Top Banner
25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS
23

25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Dec 29, 2015

Download

Documents

Bryan Bryant
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

25.6.2015

Software Verification 1Deductive Verification

Prof. Dr. Holger SchlingloffInstitut für Informatik der Humboldt Universität

und

Fraunhofer Institut für offene Kommunikationssysteme FOKUS

Page 2: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 2H. Schlingloff, Software-Verifikation I

Terminal Questions …

• What is the meaning of „total correctness“?

• Why can‘t Hoare-rules prove termination?

• Why is it hard to prove termination?

• What is a well-founded ordering?

• Example?

• Another example?

• A counterexample?

• Can you formulate an induction principle?

• What is a variant?

• How is it used to prove termination?

• Could you prove termination of McCarthy‘s 91-function?

Page 3: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 3H. Schlingloff, Software-Verifikation I

John McCarthy’s 91-Function

={b=1; while (a<=100 || b!=1) if (a<=100) {a+=11; b++;} else {a-=10; b--;} a-=10; }

Show: ⊢ 0<a<=100 a==91

Page 4: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 4H. Schlingloff, Software-Verifikation I

• We do the termination part only.

• Hint for the invariant:

(0<b<=11 & 0<a<=111 & (a<=101 | b!=1))• wfo: N0; Variant: (z) = (z==1111+111b-11a-1);

if 0<a<=100 & b==1, we have zN0

• Assume within the while-loop (z) & (a<=100 | b!=1)) Case a<=100: {a+=11; b++} gives

z-10==1111+111(b+1)-11(a+11)-1 Case a>100: {a-=10; b--;} gives

z-1==1111+111(b-1)-11(a-10)-1

• Thus, in both cases there exists z’<z such that (z’) holds

Page 5: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 5H. Schlingloff, Software-Verifikation I

Magic

method McC91(x:nat) returns (y:nat)

requires 0<x<=100ensures y==91{ var a, b := x, 1; while (a<=100 || b!=1) if (a<=100) {a:=a+11; b:=b+1;} else {a:=a-10; b:=b-1;} y:=a-10;}

Page 6: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 6H. Schlingloff, Software-Verifikation I

Finding Variants is Hard

• Try this one:

Mersenne = {n=0; k=0; while (k<48) {n++; if (isprim((2**n)-1)) k++}}

• ... and apply for the Fields-medal if successful

Page 7: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 7H. Schlingloff, Software-Verifikation I

Proof of Termination Proof Rule

• if ⊢ (z) for some zM and⊢ (z) (z’) ¬b for some z’<zthen program while (b) terminates

•Assume not. Then there is an infinite execution ; ; ; ...

such that b holds before and after each Then there is an infinite descending chain z0,

z1, z2, ... such that z0=z and zi+1<zi

Thus, M is not a wfo.

Page 8: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 8H. Schlingloff, Software-Verifikation I

Binary Search Program

:i=0; k=n;while (i<k) { s=i+(k-i-1)/2; //integer division if (a>x[s]) i=s+1 else k=s} Show

n>=0 i(0<i<n (x[i-1]<x[i])

0<=i<=n j(0<=j<i x[j]<a j(i<=j<n x[j]>=a

no-show

Page 9: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 9H. Schlingloff, Software-Verifikation I

•Variant (z)?

•while (i<k) ... suggest (z) = (z=k-i) ⊢ (z)b (z’) ¬b for some z’<z what is a well-founded order for z?

can we guarantee that zN0 ?

•Example: (assume k>0, j>0)

{i=k; while (i!=0) i-=j} terminates iff k%j==0 Assume k%j==0; wfo: (z) = (z=i/j); zN0 {i=k; while (i>=0) i-=j} terminates always.

Proof?no-show

Page 10: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 10H. Schlingloff, Software-Verifikation I

Transforming Variants

We have to show: ⊢ (z) (z’) ¬bMost important case: ⊢ z=t(x) x=f(x) z’=t(x) ¬b

Let z’=t(f(t-1(z)))

⊢ z=t(x) t-1(z)=x since t-1(t(x))=x⊢ t-1(z)=x t(f(t-1(z)))=t(f(x))⊢ t(f(t-1(z)))=t(f(x)) x=f(x) t(f(t-1(z)))=t(x) (ass)

Therefore, ⊢ z=t(x) x=f(x) t(f(t-1(z)))=t(x)

• Ex.: ⊢ z=i+k i=i-j z’=i+k for z’=z-jno-show

Page 11: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 11H. Schlingloff, Software-Verifikation I

Proof for Binary Search Termination

• Solution for binary search: z=(k-i)N0 ? Show 0<=i<=k<=n is invariant (omitted)

Let (z)= (k-i=z) k-i=z i=i+(k-i-1)/2+1 k-i=z’ for

z’ = (z-1)/2 - 1 < zProof: let t(i) = k-i t(z) = k-z t-1(z)= (k-z)f(i) = i+(k-i-1)/2+1 t(f(t-1(z))) = k-((k-z) +(k- (k-z) -1)/2+1) = (z-1)/2-

1

k-i=z k=i+(k-i-1)/2 k-i=z’ forz’= i+((z+i)-i-1)/2-i=(z-1)/2 <z

no-show

Page 12: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 12H. Schlingloff, Software-Verifikation I

Pre- and Postconditions

• Dijkstra: wp-calculus (weakest precondition) characterize the “weakest” formula which makes a

Hoare-triple valid =wp(.) iff ⊢ and

⊢(') for every ’ for which ⊢’ =wlp(.) iff ⊢{}{} and

⊢(') for every ’ for which ⊢{’} {}

• Example: wp(x++, x==7) = (x==6)

• Dijkstra gives a set of rules for wp which can be seen as notational variant of Hoare logic

Page 13: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 13H. Schlingloff, Software-Verifikation I

• wp(skip, ) = • wp(x=t, ) = [x:=t]

• wp({1; 2}, ) = wp(1, wp(2, ))

• wp(if (b) 1 else 2, ) =((b wp(1, )) (¬b wp(2, )))

• wp(while (b) , ) = z (z) z((b(z)) z’ (z’<z wp(, (z’))) z((¬b(z)) )

where is a loop variant and < a wfo, z new var.! This is a non-constructive definition ! Existence???

Page 14: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 14H. Schlingloff, Software-Verifikation I

Examples

• wp(x=x-3, x>7) = x>7 [x:=x-3] = x-3>7 = x>10

• wp({x*=2; x-=3}, x>7) = wp(x*=2, wp(x-=3, x>7)) = wp(x*=2, x>10) = x>5

• wp(if(a<b) a=b, a>=b) = ((a<b wp(a=b, a>=b) (a>=b wp(skip, a>=b))=((a<b b>=b) (a>=b a>=b)) = T

• wp(while (i>0) i--, i==0) = i>=0

Page 15: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 15H. Schlingloff, Software-Verifikation I

Partial Correctness

• Weakest liberal precondition wlp(,)

• wlp(while (b) , ) = ((b) wlp(, )) ((¬b) )

• Dijkstra also used nondeterministic programs („guarded commands“) guarded-command-program ::= while-program |

guarded-command guarded-command ::= b : e | b : e [] guarded-command b: condition, e: guarded-command-program

Page 16: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 16H. Schlingloff, Software-Verifikation I

Strongest Postconditions

• Dual to weakest precondition: the strongest formula which can be guaranteed to hold after execution =sp(, ) iff ⊢ and

⊢( ') for every ’ for which ⊢ ’

• sp(x=t, )= z (x==t[x:=z] [x:=z]) (z new) e.g. sp(x=x-3, x>7) = z (x==z-3 z>7) = x>4

• Pre- and postconditions are important in the presence of methods and procedures

Page 17: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 17H. Schlingloff, Software-Verifikation I

Functions and Procedures

• while-Programs:• whileProg ::= skip | V=T | {whileProg; whileProg} |

if (FOL-) whileProg else whileProg | while (FOL-) whileProg

• T is the set of terms in the signature =(D, F, R)

• Now: extended signature ’=(D{void}, FF’,R)

• If f is of type void, then f(x1,...xn) is an (imperative) program

• term ::= F(T, ..., T) | F’(T, ..., T)

• for each f F’ there must be a declaration:• decl ::= type F’ (V, ... V); whileProg

• V in decl are called formal parameters• T in terms are called actual parameters

Page 18: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 18H. Schlingloff, Software-Verifikation I

• No alias: formal parameters should be pairwise different

• No scoping: formal parameters must be different from program variables

• return statement as assignment to the function name

• If a function or procedure name occurs directly or indirectly in the call graph of its declaration, it is called recursive for the time being: no recursion; Dafny allows recursion!

• There are various ways to pass actual parameters for formal ones (value, reference, name, ...) for the time being, we use only call-by-value passing value w to formal parameter v has the same effect as

the assignment v=w at the entry of the procedure or function

Page 19: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 19H. Schlingloff, Software-Verifikation I

Example

int min (int a, int b) if (a<b) min=a else

min=b;

int max (int a, int b) if (a>b) max=a else

max=b;

int gcd(int a, int b)

while (a!=b) { c = max(a,b)-min(a,b); a = min(a,b); b = c; }

}

Page 20: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 20H. Schlingloff, Software-Verifikation I

Example

int min (int a, int b) if (a<b) min=a else min=b;{x = 5; y = 7; z = min (x, y)}

is equivalent to{ x = 5; y = 7; a = x; b = y; if (a<b) min=a else min=b;z = min; }

need pre- and postconditions to show assertions.

Page 21: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 21H. Schlingloff, Software-Verifikation I

Example

int min (int a, int b) if (a<b) min=a else

min=b; {a<=min b<=min

(a=min b=min)}

int max (int a, int b) if (a>b) max=a else

max=b; {a>=max b>=max

(a=min b=min)}

int gcd(int a, int b) {a==m>0 b==n>0} while (a!=b) { c = max(a,b)-min(a,b); a = min(a,b); b = c; } gcd = a; {gcd|m gcd|n ...}}

Page 22: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 22H. Schlingloff, Software-Verifikation I

Contracts

• weakest preconditions and strongest postconditions are related to the require-ensure-paradigm (also called assume-guarantee-paradigm):void foo(...) requires

ensures ;is equivalent to

(wp(,)) (sp(, ))

• such a statement is called contract use of contract:

{[x1:=t1, ..., xn:=tn]} foo(t1,...,tn) {}

Page 23: 25.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.

Folie 23H. Schlingloff, Software-Verifikation I

Example with contracts

int min (int a, int b) if (a<b) min=a else min=b;{a>=min b>=min (a=min b=min)}{T}{x = 5; y = 7; z = min (x, y)} {z==5}

proof:{ x = 5; y = 7; a = x; b = y;}{a==5 b==7}{if (a<b) min=a else min=b;}{a==5 b==7 a>=min b>=min (a=min b=min)}{min==5}{z = min;}{z==5}