Top Banner
2.2 Scientific Notation & Dimensional Analysis Monday, September 23, 13
45

2.2 Scientific Notation & Dimensional Analysis

Nov 30, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 2.2 Scientific Notation & Dimensional Analysis

2.2 Scientific Notation & Dimensional Analysis

Monday, September 23, 13

Page 2: 2.2 Scientific Notation & Dimensional Analysis

Scientific Notation

• Can be used to express any number as a number between 1 and 10 (coefficient) multiplied by 10 raised to any power (exponent).

• 36,000 = 3.6 x 104

• Positive exponent = how much the coefficient must be multiplied by 10.

• 0.00036 = 3.6 x 10-4

Monday, September 23, 13

Page 3: 2.2 Scientific Notation & Dimensional Analysis

Scientific Notation

• The value of the exponent = the number of places the decimal point moved.

• Exponent is positive when decimal point moves to the left.

• EXAMPLES

• Exponent is negative when the decimal point moves to the right.

• EXAMPLES

Monday, September 23, 13

Page 4: 2.2 Scientific Notation & Dimensional Analysis

Math with Scientific Notation

•Addition and Subtraction

• Exponents must be the same.

• EXAMPLES

• If not the same, rewrite with same exponent.

• EXAMPLES

Monday, September 23, 13

Page 5: 2.2 Scientific Notation & Dimensional Analysis

Scientific Notation

•Multiplication & Division

• Two-step process.

• Multiply / divide coefficients.

• Add / subtract exponents

• EXAMPLES

Monday, September 23, 13

Page 6: 2.2 Scientific Notation & Dimensional Analysis

Dimensional Analysis• Use conversion factors to to convert one unit to

another.

• Conversion factor is a ratio of equivalent values having different units.

• Relationships between units

• EXAMPLES

Monday, September 23, 13

Page 7: 2.2 Scientific Notation & Dimensional Analysis

Dimensional Analysis

• Use conversion factors to to convert one unit to another.

• Conversion factor is a ratio of equivalent values having different units.

• Prefixes are the source of many conversion factorsPrefix Symb

olNumerical

ValueConversion Factor

Mega M 1,000,000 1 Mg = 1,000,000 g

Kilo K 1,000 1 Kg = 1,000 g

Deci d 0.1 10 dg = 1 g

Centi c 0.01 100 cg = 1 g

Milli m 0.001 1000 mg = 1 g

Micro u 0.000001 1,000,000 ug = 1 gMonday, September 23, 13

Page 8: 2.2 Scientific Notation & Dimensional Analysis

Using Conversion Factors

• Must accomplish two things:

• Must cancel one unit.

• Must introduce a new one.

• All units except what you want must cancel out.

• EXAMPLE

• How many pizzas do I need to order to give each person in class two pieces? (1 pizza = 8 pieces)

Monday, September 23, 13

Page 9: 2.2 Scientific Notation & Dimensional Analysis

2.3 Uncertainty in Data

Monday, September 23, 13

Page 10: 2.2 Scientific Notation & Dimensional Analysis

Uncertainty in Data

• Every measurement contains some amount of error.

• Must evaluate both accuracy and precision each time.

Monday, September 23, 13

Page 11: 2.2 Scientific Notation & Dimensional Analysis

Uncertainty in Data

• Accuracy

• The closeness of a measured value to an accepted value.

• Precision

• The closeness a series of measurements are to one another.

Monday, September 23, 13

Page 12: 2.2 Scientific Notation & Dimensional Analysis

Uncertainty in Data

2.3 Uncertainty in Data

Accuracy

Precision

6

Monday, September 23, 13

Page 13: 2.2 Scientific Notation & Dimensional Analysis

Error

Percent Error

22. The density of copper is 8.92g/cm3. During a lab, you calculate the density ofcopper to be 8.66g/cm3. What is your % error?

7

Uncertainty in Data

๏Which student is the most accurate?๏Student A

๏Which student is the most precise?๏Student C

Monday, September 23, 13

Page 14: 2.2 Scientific Notation & Dimensional Analysis

Error and Percent Error

• Accuracy of experiment is measured by comparing how close the experimental value comes to the accepted value.

• Experimental value

• Measured during an experiment.

• Accepted value

• True value

Monday, September 23, 13

Page 15: 2.2 Scientific Notation & Dimensional Analysis

Error and Percent Error

• Experimental Error

• Difference between experimental and accepted values.

• Error = experimental value - accepted value

• Percent Error

• Expresses error as percentage of accepted value.

• Percent Error = | error | X 100

accepted value

Accepted value= 1.59 Error = 0.05 Percent Error = 3.14%

Monday, September 23, 13

Page 16: 2.2 Scientific Notation & Dimensional Analysis

2.4 Significant Figures

Monday, September 23, 13

Page 17: 2.2 Scientific Notation & Dimensional Analysis

Significant Figures

• Precision is limited by the tools available.

• Indicated by the number of digits reported

• Significant figures include all known digits plus one estimated digit.

Monday, September 23, 13

Page 18: 2.2 Scientific Notation & Dimensional Analysis

Significant FiguresSignificant Figures

Rules for Significant Figures

1. All non zero numbers ARE significant2. All zeros at the beginning of a number are NOT significant3. All zeroes in between non zero numbers ARE significant4. Zeroes at the end MAY OR MAY NOT be significant

If there is a decimal point anywhere in the problem, it is significantIf NO decimal point exists it is NOT significant.

Significant Figure Practice

How many significant figures does each number have

23. .00353

24. 59302

25. 50.3

26. 3400

27. .034040

28. 370

8

What is the measurement of the rod reported in significant figures?

Monday, September 23, 13

Page 19: 2.2 Scientific Notation & Dimensional Analysis

Significant FiguresSignificant Figures

Rules for Significant Figures

1. All non zero numbers ARE significant2. All zeros at the beginning of a number are NOT significant3. All zeroes in between non zero numbers ARE significant4. Zeroes at the end MAY OR MAY NOT be significant

If there is a decimal point anywhere in the problem, it is significantIf NO decimal point exists it is NOT significant.

Significant Figure Practice

How many significant figures does each number have

23. .00353

24. 59302

25. 50.3

26. 3400

27. .034040

28. 370

8

What is the measurement of the rod reported in significant figures?

Monday, September 23, 13

Page 20: 2.2 Scientific Notation & Dimensional Analysis

Significant FiguresSignificant Figures

Rules for Significant Figures

1. All non zero numbers ARE significant2. All zeros at the beginning of a number are NOT significant3. All zeroes in between non zero numbers ARE significant4. Zeroes at the end MAY OR MAY NOT be significant

If there is a decimal point anywhere in the problem, it is significantIf NO decimal point exists it is NOT significant.

Significant Figure Practice

How many significant figures does each number have

23. .00353

24. 59302

25. 50.3

26. 3400

27. .034040

28. 370

8

Monday, September 23, 13

Page 21: 2.2 Scientific Notation & Dimensional Analysis

Significant Figures

Significant Figures

Rules for Significant Figures

1. All non zero numbers ARE significant2. All zeros at the beginning of a number are NOT significant3. All zeroes in between non zero numbers ARE significant4. Zeroes at the end MAY OR MAY NOT be significant

If there is a decimal point anywhere in the problem, it is significantIf NO decimal point exists it is NOT significant.

Significant Figure Practice

How many significant figures does each number have

23. .00353

24. 59302

25. 50.3

26. 3400

27. .034040

28. 370

8

1) 508.0 = 4 2) 820,400.0 = 7 3) 807,000 = 3

4) 0.049450 = 5 6) 0.00084 = 2

Rules  for  significant  figures

1.  Zeroes  at  the  beginning  of  a  number  are  NOT  significant.  (example:    .000349)

2.  Zeroes  at  the  end  of  a  number  without  a  decimal  point  in  the  number  are  NOT

significant.  (example:    65000)

3.  All  nonzero  numbers  ARE  significant.  (45.69)

4.  All  zeroes  in  between  nonzero  number  ARE  significant.  (example:    305)

5.  Final  zeroes  to  the  RIGHT  of  a  decimal  point  ARE  significant.  (example:

.0034900)

6.  Counting  numbers  and  defined  constants  have  infinite  number  of  significant

figures.  (example:    6  molecules  or  60  s  =  1  min)

Practice  –  how  many  significant  figures  does  each  number  have?

1. 84.00

2. .00649

3. 2600

4. 2504.60

5. .0094020

6. 9400.

Rules  for  addition  and  subtraction

The  answer  should  have  the  same  number  of  decimal  places  as  the  original  value

with  the  least  number  of  decimal  places  (example:    3.54  +  5.9  =  9.4)

Practice  –  complete  each  addition  or  subtraction  problem  and  round  the  answer  to

the  correct  number  of  decimal  places.

7. 79.469  +  40.2

8. 94.33  –  12.4987

9. .1148  +  .94624

Rules  for  multiplication  and  division

The  answer  should  have  the  same  number  of  significant  figures  as  the  original

value  with  the  least  number  of  significant  figures  (example:    3.0  ×  12.0  =  36)

Practice  -­‐  complete  each  multiplication  or  division  problem  and  round  the  answer

to  the  correct  number  of  significant  figures.

Monday, September 23, 13

Page 22: 2.2 Scientific Notation & Dimensional Analysis

Significant Figures

Rules  for  significant  figures

1.  Zeroes  at  the  beginning  of  a  number  are  NOT  significant.  (example:    .000349)

2.  Zeroes  at  the  end  of  a  number  without  a  decimal  point  in  the  number  are  NOT

significant.  (example:    65000)

3.  All  nonzero  numbers  ARE  significant.  (45.69)

4.  All  zeroes  in  between  nonzero  number  ARE  significant.  (example:    305)

5.  Final  zeroes  to  the  RIGHT  of  a  decimal  point  ARE  significant.  (example:

.0034900)

6.  Counting  numbers  and  defined  constants  have  infinite  number  of  significant

figures.  (example:    6  molecules  or  60  s  =  1  min)

Practice  –  how  many  significant  figures  does  each  number  have?

1. 84.00

2. .00649

3. 2600

4. 2504.60

5. .0094020

6. 9400.

Rules  for  addition  and  subtraction

The  answer  should  have  the  same  number  of  decimal  places  as  the  original  value

with  the  least  number  of  decimal  places  (example:    3.54  +  5.9  =  9.4)

Practice  –  complete  each  addition  or  subtraction  problem  and  round  the  answer  to

the  correct  number  of  decimal  places.

7. 79.469  +  40.2

8. 94.33  –  12.4987

9. .1148  +  .94624

Rules  for  multiplication  and  division

The  answer  should  have  the  same  number  of  significant  figures  as  the  original

value  with  the  least  number  of  significant  figures  (example:    3.0  ×  12.0  =  36)

Practice  -­‐  complete  each  multiplication  or  division  problem  and  round  the  answer

to  the  correct  number  of  significant  figures.

Rules  for  significant  figures

1.  Zeroes  at  the  beginning  of  a  number  are  NOT  significant.  (example:    .000349)

2.  Zeroes  at  the  end  of  a  number  without  a  decimal  point  in  the  number  are  NOT

significant.  (example:    65000)

3.  All  nonzero  numbers  ARE  significant.  (45.69)

4.  All  zeroes  in  between  nonzero  number  ARE  significant.  (example:    305)

5.  Final  zeroes  to  the  RIGHT  of  a  decimal  point  ARE  significant.  (example:

.0034900)

6.  Counting  numbers  and  defined  constants  have  infinite  number  of  significant

figures.  (example:    6  molecules  or  60  s  =  1  min)

Practice  –  how  many  significant  figures  does  each  number  have?

1. 84.00

2. .00649

3. 2600

4. 2504.60

5. .0094020

6. 9400.

Rules  for  addition  and  subtraction

The  answer  should  have  the  same  number  of  decimal  places  as  the  original  value

with  the  least  number  of  decimal  places  (example:    3.54  +  5.9  =  9.4)

Practice  –  complete  each  addition  or  subtraction  problem  and  round  the  answer  to

the  correct  number  of  decimal  places.

7. 79.469  +  40.2

8. 94.33  –  12.4987

9. .1148  +  .94624

Rules  for  multiplication  and  division

The  answer  should  have  the  same  number  of  significant  figures  as  the  original

value  with  the  least  number  of  significant  figures  (example:    3.0  ×  12.0  =  36)

Practice  -­‐  complete  each  multiplication  or  division  problem  and  round  the  answer

to  the  correct  number  of  significant  figures.

= 119.7= 81.83= 1.0610

Monday, September 23, 13

Page 23: 2.2 Scientific Notation & Dimensional Analysis

Significant Figures

Rules  for  significant  figures

1.  Zeroes  at  the  beginning  of  a  number  are  NOT  significant.  (example:    .000349)

2.  Zeroes  at  the  end  of  a  number  without  a  decimal  point  in  the  number  are  NOT

significant.  (example:    65000)

3.  All  nonzero  numbers  ARE  significant.  (45.69)

4.  All  zeroes  in  between  nonzero  number  ARE  significant.  (example:    305)

5.  Final  zeroes  to  the  RIGHT  of  a  decimal  point  ARE  significant.  (example:

.0034900)

6.  Counting  numbers  and  defined  constants  have  infinite  number  of  significant

figures.  (example:    6  molecules  or  60  s  =  1  min)

Practice  –  how  many  significant  figures  does  each  number  have?

1. 84.00

2. .00649

3. 2600

4. 2504.60

5. .0094020

6. 9400.

Rules  for  addition  and  subtraction

The  answer  should  have  the  same  number  of  decimal  places  as  the  original  value

with  the  least  number  of  decimal  places  (example:    3.54  +  5.9  =  9.4)

Practice  –  complete  each  addition  or  subtraction  problem  and  round  the  answer  to

the  correct  number  of  decimal  places.

7. 79.469  +  40.2

8. 94.33  –  12.4987

9. .1148  +  .94624

Rules  for  multiplication  and  division

The  answer  should  have  the  same  number  of  significant  figures  as  the  original

value  with  the  least  number  of  significant  figures  (example:    3.0  ×  12.0  =  36)

Practice  -­‐  complete  each  multiplication  or  division  problem  and  round  the  answer

to  the  correct  number  of  significant  figures.

Rules  for  significant  figures

1.  Zeroes  at  the  beginning  of  a  number  are  NOT  significant.  (example:    .000349)

2.  Zeroes  at  the  end  of  a  number  without  a  decimal  point  in  the  number  are  NOT

significant.  (example:    65000)

3.  All  nonzero  numbers  ARE  significant.  (45.69)

4.  All  zeroes  in  between  nonzero  number  ARE  significant.  (example:    305)

5.  Final  zeroes  to  the  RIGHT  of  a  decimal  point  ARE  significant.  (example:

.0034900)

6.  Counting  numbers  and  defined  constants  have  infinite  number  of  significant

figures.  (example:    6  molecules  or  60  s  =  1  min)

Practice  –  how  many  significant  figures  does  each  number  have?

1. 84.00

2. .00649

3. 2600

4. 2504.60

5. .0094020

6. 9400.

Rules  for  addition  and  subtraction

The  answer  should  have  the  same  number  of  decimal  places  as  the  original  value

with  the  least  number  of  decimal  places  (example:    3.54  +  5.9  =  9.4)

Practice  –  complete  each  addition  or  subtraction  problem  and  round  the  answer  to

the  correct  number  of  decimal  places.

7. 79.469  +  40.2

8. 94.33  –  12.4987

9. .1148  +  .94624

Rules  for  multiplication  and  division

The  answer  should  have  the  same  number  of  significant  figures  as  the  original

value  with  the  least  number  of  significant  figures  (example:    3.0  ×  12.0  =  36)

Practice  -­‐  complete  each  multiplication  or  division  problem  and  round  the  answer

to  the  correct  number  of  significant  figures.

10. 4.6  ×  13.5

11. .0049  ×  3.9987

12. 5.90  /  .36

13. 46.50  /  .049

14. 3.75  ×  20

= 62.1 = 62= 0.01959 = 0.020= 16.389 = 16

Monday, September 23, 13

Page 24: 2.2 Scientific Notation & Dimensional Analysis

Significant Figures

• Rounding Numbers

• Identify the last significant figure.

• If number to right of last significant figure is:

• Less than Five, DO NOT change: 35.3 = 35

• Greater than FIVE, round UP: 35.8 = 36

• Five:

• Do nothing if the last significant figure is EVEN: 3.525014 = 3.52

• Round UP if the last significant figure is ODD: 3.515014 = 3.52

Monday, September 23, 13

Page 25: 2.2 Scientific Notation & Dimensional Analysis

2.4 Representing Data

Monday, September 23, 13

Page 26: 2.2 Scientific Notation & Dimensional Analysis

Representing Data

• “A picture is worth.....

• A graph is a picture

• Scientists use graphs to present data in a form that allows them analyze results and communicate information about their experiments.

Monday, September 23, 13

Page 27: 2.2 Scientific Notation & Dimensional Analysis

Graphing

• Goal of experiments is to discover patterns within situations.

• Does changing temp change rate of rxn?

• Does change in diet affect rat’s ability to navigate maze?

• Data listed in tables may not make patterns obvious.

• Using data to create graphs can help reveal patterns.

• Graph = visual display of data.

Monday, September 23, 13

Page 28: 2.2 Scientific Notation & Dimensional Analysis

Circle Graphs (Pie Chart)

• Useful for showing parts of a fixed whole.

• Comparison of data

• Parts usually labeled as percents.

Monday, September 23, 13

Page 29: 2.2 Scientific Notation & Dimensional Analysis

Circle Graphs (Pie Chart)

Calculations with significant figures

Multiplication and division rules:

29. .037 × 34.55

30. 98.3 ÷ .30

Addition and Subtraction rules:

31. 12.34 + 9.852

32. 39.0 - 89.481

2.4 Representing Data

Pie or Circle Graph

9

Monday, September 23, 13

Page 30: 2.2 Scientific Notation & Dimensional Analysis

Circle Graphs (Pie Chart)

Calculations with significant figures

Multiplication and division rules:

29. .037 × 34.55

30. 98.3 ÷ .30

Addition and Subtraction rules:

31. 12.34 + 9.852

32. 39.0 - 89.481

2.4 Representing Data

Pie or Circle Graph

9

Monday, September 23, 13

Page 31: 2.2 Scientific Notation & Dimensional Analysis

Bar Graphs

• Shows how quantities vary across categories.

• Include time, location, and temperature.

• Quantity being measured goes on y-axis.

• Which variable is this?

• Quantity that a scientist changes goes on x-axis.

• Which variable is this?

Monday, September 23, 13

Page 32: 2.2 Scientific Notation & Dimensional Analysis

Bar Graphs Bar Graph -

Line Graph -

10

Monday, September 23, 13

Page 33: 2.2 Scientific Notation & Dimensional Analysis

Line Graphs

• Type of graph most used in chemistry.

• Points represent the intersection of of data for two variables.

• Like a bar graph: independent variable = x-axis

dependent variable = y-axis

Monday, September 23, 13

Page 34: 2.2 Scientific Notation & Dimensional Analysis

Line Graphs • Points represent the intersection of of data for

two variables.

• Like a bar graph: independent variable = x-axis

dependent variable = y-axis

Bar Graph -

Line Graph -

10Monday, September 23, 13

Page 35: 2.2 Scientific Notation & Dimensional Analysis

Line Graphs • Contain best-fit line.

• Line drawn such that equal number of points fall above and below line.

Bar Graph -

Line Graph -

10Monday, September 23, 13

Page 36: 2.2 Scientific Notation & Dimensional Analysis

Line Graphs • Contain best-fit line.

• Line drawn such that equal number of points fall above and below line.

Bar Graph -

Line Graph -

10

Monday, September 23, 13

Page 37: 2.2 Scientific Notation & Dimensional Analysis

Line Graphs • If the best-fit line is straight, there is a linear

relationship between variables.

• Directly related

• If the best-fit line is curved, there is a nonlinear relationship between variables.

• Inverse relationship

Monday, September 23, 13

Page 38: 2.2 Scientific Notation & Dimensional Analysis

Line Graphs

• Slope of line tells HOW variables are related.

• Slope equation =

Monday, September 23, 13

Page 39: 2.2 Scientific Notation & Dimensional Analysis

Line Graphs

• Slope of line tells HOW variables are related.

• Rising slope = positive slope.

• Both dependent and independent variable increase.

• Sinking slope = negative slope.

• Dependent variable decreases as independent variable increases.

Monday, September 23, 13

Page 40: 2.2 Scientific Notation & Dimensional Analysis

Line Graphs • Slope of line tells HOW variables are related.

Bar Graph -

Line Graph -

10

Bar Graph -

Line Graph -

10

Monday, September 23, 13

Page 41: 2.2 Scientific Notation & Dimensional Analysis

How to Interpret Graphs

• Determine independent and dependent variables.

• x-axis vs y-axis?

• Decide if relationship is linear or nonlinear.

• If linear, determine if slope is positive or negative.

Monday, September 23, 13

Page 42: 2.2 Scientific Notation & Dimensional Analysis

Interpolation vs Extrapolation

• Connected points on line graph = continuous data.

• Reading values between recorded data points is called interpolation.

Monday, September 23, 13

Page 43: 2.2 Scientific Notation & Dimensional Analysis

Interpolation vs Extrapolation

• Connected points on line graph = continuous data.

• Reading values between recorded data points is called interpolation.

Bar Graph -

Line Graph -

10

What is the temperature at an elevation of 350 m?

Monday, September 23, 13

Page 44: 2.2 Scientific Notation & Dimensional Analysis

Interpolation vs Extrapolation

• Extending line beyond plotted points to estimate values for variables = extrapolation.

• Can lead to errors and inaccuracy.

Monday, September 23, 13

Page 45: 2.2 Scientific Notation & Dimensional Analysis

Interpolation vs Extrapolation

• Extending line beyond plotted points to estimate values for variables = extrapolation.

• Can lead to errors and inaccuracy.

Bar Graph -

Line Graph -

10

What is the temperature at an elevation of 800 m?

Monday, September 23, 13