Top Banner
27. AC circuits (power, resonance, transformers and filters) AC source ⟺
44

27. AC circuits (power, resonance, transformers and filters) AC ...

Jan 17, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 27. AC circuits (power, resonance, transformers and filters) AC ...

27. AC circuits (power, resonance, transformers and filters)

AC source

⟺

Page 2: 27. AC circuits (power, resonance, transformers and filters) AC ...

The RLC Series Circuit;

Section 33.5

𝑖 = Imax sin πœ”π‘‘

𝑅Imax sin πœ”π‘‘

πœ”πΏπΌmax sin πœ”π‘‘ +πœ‹

2

1

πœ”πΆπΌmaxsin πœ”π‘‘ βˆ’

πœ‹

2

βˆ†π‘£ = Ξ”Vmax sin πœ”π‘‘ + πœ‘(βˆ†π‘£ = βˆ†π‘£π‘…+ βˆ†π‘£πΏ+ βˆ†π‘£πΆ)

πœ‘ = tanβˆ’1πœ”πΏ βˆ’

1πœ”πΆ

𝑅

Δ𝑉max = Imax 𝑅2 + πœ”πΏ βˆ’1

πœ”πΆ

2

βˆ†π‘£

βˆ†π‘£πΆ

βˆ†π‘£π‘…

βˆ†π‘£πΏ

phasor diagram

πœ‘

Page 3: 27. AC circuits (power, resonance, transformers and filters) AC ...

What happens if you interchange R and L (LRC)?

A.We get a different expression for the impedance

B.We get the same expressionfor the impedance

Page 4: 27. AC circuits (power, resonance, transformers and filters) AC ...

The RLC Series Circuit;

Section 33.5

𝑖 = Imax sin πœ”π‘‘

𝑅Imax sin πœ”π‘‘

πœ”πΏπΌmax sin πœ”π‘‘ +πœ‹

2

1

πœ”πΆπΌmaxsin πœ”π‘‘ βˆ’

πœ‹

2

𝑣 = Ξ”Vmax sin πœ”π‘‘ + πœ‘(𝑣 = βˆ†π‘£π‘…+ βˆ†π‘£πΏ+ βˆ†π‘£πΆ)

πœ‘ = tanβˆ’1πœ”πΏ βˆ’

1πœ”πΆ

𝑅

Δ𝑉max = Imax 𝑅2 + πœ”πΏ βˆ’1

πœ”πΆ

2

𝑣

βˆ†π‘£πΆ

βˆ†π‘£π‘…

βˆ†π‘£πΏ

phasor diagram

πœ‘

Page 5: 27. AC circuits (power, resonance, transformers and filters) AC ...

6. Power in an AC circuit:

Page 6: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣

Instant power:

Page 7: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣 = πΌπ‘šπ‘Žπ‘₯ sin πœ”π‘‘ βˆ™ π‘‰π‘šπ‘Žπ‘₯ sin πœ”π‘‘ + πœ‘

Instant power:

Page 8: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯ sin πœ”π‘‘ sin πœ”π‘‘ + πœ‘

Instant power:

Page 9: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯ sin πœ”π‘‘ sin πœ”π‘‘ + πœ‘ = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ]

Instant power:

Page 10: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯ sin πœ”π‘‘ sin πœ”π‘‘ + πœ‘ = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ]

P =1

𝑇ࢱ0

𝑇

𝑖 βˆ™ 𝑣 𝑑𝑑

Instant power:

average power:

Page 11: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯ sin πœ”π‘‘ sin πœ”π‘‘ + πœ‘ = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ]

P =1

𝑇ࢱ0

𝑇

𝑖 βˆ™ 𝑣 𝑑𝑑 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

𝑇ࢱ0

𝑇 1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ]

Instant power:

average power:

Page 12: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯ sin πœ”π‘‘ sin πœ”π‘‘ + πœ‘ = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ]

P =1

𝑇ࢱ0

𝑇

𝑖 βˆ™ 𝑣 𝑑𝑑 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

𝑇ࢱ0

𝑇 1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ] =

1

2cos πœ‘ πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

Instant power:

average power:

0

Page 13: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯ sin πœ”π‘‘ sin πœ”π‘‘ + πœ‘ = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ]

P =1

𝑇ࢱ0

𝑇

𝑖 βˆ™ 𝑣 𝑑𝑑 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

𝑇ࢱ0

𝑇 1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ] =

1

2cos πœ‘ πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

Instant power:

average power:

= cos πœ‘ πΌπ‘Ÿπ‘šπ‘  βˆ™ π‘‰π‘Ÿπ‘šπ‘  π‘‰π‘Ÿπ‘šπ‘  ≑1

2π‘‰π‘šπ‘Žπ‘₯

πΌπ‘Ÿπ‘šπ‘  ≑1

2πΌπ‘šπ‘Žπ‘₯

(rms=root mean square)

Page 14: 27. AC circuits (power, resonance, transformers and filters) AC ...

Notes About rms Values

rms values are used when discussing alternating currents and voltages because

β–ͺ AC ammeters and voltmeters are designed to read rms values.

β–ͺ Many of the equations that will be used have the same form as their DC counterparts.

Page 15: 27. AC circuits (power, resonance, transformers and filters) AC ...

If I take the same incandescent light bulb and connect it to an AC source with amplitude

170V and a DC source with amplitude 120V. Which light bulb would be brighter?

A. AC current brighter than DC current

B. DC current brighter than AC current

C. Both would be equally bright

Page 16: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝑝 = 𝑖 βˆ™ 𝑣 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯ sin πœ”π‘‘ sin πœ”π‘‘ + πœ‘ = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ]

P =1

𝑇ࢱ0

𝑇

𝑖 βˆ™ 𝑣 𝑑𝑑 = πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

1

𝑇ࢱ0

𝑇 1

2[cos πœ‘ βˆ’co𝑠 2πœ”π‘‘ + πœ‘ ] =

1

2cos πœ‘ πΌπ‘šπ‘Žπ‘₯ βˆ™ π‘‰π‘šπ‘Žπ‘₯

Instant power:

average power:

= cos πœ‘ πΌπ‘Ÿπ‘šπ‘  βˆ™ π‘‰π‘Ÿπ‘šπ‘  π‘‰π‘Ÿπ‘šπ‘  ≑1

2π‘‰π‘šπ‘Žπ‘₯

πΌπ‘Ÿπ‘šπ‘  ≑1

2πΌπ‘šπ‘Žπ‘₯

(rms=root mean square)

170V/ 𝟐=120V

Page 17: 27. AC circuits (power, resonance, transformers and filters) AC ...

I connect an incandescent light bulb to an AC voltage source, will

the average power through the light bulb depend on the frequency?

A.Yes, the light bulb will be brighter at higher frequency

B.Yes the light bulb will be fainter athigher frequency

C.No change of brightness

Page 18: 27. AC circuits (power, resonance, transformers and filters) AC ...

Light bulb as a function of frequency demo

Page 19: 27. AC circuits (power, resonance, transformers and filters) AC ...

I add a capacitor in series to the incandescent light bulb and the

AC voltage source, will the average power through the light bulb

depend on the frequency?

A. Yes, the light bulb will be brighter at lower frequency

B. Yes the light bulb will be fainter atlower frequency

C. No change of brightness

Page 20: 27. AC circuits (power, resonance, transformers and filters) AC ...

Light bulb + capacitor as a function of frequency demo

Page 21: 27. AC circuits (power, resonance, transformers and filters) AC ...

The RLC Series Circuit;

Section 33.5

𝑖 = Imax sin πœ”π‘‘

𝑅Imax sin πœ”π‘‘

πœ”πΏπΌmax sin πœ”π‘‘ +πœ‹

2

1

πœ”πΆπΌmaxsin πœ”π‘‘ βˆ’

πœ‹

2

𝑣 = Ξ”Vmax sin πœ”π‘‘ + πœ‘(𝑣 = βˆ†π‘£π‘…+ βˆ†π‘£πΏ+ βˆ†π‘£πΆ)

πœ‘ = tanβˆ’1πœ”πΏ βˆ’

1πœ”πΆ

𝑅

Δ𝑉max = Imax 𝑅2 + πœ”πΏ βˆ’1

πœ”πΆ

2

𝑣

βˆ†π‘£πΆ

βˆ†π‘£π‘…

βˆ†π‘£πΏ

phasor diagram

πœ‘

Page 22: 27. AC circuits (power, resonance, transformers and filters) AC ...

The RLC Series Circuit;

Section 33.5

𝑖 = Imax sin πœ”π‘‘

𝑅Imax sin πœ”π‘‘

πœ”πΏπΌmax sin πœ”π‘‘ +πœ‹

2

1

πœ”πΆπΌmaxsin πœ”π‘‘ βˆ’

πœ‹

2

πœ‘ = tanβˆ’1πœ”πΏ βˆ’

1πœ”πΆ

𝑅

𝐼max =βˆ†Vmax

𝑅2 + πœ”πΏ βˆ’1πœ”πΆ

2

𝑣

βˆ†π‘£πΆ

βˆ†π‘£π‘…

βˆ†π‘£πΏ

phasor diagram

πœ‘

𝑣 = Ξ”Vmax sin πœ”π‘‘ + πœ‘(𝑣 = βˆ†π‘£π‘…+ βˆ†π‘£πΏ+ βˆ†π‘£πΆ)

Page 23: 27. AC circuits (power, resonance, transformers and filters) AC ...

The RC Series Circuit;

Section 33.5

𝑖 = Imax sin πœ”π‘‘

𝑅Imax sin πœ”π‘‘1

πœ”πΆπΌmaxsin πœ”π‘‘ βˆ’

πœ‹

2

πœ‘ = tanβˆ’1βˆ’

1πœ”πΆπ‘…

𝐼max =βˆ†Vmax

𝑅2 +1πœ”πΆ

2

π‘£βˆ†π‘£πΆ

βˆ†π‘£π‘…

phasor diagram

πœ‘

𝑣 = Ξ”Vmax sin πœ”π‘‘ + πœ‘(𝑣 = βˆ†π‘£π‘…+ βˆ†π‘£πΆ)

0

Page 24: 27. AC circuits (power, resonance, transformers and filters) AC ...

The RC Series Circuit;

Section 33.5

𝑖 = Imax sin πœ”π‘‘

𝑅Imax sin πœ”π‘‘1

πœ”πΆπΌmaxsin πœ”π‘‘ βˆ’

πœ‹

2

πœ‘ = tanβˆ’1βˆ’

1πœ”πΆπ‘…

𝐼max =βˆ†Vmax

𝑅2 +1πœ”πΆ

2

=βˆ†Vmaxπœ”πΆ

1 + π‘…πœ”πΆ 2

π‘£βˆ†π‘£πΆ

βˆ†π‘£π‘…

phasor diagram

πœ‘

𝑣 = Ξ”Vmax sin πœ”π‘‘ + πœ‘(𝑣 = βˆ†π‘£π‘…+ βˆ†π‘£πΆ)

0

Page 25: 27. AC circuits (power, resonance, transformers and filters) AC ...

The RC Series Circuit;

Section 33.5

𝑖 = Imax sin πœ”π‘‘

𝑅Imax sin πœ”π‘‘1

πœ”πΆπΌmaxsin πœ”π‘‘ βˆ’

πœ‹

2

πœ‘ = tanβˆ’1βˆ’

1πœ”πΆπ‘…

𝐼max =βˆ†Vmax

𝑅2 +1πœ”πΆ

2

=βˆ†Vmaxπœ”πΆ

1 + π‘…πœ”πΆ 2

π‘£βˆ†π‘£πΆ

βˆ†π‘£π‘…

phasor diagram

πœ‘

𝑣 = Ξ”Vmax sin πœ”π‘‘ + πœ‘(𝑣 = βˆ†π‘£π‘…+ βˆ†π‘£πΆ)

0

The current will decay to zero at zero frequency!

Page 26: 27. AC circuits (power, resonance, transformers and filters) AC ...

I add a capacitor and an inductor in series to the incandescent light

bulb and the AC voltage source, will the average power through

the light bulb depend on the frequency?

A. Yes, the light bulb will be brighter at much lower frequency

B. Yes the light bulb will be fainter atmuch lower frequency

C. No change of brightness

D. Yes, the light bulb will be brighter at much higher frequency

E. Yes the light bulb will be fainter at much higher frequency

Page 27: 27. AC circuits (power, resonance, transformers and filters) AC ...

Light bulb + capacitor + loudspeaker (inductor) as a function of frequency demo

Page 28: 27. AC circuits (power, resonance, transformers and filters) AC ...

AC circuit 4 (AC source L+R+C):

RLC circuit

𝑍 = 𝑅2 + (πœ”πΏ βˆ’1

πœ”πΆ)2

tan πœ‘ =πœ”πΏ βˆ’

1πœ”πΆ

𝑅

𝐼 𝑑 =𝑉0𝑍cos πœ”π‘‘ βˆ’ πœ‘

V 𝑑 = 𝑉0 cos πœ”π‘‘

=> Band pass filter

R=10

R=3

R=1

Page 29: 27. AC circuits (power, resonance, transformers and filters) AC ...

AC circuit 4 (AC source L+R+C):

RLC circuit

𝑍 = 𝑅2 + (πœ”πΏ βˆ’1

πœ”πΆ)2

tan πœ‘ =πœ”πΏ βˆ’

1πœ”πΆ

𝑅

𝐼 𝑑 =𝑉0𝑍cos πœ”π‘‘ βˆ’ πœ‘

V 𝑑 = 𝑉0 cos πœ”π‘‘

=> Resonance at 𝝎𝟎 =𝟏

𝑳π‘ͺ

R=10

R=3

R=1

πŽπ‘³ βˆ’πŸ

𝝎π‘ͺ= 𝟎

Page 30: 27. AC circuits (power, resonance, transformers and filters) AC ...

Power as a Function of Frequency

Power can be expressed as a function of frequency in an RLC circuit.

This shows that at resonance, the average power is a maximum.

( )

( )

2 2

22 2 2 2 2

rms

av

o

V RωP

R Ο‰ L Ο‰ Ο‰

=

+ βˆ’

Section 33.7

Page 31: 27. AC circuits (power, resonance, transformers and filters) AC ...

A useful application of RLC: the loudspeaker

β€’ The woofer (low tones) and the tweeter (high tones) are connected in parallel across the amplifier output.

Page 32: 27. AC circuits (power, resonance, transformers and filters) AC ...

8. Transformer:

Page 33: 27. AC circuits (power, resonance, transformers and filters) AC ...

Transformers

An AC transformer consists of two coils

of wire wound around a core of iron.

The side connected to the input AC voltage

source is called the primary and has N1

turns.

The other side, called the secondary, is

connected to a resistor and has N2 turns.

The core is used to increase the magnetic

flux and to provide a medium for the flux to

pass from one coil to the other.

Section 33.8

Page 34: 27. AC circuits (power, resonance, transformers and filters) AC ...

Transformers

Page 35: 27. AC circuits (power, resonance, transformers and filters) AC ...

High voltage transformer:

Page 36: 27. AC circuits (power, resonance, transformers and filters) AC ...
Page 37: 27. AC circuits (power, resonance, transformers and filters) AC ...

9. Filters:

Page 38: 27. AC circuits (power, resonance, transformers and filters) AC ...

High-Pass Filter

The circuit shown is one example of a high-pass filter.

A high-pass filter is designed to preferentially pass signals of higher frequency and block lower frequency signals.

Section 33.9

Page 39: 27. AC circuits (power, resonance, transformers and filters) AC ...

High-Pass Filter, cont

At low frequencies, Ξ”Vout is much smaller than Ξ”vin.

β–ͺ At low frequencies, the capacitor has high reactance and much of the applied voltage appears across the capacitor.

At high frequencies, the two voltages are equal.

β–ͺ At high frequencies, the capacitive reactance is small and the voltage appears across the resistor.

Section 33.9

Page 40: 27. AC circuits (power, resonance, transformers and filters) AC ...

Low-Pass Filter

At low frequencies, the reactance and voltage across the capacitor are high.

As the frequency increases, the reactance and voltage decrease.

This is an example of a low-pass filter.

Section 33.9

Page 41: 27. AC circuits (power, resonance, transformers and filters) AC ...

If I take an LED and connect it to an AC source with amplitude 2 Vrms and a

DC source with amplitude 2 V. Which LED would be brighter?

A. AC voltage brighter than DC voltage

B. DC voltage brighter than AC voltage

C. Both would be equally bright

Page 42: 27. AC circuits (power, resonance, transformers and filters) AC ...

DC vs AC LED brightness

Page 43: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝐼 𝑑 = πΌπ‘šπ‘Žπ‘₯ cos πœ”π‘‘

Current through a light bulb

𝐼 𝑑 = πΌπ‘šπ‘Žπ‘₯ cos πœ”π‘‘ βˆ™ Θ(cos πœ”π‘‘ )

Current through a LED

Theta function (is zero for a negative argument)

πΌπ‘šπ‘Žπ‘₯

βˆ’πΌπ‘Ÿπ‘šπ‘ 

βˆ’πΌ0

πΌπ‘Ÿπ‘šπ‘ 

πΌπ‘šπ‘Žπ‘₯

Page 44: 27. AC circuits (power, resonance, transformers and filters) AC ...

𝐼 𝑑 = πΌπ‘šπ‘Žπ‘₯ cos πœ”π‘‘

Current through a light bulb

𝐼 𝑑 = πΌπ‘šπ‘Žπ‘₯ cos πœ”π‘‘ βˆ™ Θ(cos πœ”π‘‘ )

Current through a LED

Theta function (is zero for a negative argument)

πΌπ‘šπ‘Žπ‘₯

βˆ’πΌπ‘Ÿπ‘šπ‘ 

βˆ’πΌ0

πΌπ‘Ÿπ‘šπ‘ 

πΌπ‘šπ‘Žπ‘₯

Resistance is a linear element

LED (Diode) is a non-linear element