - T e k h n i c h e s k o e

    I z d. L i t e r a t u r y p o C h e r n o i i T s v e t n o i M e t a l l u r g i i , M o s c o w ( 1 9 5 9 ) , p p . 8 8 9 - 8 9 9 .

    3 . A . V. R y a b c h e n k o , A . I . M a k s i m o v , a n d B. I . B e k e t o v , " E f f e c t o f c a r b o n o n t h e h e a t r e s i s -

    t a n c e o f s t e e l K h I 3 Y u S , " Z a s h c h . M e t . , 1 2, No . 4 , 4 6 5 - 4 6 9 ( 1 9 7 6 ) .

    4 . I . A . T o m i l i n , V . I. S a r r a k , N . A . G o r o k h o v a , e t a l ., " N o n u n i f o r m d i s t r i b u t i o n o f c a r b o n

    a t o m s i n i r o n - c h r o m i u m a l l o y s , " F i z . M e t . M e t a l l o v e d . , 5 6 , N o . 3 , 5 0 1 - 5 0 6 ( 1 9 8 3 ) .

    5 . T . G l a g m a n a n d F . B . P i c k e r i n g , " G r a i n - c o a r s e n i n g of a u s t e n i t e , " I r o n S t e e l I n s t . , 2 0 5 ,

    6 5 3 - 6 6 4 ( 1 9 6 7 ) .

    6 . I . A . T o m i l i n a n d F . I . S h o r , " C a r b i d e a n d n i t r i d e s o l u b i l i t y o f t r a n s i t i o n m e t a l s i n

    i r o n a l l o y s , " i n: P r o b l e m s o f M e t a l S c i e n c e a n d t h e P h y s i c s o f M e t a l s [ i n R u s s i a n ] ,

    M e t a l l u r g i y a , M o s c o w . ( 1 97 2 ) , p p . 9 9 - 1 0 6 .

    7 . K . N a r i t a , " S t u d i e s o n e l e m e n t s o f s m a l l q u a n t i t i e s i n i r o n a n d s te e l . V I I. O n t i t a n i u m

    c a r b i d e i n i r o n a n d s t e e l , " J . C h e m . S o c. J p n . , 8 0 , 2 6 6 - 2 6 9 ( 1 9 5 9 ) .

    8 . H . J . G o l d s c h m i d t , I n t e r s t i t i a l A l l o y s , B u t t e r w o r t h s (1 9 6 7 ) .

    79