Top Banner
233 4-6 Variation of Parameters The method can solve the particular solution for any linear DE ( ) ( 1) 1 1 0 () n n n n a x y x a x y x a x y x a x y g x (1) May not have constant coefficients (2) g(x) may not be of the special forms 4-6-1 方法的限制
68

230 4-6 Variation of Parameters - 國立臺灣大學djj.ee.ntu.edu.tw/DE_Write4.pdf230 4-6 Variation of Parameters The method can solve the particular solution for anylinear DE ()

Oct 25, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 233

    4-6 Variation of Parameters

    The method can solve the particular solution for any linear DE

    ( ) ( 1)1 1 0( )n nn na x y x a x y x a x y x a x y g x

    (1) May not have constant coefficients (2) g(x) may not be of the special forms

    4-6-1 方法的限制

  • 2344-6-2 Case of the 2nd order linear DE

    2 1 0( ) ( )a x y x a x y x a x y g x

    Suppose that the solution of the associated homogeneous equation is

    1 1 2 2( ) ( )c y x c y x

    Then the particular solution is assumed as:

    1 0( ) ( ) 0na x y x a x y x a x y associated homogeneous equation:

    1 1 2 2( ) ( ) ( ) ( )py u x y x u x y x

    (方法的基本精神)

  • 2351 1 2 2( ) ( ) ( ) ( )py u x y x u x y x

    1 1 1 1 2 2 2 2py u y u y u y u y

    1 1 1 1 1 1 2 2 2 2 2 22 2py u y u y u y u y u y u y

    ( ) ( )y x P x y x Q x y f x 代入

    012 2 2

    ( )( ) ( ), ,( ) ( ) ( )

    a xa x g xP x Q x f xa x a x a x

    1 2 1 1

    1 1 2 2 2 2 1 1

    1 1 1 2 2

    2 2

    2

    2 2p p p y Py Qy y Py Qyy P x y Q x y u u y u

    u y y u u y P y u y u

    zero zero

    代入原式後,總是可以簡化

  • 236 ,p p py P x y Q x y f x

    1 1 2 2 1 1 2 2 1 1 2 2d y u y u P y u y u y u y u f xdx

    簡化

    1 1 2 2py u y u y

    進一步簡化:

    假設 1 1 2 2 0y u y u

    1 1 2 2y u y u f x 聯立方程式

    1 1 2 2

    1 1 2 2

    0y u y uy u y u f x

    1 1 1 1 2 2 2 2 1 1 2 22 2p p py P x y Q x y y u u y y u u y P y u y u

    代入

  • 237

    1 1 2 2

    1 1 2 2

    0y u y uy u y u f x

    211

    y f xWuW W

    122

    y f xWuW W

    1 1u u x dx

    2 2u u x dx

    where

    | |: determinant

    1 2

    1 2

    y yW

    y y

    2

    12

    0( )

    yW

    f x y

    1

    21

    0( )

    yW

    y f x

    1 1 2 2py x u x y x u x y x

    可以和 1st order case (page 62) 相比較

  • 238Determinant:

    a bad bc

    c d

    a b cd e f aei bfg cdh afh bdi cegg h i

    Matrix Inverse

    If 1 12 2

    x ya bx yc d

    then

    11 1

    2 2

    x ya bx yc d

    1

    2

    1 yd bab bc yc a

    1 2

    1 2

    1 dy byab bc cy ay

    11

    2

    a bc dxy by d

    21

    2

    a bc dxa yb y

  • 2394-6-3 Process for the 2nd Order CaseStep 2-1 變成 standard form

    ( ) ( )y x P x y x Q x y f x

    Step 2-2 1 21 2

    y yW

    y y

    2

    12

    0( )

    yW

    f x y

    1

    21

    0( )

    yW

    y f x

    11

    WuW

    22WuW

    Step 2-3

    Step 2-4 1 1u u x dx 2 2u u x dx

    1 1 2 2py x u x y x u x y x Step 2-5

  • 240

    Example 1 (text page 162)24 4 ( 1) xy y y x e

    4 4 0 :y y y Step 1: solution of 2 2

    1 2x x

    cy c e c xe

    Step 2-2:

    2 24

    2 2 22 2

    x xx

    x x x

    e xeW e

    e xe e

    1 1 22 2

    1 22 , ,x x

    p y e yy u y xu ey

    24

    1 2 2 2

    0( 1)

    ( 1) 2

    xx

    x x x

    xeW x xe

    x e xe e

    2

    42 2 2

    0( 1)

    2 ( 1)

    xx

    x x

    eW x e

    e x e

    211

    Wu x xW

    22 1Wu xW

    Step 2-3:

    4-6-4 Examples

  • 241Step 2-4: 2 3 21 1 11 1( ) 3 2u u dx x x dx x x c

    2

    2 2 21( 1) 2u u dx x dx x x c

    3 2 2 32 2 221 1 1 1 1( ) ( ) ( )3 2 2 6 2p

    x x xy e xex x x x x ex

    3 222 21 2

    1 1( )6 2x x xy c e c xe ex x Step 3:

    Step 2-5:

  • 242Example 2 (text page 163) 4 36 csc3y y x

    ( ) csc3 / 4f x x

    4 36 0 :y y Step 1: solution of 1 2cos3 sin3cy c x c x

    Step 2-1: standard form: 9 csc3 / 4y y x

    cos3 sin33

    3sin3 3cos3x x

    Wx x

    2

    cos3 0cos31

    1 4 sin3sin3 csc34

    xxW xx x

    1

    0 sin31/ 41 csc3 3cos34

    xW

    x x

    11

    112

    WuW

    22cos31

    12 sin3W xu xW

    1 cos312 sin 3

    xdxx

    1 12xu

    21 ln sin336u x

    注意 算法

    Step 2-2:

    Step 2-3:

    Step 2-4:

    (未完待續)

  • 243

    Note: 課本 Interval (0, /6) 應該改為(0, /3)

    Step 2-5: 1cos3 sin3 ln sin312 36pxy x x x

    Step 3: 1 2 1cos3 sin3 cos3 sin3 ln sin312 36c pxy y y c x c x x x x

  • 244Example 3 (text page 164)

    ( ) 1/f x x

    Note: 沒有 analytic 的解

    所以直接表示成 (複習 page 48)

    xe dxx

    0

    tx

    x

    e dtt

    1/y y x

    1 2x x

    cy c e c e

    2x x

    x x

    e eW

    e e

  • 2454-6-5 Case of the Higher Order Linear DE

    ( ) ( 1)1 1 0( )n nn na x y x a x y x a x y x a x y g x

    Solution of the associated homogeneous equation:

    1 1 2 2 3 3( ) ( ) ( ) ( )c n ny c y x c y x c y x c y x

    The particular solution is assumed as:

    1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p n ny u x y x u x y x u x y x u x y x

    ( ) kkWu xW

    ( ) ( )k ku x u x dx

  • 246

    ( ) kkWu xW

    1 2 3

    1 2 3

    1 2 3

    ( 1) ( 1) ( 1) ( 1)1 2 3

    n

    n

    n

    n n n nn

    y y y yy y y y

    W y y y y

    y y y y

    1 2 1 1

    1 2 1 1

    ( 2) ( 2) ( 2) ( 2) ( 2)1 2 1 1( 1) ( 1) ( 1) ( 1) ( 1)1 2 1 1

    00

    0( )

    k k n

    k k n

    kn n n n n

    k k nn n n n n

    k k n

    y y y y yy y y y y

    Wy y y y yy y y f x y y

    / nf x g x a x

  • 24700

    0( )f x

    Wk: replace the kth column of W by

    For example, when n = 3,

    2 3

    1 2 3

    2 3

    00( )

    y yW y y

    f x y y

    1 3

    2 1 3

    1 3

    00( )

    y yW y y

    y f x y

    1 2

    3 1 2

    1 2

    00( )

    y yW y y

    y y f x

    n

    g xf x

    a x

  • 2484-6-6 Process of the Higher Order Case

    Step 2-1 變成 standard form

    Step 2-2 Calculate W, W1, W2, …., Wn (see page 247)

    11

    WuW

    22WuW

    Step 2-3 ………

    Step 2-4 ……. 1 1u u x dx 2 2u u x dx

    1 1 2 2p n ny x u x y x u x y x u x y x Step 2-5

    ( ) ( 1)1 1 0( )n nnn n n n

    a x a x a x g xy x y x y x y

    a x a x a x a x

    nn

    WuW

    n nu u x dx

  • 249Exercise 26 4 sec2y y x

    Complementary function: 1 2 3cos 2 sin 2cy c c x c x

    1 cos2 sin 20 2sin 2 2cos2 80 4cos2 4sin 2

    x xW x x

    x x

    1

    0 cos2 sin 20 2sin 2 2cos2 2sec2

    sec2 4cos 2 4sin 2

    x xW x x x

    x x x

    2

    1 0 sin 20 0 2cos 2 20 sec2 4sin 2

    xW x

    x x

    3

    1 cos2 00 2sin 2 0 2 tan 20 4cos 2 sec2

    xW x x

    x x

  • 2501

    1sec2

    4W xuW

    221

    4WuW

    33tan 2

    4W xuW

    11 ln sec2 tan 28

    u x x 2 4xu 3

    1 ln cos 28

    u x

    1 2 3cos2 sin 2

    1 1ln sec2 tan 2 cos 2 ln cos 2 sin 28 4 8

    y x c c x c xxx x x x x

    for -/4 < x < /4

    Note: -/4 , /4 are singular points

  • 251

    (1)養成先解 associated homogeneous equation 的習慣

    (2) 記熟幾個重要公式

    (3) 這裡 | | 指的是 determinant

    (4) 算出 u1(x) 和 u2(x) 後別忘了作積分

    (5) f(x) = g(x)/an(x) (和 1st order 的情形一樣,使用 standard form)

    (6) 計算 u1'(x) 和 u2'(x) 的積分時,+ c 可忽略

    因為我們的目的是算particular solution ypyp 是任何一個能滿足原式的解

    (7) 這方法解的範圍,不包含 an(x) = 0 的地方

    4-6-7 本節需注意的地方

    特別要小心

  • 252

    4-7 Cauchy-Euler Equation

    ( ) 1 ( 1)1 1 0( )n n n nn na x y x a x y x a xy x a y g x

    not constant coefficients

    but the coefficients of y(k)(x) have the form of

    ak is some constant

    kka x

    associated homogeneous equation

    particular solution

    ( ) 1 ( 1)11 0( ) 0

    n n n nn na x y x a x y x

    a xy x a y

    k

    4-7-1 解法限制條件

  • 253

    Guess the solution as y(x) = xm , then

    Associated homogeneous equation of the Cauchy-Euler equation

    ( ) 1 ( 1)1 1 0( ) 0n n n nn na x y x a x y x a xy x a y

    1 11

    2 22

    11

    0

    ( 1)( 2) 1

    ( 1)( 2) 2

    ( 1)( 2) 3

    0

    n m nn

    n m nn

    n m nn

    m

    m

    a x m m m m n x

    a x m m m m n x

    a x m m m m n x

    a xmx

    a x

    4-7-2 解法

  • 254

    1

    2

    1

    0

    ( 1)( 2) 1( 1)( 2) 2( 1)( 2) 3

    0

    n

    n

    n

    a m m m m na m m m m na m m m m n

    a ma

    auxiliary function

    比較: 和 constant coefficient 時有何不同?

    kkk

    dxdx

    規則:把 變成!

    ( )!m

    m k

  • 2554-7-3 For the 2nd Order Case

    22 1 0( ) 0a x y x a xy x a y

    auxiliary function: 2 1 01 0a m m a m a 22 1 2 0 0a m a a m a

    22 1 1 2 2 01

    2

    42

    a a a a a am

    a

    2

    2 1 1 2 2 02

    2

    42

    a a a a a am

    a

    roots

    [Case 1]: m1 m2 and m1, m2 are real

    two independent solution of the homogeneous part:1 2 and m mx x

    1 21 2

    m mcy c x c x

  • 256[Case 2]: m1 = m2

    Use the method of reduction of order1

    1my x

    1

    21

    1

    ( )

    2 1 2 21

    P x dxa dx

    a xm

    mey x y x dxy

    ex dxx x

    01 22 2

    ( ) 0,aay x y x ya x a x

    12

    aP xa x

    Note 1: 原式

    Note 2: 此時 2 11 222

    a am ma

  • 257

    1 11

    2 22

    1 1 1

    1 1 1

    1 1 21

    1 2 12 12

    2

    ln

    2 2 2

    1 n1 l

    a a adx xa x a am m mm m m

    a a aaaa mm a m

    xe ex dx x dx x dxx x x

    x x x

    y x

    dx xx xx dx

    If y2(x) is a solution of a homogeneous DE

    then c y2(x) is also a solution of the homogeneous DE

    If we constrain that x > 0, then 12 lnmy x x

    1 11 2 ln

    m mcy c x c x x

  • 258[Case 3]: m1 m2 and m1, m2 are the form of

    1m j 2m j

    two independent solution of the homogeneous part:

    and j jx x

    1 2j j

    cy C x C x

    ( ) ln ln ln

    cos( ln

    ( )

    ) sin( ln )

    j j j x x j xlnx e e e

    x x j x

    x e

    cos( ln ) sin( ln )jx x x j x 同理 1 2 1 2[( )cos ln ( )sin ln ]cy x C C x j C C x

    1 2[ cos ln sin ln ]cy x c x c x

  • 259Example 1 (text page 167)

    2 2 ( ) 4 0x y x xy x y

    Example 2 (text page 168) 24 8 ( ) 0x y x xy x y

  • 260

    Example 3 (text page 169)

    24 17 0x y x y 1 1y 11 2y

  • 2614-7-4 For the Higher Order Case

    auxiliary function

    roots

    solution of the nth order associated homogeneous equation

    Step 1-1

    n independent solutions Step 1-2

    Step 1-3

    Process:

  • 262

    (1) 若 auxiliary function 在 m0 的地方只有一個根

    是 associated homogeneous equation 的其中一個解0mx

    (2) 若 auxiliary function 在 m0 的地方有 k 個重根

    皆為 associated homogeneous equation 的解

    0 0 0 02 1ln (ln ) (ln, , , ),m m m m kx x x x x x x

  • 263

    (3) 若 auxiliary function 在 + j和 − j的地方各有一個根(未出現重根)

    是 associated homogeneous equation 的其中二個解

    ,cos ln sin lnx x x x

    (4) 若 auxiliary function 在 + j和 − j的地方皆有 k 個重根

    是 associated homogeneous equation 的其中2k 個解

    2

    1

    2

    1

    , , , ,cos ln cos ln ln cos ln (ln )

    cos ln (ln )

    sin ln sin ln ln sin ln (ln )

    sin ln (ln

    , , , ,

    )

    k

    k

    x x x x x x x x

    x x x

    x x x x x x x x

    x x x

  • 264Example 4 (text page 169)

    3 25 7 ( ) 8 0x y x x y x xy x y

    22 4 0m m

    1 2 5 1 7 8 0m m m m m m auxiliary function

    3 2 23 2 5 5 7 8 0m m m m m m 3 22 4 8 0m m m

  • 2654-7-5 Nonhomogeneous Case

    To solve the nonhomogeneous Cauchy-Euler equation:

    Method 1: (See Example 5)

    (1) Find the complementary function (general solutions of the associated homogeneous equation) from the rules on pages 255-258, 262-263.

    (2) Use the method in Sec.4-6 (Variation of Parameters) to find the particular solution.

    (3) Solution = complementary function + particular solution

    Method 2: See Example 6,很重要

    Set x = et, t = ln x

  • 266Example 5 (text page 169, illustration for method 1)

    2 43 ( ) 3 2 xx y x xy x y x e

    auxiliary function 1 3 3 0m m m

    31 2cy c x c x

    2 4 3 0m m

    2 3m 1 1m

    Step 1 solution of the associated homogeneous equation

    Step 2-2 Particular solution 3

    32

    21 3x x

    W xx

    35

    1 22

    02

    2 3xxxW

    xe

    xex

    211

    xWu x eW

    23

    2

    02

    1 2x

    xx ex

    W x e

    22

    xWu eW

    Step 2-3

  • 267

    2 2xu u dx e

    21 1 2 2

    x x xu u dx x e xe e Step 2-4

    21 1 2 2 2 2

    x xpy u y u y x e xe

    Step 3 3 21 2 2 2

    x xy c x c x x e xe

    Step 2-5

  • 268

    1dy dt dy dydx dx dt x dt

    2

    2

    2 2

    2 2 2 2

    1 1

    1 1 1 1

    d y d dy dt d dy d dydx dx dx dx dt dx x dt x dt

    d y d dy d y dyx dt x dt x dt x dt dt

    Example 6 (text page 170, illustration for method 2)

    2 ( ) lnx y x xy x y x

    Set x = et, t = ln x

    (chain rule)

    Therefore, the original equation is changed into

    2

    2 2 ( ) ( )d dy t y t y t tdtdt

  • 269

    2

    2 2 ( ) ( )d dy t y t y t tdtdt

    1 2( ) 2t ty t c e c te t

    1 2( ) ln ln 2y x c x c x x x (別忘了 t = ln x 要代回來)

    Note 2: 簡化計算的小技巧: 使用Cauchy-Euler equation 的 auxiliary function

    1 1k

    kt t tk

    d yx D k D D ydx

    Note 1: 以此類推

    means tdDdt

  • 270

    (1) 本節公式記憶的方法:把 Section 4-3 的 ex 改成 x,x 改成 ln(x)把 auxiliary function 的 mn 改成

    (2) 如何解 particular solution? Variation of Parameters 的方法

    (3) 解的範圍將不包括 x = 0 的地方 (Why?)

    4-7-6 本節要注意的地方

    ( 1)( 2) 1m m m m n

  • 271還有很多 linear DE 沒有辦法解,怎麼辦

    (1) numerical approach (Section 4-9-3)

    (2) using special function (Chap. 6)

    (3) Laplace transform and Fourier transform (Chaps. 7, 11, 14)

    (4) 查表 (table lookup)

  • 272

    (1) 即使用了 Section 4-7 的方法,大部分的 DE還是沒有辦法解

    (2) 所幸,自然界真的有不少的例子是 linear DE

    甚至是 constant coefficient linear DE

  • 273

    Chapter 5 Modeling with Higher OrderDifferential Equations

    自然界,有不少的系統可以用 linear DE 來表示

    其中有不少的系統可以進一步簡化成 linear DE with constant coefficients

    Chapter 4 的應用題

  • 274

    5-1 Linear Models: Initial Value Problem

    位置:x, 速度: 加速度d xdt2

    2d xdt

    F ma2

    2d xF mdt

    F v ma

    v: 速度, v: 磨擦力

    2

    2dx d xF mdt dt

  • 275

    彈力 F

    Figure 5.1.1 Spring/mass system

    5-1-1 ~ 5-1-3 Spring / Mass Systems

  • 2762

    2d xm Fdt

    2

    2d xm kxdt

    2

    2 0d xm kxdt

    Solution: 1 2cos sinx t c t c t km

    Figure 5.1.4

  • 277

    彈力 F摩擦力

    dxdt

    Figure 5.1.5

  • 278

    2

    2d x dxm kxdtdt

    2

    2d x dxm Fdtdt

    2

    2 0d x dxm kxdtdt

    解有成三種情形

    (1)

    (2)

    (3)

    2 4 0mk 2 4 0mk 2 4 0mk

    1 21 2

    n t n tx c e c e 2

    1 24, 2

    mkn n m

    1 2nt ntx c e c te / 2n m

    1 2cos sinatx e c bt c bt

    / 2a m 24 / 2b mk m

  • 279需要注意的概念

    (1) 名詞一

    ( ) ( 1)1 1 0n nn na t y t a t y t a t y t a t y t g t

    g t 被稱作 input 或 deriving function 或 forcing function y t 被稱作 output 或 response

  • 280(2) 名詞二

    對一個 2nd order linear DE with constant coefficients 2 1 0 0a y x a y x a y x

    auxiliary function 22 1 0 0a m a m a

    當 時,稱作 overdamped21 2 04 0a a a

    當 時,稱作 critical damped21 2 04 0a a a

    當 時,稱作 underdamped21 2 04 0a a a

    當 , a1 = 0 時,稱作 undamped2 04 0a a

  • 281(3) 當中

    a1 的值將影藉衰減速度

    當 a2 , a1 , a0 的值皆為正, a1/ a2 的值越大,衰減的進度越快

    2 1 0a y x a y x a y x g x

    1 2cos sinxcy e c x c x 21 2 04 0a a a When1 2/ 2 ,a a

    When 21 2 04 0a a a 1 21 2m x m x

    cy c e c e 2

    1 1 2 01

    2

    42

    a a a am

    a

    2

    1 1 2 02

    2

    42

    a a a am

    a

  • 282

    2

    2q dq d qR L E tC dt dt

    5-1-4 RLC circuit

    inductance 的電壓 diLdt

    capacitor 的電壓 qC

    resistor 的電壓 Ri

    q diRi L E tC dt using dqi

    dt

    一定可以解

  • 283

    2

    2q dq d qR L E tC dt dt

    2 1/ 0Lm Rm C auxiliary function

    roots: 2

    14 /

    2R R L Cm

    L

    2

    24 /

    2R R L Cm

    L

    Case 1: R2 4L/C > 0

    (m1 m2, m1, m2 are real)

    (overdamped)

    1 21 2m t m tcq t c e c e

    註:由於 R, L, C 的值都是正的, 必定可以滿足

    所以 m1, m2 都是負的

    2 4 /R L C R

    0cq t when t

    Complementary function:

  • 284Particular solution (1) E(t) 有的時候可用"guess” 的方法來解

    (2) E(t) 用 variation of parameters 的方法一定解得出來(但較耗時)

    1 2

    1 2

    1 2

    ( )2 1

    1 2

    m t m tm m t

    m t m t

    e eW m m e

    m e m e

    2

    212

    ??0 m t

    m t

    eW

    m e

    1

    121

    ?0?

    m t

    m t

    eW

    m e

    2

    1 2

    11 ( )

    2 1

    ( ) /( )

    m t

    m m tW e E t LuW m m e

    1

    12 1

    ( )( )

    m tE t e dtu

    L m m

    1

    1 2

    22 ( )

    2 1

    ( ) /( )

    m t

    m m tW e E t LuW m m e

    2

    22 1

    ( )( )

    m te E t dtu

    L m m

  • 285

    1 21 2

    2 1 2 1

    ( ) ( )( ) ( )

    m t m tm t m t

    p

    e E t e dt e E t e dtq t

    L m m L m m

    1 1 2 2

    1 21 2

    2 1 2 1

    ( ) ( )( ) ( )

    m t m t m t m tm t m t e E t e dt e E t e dtq t c e c e

    L m m L m m

    Specially, when E(t) = E0 where E0 is some constant

    1 21 2

    0 0 0

    2 1 2 1 2 1 1 2

    0

    10

    2

    1 1( ) ( ) ( )

    m t m tm m t

    p

    tE e e dt E e e dt EL m m L m m L m m m m

    E

    q t

    E CLm m

    (m1m2 = 1/LC)

    1 21 2 0m t m tq t c e c e E C

  • 286Case 2: R2 4L/C = 0

    (m1 = m2 = R/2L)

    / 2 / 21 2Rt L Rt Lcq t c e c t e

    (critically damped)

    0cq t when t

    Particular solution

    / 2

    / 2 / 2( ) ( )Rt L

    Rt L Rt Lp

    eq t t E t e dt E t te dtL

    When E(t) = E0 ,

    0pq t E C

    / 2

    / 2 / 2 / 2 / 21 2 ( ) ( )

    Rt LRt L R t L Rt L Rt Leq t c e c t e t E t e dt E t te dt

    L

  • 287Case 3: R2 4L/C < 0

    1m j

    24 /,2 2

    R L C RL L

    2m j

    (underdamped)

    1 2cos sintcq t e c t c t

    Particular solution

    0cq t

    sin ( ) cos cos ( ) sint

    t tp

    eq t t E t e tdt t E t e tdtL

    1 2cos sin

    sin ( ) cos cos ( ) sin

    t

    tt t

    q t e c t c t

    e t E t e tdt t E t e tdtL

    General solution

    when t

  • 288When E(t) = E0 where E0 is some constant

    1 2 0cos sintq t e c t c t E C

    When R = 0 , then = 0

    1 21cos sin sin ( )cos cos ( )sinq t c t c t t E t tdt t E t tdt

    L

    When R = 0 , E(t) = E0 1 2 0cos sinq t c t c t E C

    1 2( ) cos sindi t q t d t d tdt 1 2d c 2 1d c

  • 289

    以 DE 的觀點來解釋 RLC 電路的問題

    (1) R2 < 4L/C 產生弦波(2) R 越小,弦波衰減得越慢

  • 290

    2

    2d q dq qL R E tdt dt C

    E(t) = 1, L = 0.25, C = 0.01

    2 21 2 04 100a a a R

    例子

  • 291

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    R = 100

    R = 25

    R = 10

  • 292

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0.015

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0.015

    0.02

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0.015

    0.02

    R = 5

    R = 1.5

    R = 0.2

  • 2935-1-5 Express the Solutions by Other Forms

    (1) Express the Solution by the Form of Amplitude and Phase

    2 1 0 0a y x a y x a y x

    當 時,solution 為21 2 04 0a a a 1 2cos sinxy e c x c x

    sinxy Ae x

    Solution 可改寫成1 2/ 2 ,a a

    22 0 1 24 / 2a a a a

    2 21 2A c c

    1 11 2sin / cos /c A c A

  • 294

    sinxy Ae x

    :xAe damped amplitude

    :2

    damped frequency

    : phase angle

  • 295

    (2) Express the Solution by Hyperbolic Functions

    2 1 0 0a y x a y x a y x 當 a1 = 0

    且 a2 > 0, a0 < 0 (或 a0 > 0, a2 < 0)

    1 11 2

    m x m xy c e c e

    3 1 4 1cosh sinhy c m x c m x

    1 11cosh 2m x m xe em x

    1 11sinh 2m x m xe em x

    3 1 2c c c

    4 1 2c c c

    01

    2

    am a

  • 2965-1-6 本節要注意的地方

    (1) 將力學現象寫成 DE 時,要注意正負號 (根據力的方向)

    (2) 注意 page 280 的四個專有名詞

    (3) 注意 linear DE with constant coefficients 的解,有其他的寫法

    (see pages 293 and 295)

  • 297

    (A) Linear DE Complementary Function 3 大解法

    (3) Cauchy-Euler Equation (Section 4-7)

    ( ) 1 ( 1)1 1 0( ) 0n n n nn na x y x a x y x a xy x a y

    1 1 0! ! ! 0( )! ( 1)! ( 1)!n n

    m m ma a a x am n m n m

    適用情形:

    附錄八(續):Reviews for Higher Order DE(接續 page 230)

  • 298(B) Linear DE Particular solution 3 大解法

    (3) Variation of parameters (Section 4-6) 1 1 2 2p n ny u y u y u y

    ( ) kkWu xW

    1 2 3

    1 2 3

    1 2 3

    ( 1) ( 1) ( 1) ( 1)1 2 3

    n

    n

    n

    n n n nn

    y y y yy y y yy y y y

    y y

    W

    y y

    Wk : replace the kth column of W by00

    0( )f x

    n

    g xf x

    a x

    適用情形:

  • 299(4) For Cauchy-Euler Equation (Section 4-7)

    可採用二種方法

    (1) 先用

    1 1 0! ! ! 0( )! ( 1)! ( 1)!n n

    m m ma a a x am n m n m

    再用 Variation of parameters 解 particular solution

    解 complementary function

    (2) Use the method on pages 268, 269

    Set x = et, t = ln x

  • 300Exercises for practicing

    Section 4-6 4, 5, 8, 13, 14, 17, 18, 21, 28, 29, 34

    Section 4-7 11, 17, 18, 20, 21, 24, 32, 34, 36, 37, 40, 42

    Review 4 27, 28, 29, 30, 32, 42

    Section 5-1 1, 11, 29, 43, 44, 49, 52, 56, 60

    Review 5 12, 21, 22