Top Banner
Contents Chapter 1: Math 1572 Summer 2002 ......................................... 1 Section 1.1: Review ........................................................... 1 Chapter 2: Math 1572 Summer 2003 ......................................... 20 Section 2.1: Quiz .............................................................. 20 Section 2.2: Quiz 1572 ........................................................ 30 Section 2.3: Review ........................................................... 44 Section 2.4: Exam 1 ........................................................... 63 Section 2.5: Final ............................................................. 66 Chapter 3: Fall 2005 ........................................................... 76 Section 3.1: Exam 1 Math 1572 Fall 2005 ...................................... 76 Chapter 4: Math 1572 Fall 2006 .............................................. 78 Section 4.1: Exam 1 ........................................................... 78 Section 4.2: Exam 2 ........................................................... 79 Section 4.3: Exam 3 ........................................................... 81 Chapter 5: Math 1572 Spring 2007 ........................................... 85 Section 5.1: Exam 1 ........................................................... 85 Section 5.2: Exam 2 ........................................................... 86 Section 5.3: Exam 3 ........................................................... 89 Chapter 6: Math 1572 Summer 2007 ......................................... 92 Section 6.1: Exam 1 ........................................................... 92 Section 6.2: Exam 2 ........................................................... 94 Section 6.3: final .............................................................. 97 i
259

Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Jan 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Contents

Chapter 1: Math 1572 Summer 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Section 1.1: Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2: Math 1572 Summer 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Section 2.1: Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Section 2.2: Quiz 1572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Section 2.3: Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Section 2.4: Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Section 2.5: Final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 3: Fall 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Section 3.1: Exam 1 Math 1572 Fall 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 4: Math 1572 Fall 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Section 4.1: Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Section 4.2: Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Section 4.3: Exam 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 5: Math 1572 Spring 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Section 5.1: Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Section 5.2: Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Section 5.3: Exam 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 6: Math 1572 Summer 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Section 6.1: Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Section 6.2: Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Section 6.3: final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

i

Page 2: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

ii

Chapter 7: Math 1572 Fall 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Section 7.1: Quizzes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Section 7.2: Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Section 7.3: Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Section 7.4: Exam 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Section 7.5: Final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Section 7.6: Final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Chapter 8: Math 1572 Spring 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Section 8.1: Quizzes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Section 8.2: Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Section 8.3: Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Section 8.4: Exam 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Section 8.5: Final Exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Chapter 9: Spring 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Section 9.1: Quizzes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Section 9.2: Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Section 9.3: Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Section 9.4: Exam 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Section 9.5: Final Exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Chapter 10: Spring 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Section 10.1: Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Section 10.2: Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Page 3: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

iii

Section 10.3: Exam 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Page 4: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

1

Chapter 1: Math 1572 Summer 2002

Section 1.1: Review

Solutions to Review Problems

1. For each of the following, find the equation of the line that that is tangent to the graphof f

-1at the given point.

a. f(x) = x3 + 2x+ 3; x = -30

f ′(x) = 3x2 + 2

f-1(-30) = -3

f ′(-3) = 29

[

f-1]′(-30) = 1

29

y + 3 = 129(x+ 30)

b. f(x) = tanx; x = 1

f ′(x) = sec2 x

f-1(1) = π

4

f ′(π4) = 2

[

f-1]′(1) = 1

2

y − π4= 1

2(x− 1)

2. Calculate the following limits.

a. limx→0

sin x

xL′H= lim

x→0

cos x

1= 1

b. limx→0

ex

ln x= 0

c. limx→∞

ln x

exL′H= lim

x→∞

1

xex= 0

d. limx→∞

(√x2 + 1− x

)

limx→∞

(√x2 + 1− x

)

= limx→∞

(√x2 + 1− x

)

·√x2 + 1 + x√x2 + 1 + x

= limx→∞

1√x2 + 1 + x

= 0

e. limx→0

(

sin x)x

First, consider

limx→0

(

ln sin x)x

= limx→0

ln sin x1x

L′H= lim

x→0-x2 cosx

sin x

= limx→0

-x cosxx

sin x

= 0.

Therefore, limx→0

(

sin x)x

= e0 = 1.

f. limx→0

ln(sin x) = -∞

Page 5: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

2

g. limn→∞

n!

nn

limn→∞

n!

nn

= limn→∞

n(n− 1)(n− 2) · · ·2 · 1n · n · · ·n

= limn→∞

(

n

n· n− 1

n· n− 2

n· · · 2

n· 1n

)

≤ limn→∞

1

n

= 0

h. limn→∞

en

n!

Since limn→∞

en+1

(n + 1)!· n!en

= limn→∞

e

n + 1= 0, the series

∞∑

n=0

en

n!converges by the ratio test.

Therefore, limn→∞

en

n!= 0 by the divergence test.

3. Differentiate.

a. k(x) = esinx

k′(x) = esinx(cosx)

b. f(x) = ln |x3 + x2 − 1|

f ′(x) =3x2 + 2x

x3 + x2 − 1

c. g(x) = tan-1(sin x)

g′(x) =cos x

1 + sin2 x

d. f(x) = sin (ex)

f ′(x) = ex cos (ex)

e. y = xsinx

y = xsinx

ln y = ln xsinx

ln y = sin x ln x

y′

y= cosx ln x+ sin x · 1

x

y′

y=

x cosx ln x+ sin x

x

y′ =x cosx ln x+ sin x

x· y

y′ =x

sinx

(x cosx ln x+ sin x)

x

y′ = xsin x−1

(x cosx ln x+ sin x)

f. h(x) = xex

y = xex

ln y = lnxex

ln y = ex ln x

y′

y= ex lnx+

ex

x

Page 6: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

3

y′

y=

xex ln x+ ex

x

y′ =xex ln x+ ex

x· y

y′ =x

ex

(xex ln x+ ex)

x

y′ = xex−1(xex lnx+ ex)

g. f(x) = eex

f ′(x) = exeex

Page 7: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

4

4. Integrate.

a.

∫ √x2 + 1dx

✟✟✟✟✟✟✟✟✟✟

θ

√x2 + 1

1

x

x = tan θ

dx = sec2 θ dθ

∫ √x2 + 1dx =

∫ √tan2 θ + 1 sec2 θ dθ =

sec3 θ dθ

Use integration by parts letting u = sec x, du = sec x tanx dx, v = tan x, and dv = sec2 x dx.

sec2 x · sec xdx = sec x tanx−∫

sec x · tan2 xdx

sec3 xdx = sec x tanx−∫

sec x(sec2 x− 1)dx

sec3 xdx = sec x tanx−∫

(

sec3 x− sec x)

dx

sec3 xdx = sec x tanx−∫

sec3 xdx+

sec xdx

2

sec3 xdx = sec x tan x+

sec xdx

2

sec3 xdx = sec x tan x+ ln | sec x+ tan x|+ C

sec3 xdx = 12(sec x tanx+ ln | sec x+ tan x|) + C

Page 8: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

5

b.

∫ 1

0

ex sin xdx

Use integration by parts letting u = sin x, du = cosx dx, v = ex, and dv = ex dx.

∫ 1

0

ex sin xdx = ex sin x

1

0

−∫ 1

0

ex cos xdx

Use integration by parts again letting u = cosx, du = - sin x dx, v = ex, and dv = ex dx.

∫ 1

0

ex sin xdx = ex sin x

1

0

−∫ 1

0

ex cos xdx

∫ 1

0

ex sin xdx = e sin 1−(

ex cos x

1

0

−∫ 1

0

ex(- sin x)dx

)

∫ 1

0

ex sin xdx = e sin 1− e cos 1 + 1−∫ 1

0

ex sin xdx

2

∫ 1

0

ex sin xdx = e sin 1− e cos 1 + 1

∫ 1

0

ex sin xdx = 12(e sin 1− e cos 1 + 1)

c.

x2 + 2x+ 3

x3 + x2 + x+ 1dx

x2 + 2x+ 3

x3 + x2 + x+ 1dx

=

x2 + 2x+ 3

(x2 + 1)(x+ 1)dx

=

∫(

2

x2 + 1+

1

x+ 1

)

dx

= 2 tan-1 x+ ln |x+ 1|+ C

Page 9: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

6

d.

sin2 θ cos2 θ dθ

=

(1− cos2 θ) cos2 θ dθ

=

[1− 12(cos 2θ + 1)] · 1

2(cos 2θ + 1)dθ

= 12

(

-12cos 2θ + 1

2

)

(cos 2θ + 1)dθ

= -14

(cos 2θ − 1)(cos 2θ + 1)dθ

= -14

(

cos2 2θ − 1)

= -14

(

12(cos 4θ + 1)− 1

)

= -14

(

12cos 4θ − 1

2

)

= -18

(

cos 4θ − 1)

= -18

(

14sin 4θ − θ

)

+ C

= - 132sin 4θ + 1

8θ + C

e.

sin20 x cos3 xdx

=

sin20 x · cos2 x · cosxdx

=

sin20 x(1− sin2 x) cosxdx

=

(sin20 x− sin22 x) cosxdx

Let u = sin x and du = cosx dx.

(sin20 x− sin22 x) cosxdx

=

(

u20 − u22)

du

= 121u21 − 1

23u23 + C

= 121sin21 x− 1

23sin23 x+ C

f.

2x√x2 − 4

dx

Let u = x2 − 4 and du = 2x dx.

2x√x2 − 4

dx

=

1√udu

= 2√u+ C

= 2√x2 − 4 + C

Page 10: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

7

g.

1√x2 − 4

dx

✟✟✟✟✟✟✟✟✟✟

θ

x √x2 − 4

2

x = 2 sec θ

dx = 2 sec θ tan θ dθ

1√x2 − 4

dx

=

2 sec θ tan θ√4 sec2 θ − 4

=

sec θ dθ

= ln | sec θ + tan θ|+ C

= ln

x

2+

√x2 − 4

2

+ C

h.

∫ π

2

-π2

x4 sin xdx

Since f(x) = x4 sin x is an odd function,

∫ π

2

-π2

x4 sin xdx = 0. Alternatively, use integration

by parts 4 times.

5. Find the solution of the differential equation that satisfies the given conditions.

a.dy

dx=

3

2y; x ≥ 2, y(2) = 1

dy

dx=

3

2y

2y dy = 3 dx

2y dy =

3dx

y2 = 3x+ C

1 = 6 + C

C = -5

y2 = 3x− 5

b.dy

dx=

-y2 − 2

2xy; x > 0, y(1) = 2

dy

dx=

-y2 − 2

2xy

2y

y2 + 2dy = -

1

xdx

2y

y2 + 2dy =

-1

xdx

ln |y2 + 2| = - ln |x|+ C

ln 6 = - ln 1 + C

C = ln 6

ln |y2 + 2| = - ln |x|+ ln 6

y2 + 2 = 6x

xy2 + 2x = 6

Page 11: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

8

6. Let C be the graph of y = 19

√x(x− 27) from x = 1 to x = 9. Also, let R be the region

bounded by the curves x = 1, x = 9, C, and the x-axis. Finally, let S be the solid formedby revolving R about the x-axis.

y = 19

√x(x− 27)

y = 19

√x3 − 3

√x

y′ = 16

√x− 3

2√x

[y′]2 =(√

x

6− 3

2√x

)2

[y′]2 = x36

− 12+ 9

4x

[y′]2 + 1 = x36

+ 12+ 9

4x

[y′]2 + 1 =x2 + 18x+ 81

36x

[y′]2 + 1 =(x+ 9)2

36x

[y′]2 + 1 =

(x+ 9)2

36x

[y′]2 + 1 =x+ 9

6√x

[y′]2 + 1 =√x

6+ 3

2√x

a. Find the arc length of C.

∫ 9

1

(√x

6+ 3

2√x

)

dx =(

19

√x3 + 3

√x)

9

1

= 12− 289= 80

9

b. Find the area of R.

-

∫ 9

1

(

19

√x3 − 3

√x)

dx =(

2√x3 − 2

45

√x5)

9

1

= 54− 545−(

2− 245

)

= 2165

− 8845

= 185645

c. Find the surface area of S.

-2π

∫ 9

1

19

√x(x− 27)

(

x+ 9

6√x

)

dx

= - π27

∫ 9

1

(x− 27)(x+ 9)dx

= - π27

∫ 9

1

(

x2 − 18x− 243)

dx

= - π27

(

13x3 − 9x2 − 243

2x)

9

1

= - π27(-3159

2+ 781

6)

= - π27

· -43483

= 4348π81

d. Find the volume of S.

π

∫ 9

1

(

19

√x3 − 3

√x)2

dx = π

∫ 9

1

(

181x3 − 2

3x2 + 9x

)

dx

Page 12: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

9

= π(

1324

x4 − 29x3 + 9

2x2)

9

1

= π[

814− 162 + 729

2−(

1324

− 29+ 9

2

)]

= 17696π81

7. Let C be the graph of y =√x(x − 1

3) from x = 1 to x = 9. Also, let R be the region

bounded by the curves x = 1, x = 9, C, and the x-axis. Finally, let S be the solid formedby revolving R about the x-axis.

y =√x(x− 1

3) from

y =√x3 − 1

3

√x

y′ = 32

√x− 1

6√x

[y′]2 =(

3√x

2− 1

6√x

)2

[y′]2 = 9x4− 1

2+ 1

36x

[y′]2 + 1 = 9x4+ 1

2+ 1

36x

[y′]2 + 1 =81x2 + 18x+ 1

36x

[y′]2 + 1 =(9x+ 1)2

36x

[y′]2 + 1 =

(9 + 1)2

36x

[y′]2 + 1 =9x+ 1

6√x

[y′]2 + 1 = 3√x

2+ 1

6√x

a. Find the arc length of C.

∫ 9

1

(

3√x

2+ 1

6√x

)

dx =(√

x3 + 13

√x)

9

1

= 28− 43= 80

3

b. Find the area of R.

∫ 9

1

(√x3 − 1

3

√x)

dx =(

25

√x5 − 2

9

√x3)

9

1

= 4865

− 6−(

25− 2

9

)

= 4565

− 845

= 409645

c. Find the surface area of S.

∫ 9

1

√x(x− 1

3)

(

9x+ 1

6√x

)

dx

= π3

∫ 9

1

(x− 13)(9x+ 1)dx

= π3

∫ 9

1

(

9x2 − 2x− 13

)

dx

= π3

(

3x3 − x2 − 13x)

9

1

= π3(2103− 5

3)

= π3· 6304

3

= 6304π9

d. Find the volume of S.

Page 13: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

10

π

∫ 9

1

(√x3 − 1

3

√x)2

dx

= π

∫ 9

1

(

x3 − 23x2 + 1

9x)

dx

= π(

14x4 − 2

9x3 + 1

18x2)

9

1

= π[

65614

− 162 + 92−(

14− 2

9+ 1

18

)]

= 4448π3

8. Let C be the graph of y = x2

8− ln x from x = 1 to x = 4. Also, let R be the region

bounded by the curves C, x = 1, and x = 4. Finally, let S be the solid formed by revolvingR about the x-axis.

a. Find the arc length of C.

b. Find the area of R.

c. Find the surface area of S.

d. Find the volume of S.

9. Let C be the plane curve defined by the parametric equations x = et cos t and y = et sin tfor 0 ≤ t ≤ π.

x = et cos t

dx

dt= et cos t− et sin t

y = et sin t

dy

dt= et sin t+ et cos t

dy

dx=

dy

dtdxdt

=et sin t+ et cos t

et cos t− et sin t=

sin t+ cos t

cos t− sin t

(

dx

dt

)2

= e2t(cos t− sin t)2 = e2t(cos2 t+ sin2 t− 2 cos t sin t) = e2t(1− 2 cos t sin t)

(

dy

dt

)2

= e2t(cos t + sin t)2 = e2t(cos2 t+ sin2 t + 2 cos t sin t) = e2t(1 + 2 cos t sin t)

(

dx

dt

)2

+

(

dy

dt

)2

= 2e2t

(

dx

dt

)2

+

(

dy

dt

)2

=√2et

a. Find the equation of the line that is tangent to C at the point where t = π4.

Page 14: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

11

t = π4

x =

√2e

π

4

2

y =

√2e

π

4

2

dxdt

= 0

dy

dxis undefined

The tangent line is vertical.

x =

√2e

π

4

2

b. Find the length of C.

∫ π

0

√2et dt =

√2et∣

π

0

=√2 (eπ − 1)

c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ π

0

√2et · et sin tdt = 2π

∫ π

0

√2e2t sin tdt = 2

√2 π

∫ π

0

e2t sin tdt

Use integration by parts letting u = sin t, du = cos t dt, v = 12e2t, and dv = e2t dt.

2√2 π

∫ π

0

e2t sin tdt = 2√2π

(

12e2t sin t

π

0

−∫ π

0

12e2t cos tdt

)

2√2 π

∫ π

0

e2t sin tdt = -√2 π

∫ π

0

e2t cos tdt

Use integration by parts again letting u = cos t, du = - sin t dt, v = 12e2t, and dv = e2t dt.

2√2 π

∫ π

0

e2t sin tdt = -√2 π

(

12e2t cos t

π

0

−∫ π

0

-12e2t sin tdt

)

2√2 π

∫ π

0

e2t sin tdt = -√2 π

(

-12e2π − 1

2−∫ π

0

-12e2t sin tdt

)

2√2 π

∫ π

0

e2t sin tdt =

√2πe2π

2+

√2π

2−

√2π

2

∫ π

0

e2t sin tdt

2√2 π

∫ π

0

e2t sin tdt =

√2πe2π

2+

√2π

2− 1

4

(

2√2π

∫ π

0

e2t sin tdt

)

5

4

(

2√2π

∫ π

0

e2t sin tdt

)

=

√2πe2π

2+

√2π

2

Page 15: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

12

2√2 π

∫ π

0

e2t sin tdt =4

5

(√2πe2π

2+

√2π

2

)

2√2 π

∫ π

0

e2t sin tdt =2√2πe2π + 2

√2π

5

10. Let C be the plane curve defined by the parametric equations x = cos3 θ and y = sin3 θfor 0 ≤ θ ≤ π

2.

x = cos3 θ

dx

dθ= 3 cos2 θ · (- sin θ)

y = sin3 θ

dy

dθ= 3 sin2 θ · cos θ

dy

dx=

dy

dθdxdθ

=3 sin2 θ · cos θ-3 cos2 θ · sin θ = - tan θ

(

dx

)2

= 9 cos4 θ · sin2 θ

(

dy

)2

= 9 sin4 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 9 sin2 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 3 sin θ · cos θ

a. Find the equation of the line that is tangent to C at the point where θ = π6.

θ = π6

x = 3√3

8

y = 18

dy

dx= - 1√

3

y − 18= - 1√

3

(

x− 3√3

8

)

b. Find the length of C.

∫ π

2

0

3 sin θ · cos θ dθ = 32sin2 θ

π

2

0

= 32

c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ π

2

0

(

sin3 θ)

3 sin θ · cos θ dθ = 6π

∫ π

2

0

sin4 θ · cos θ dθ = 6π5sin5

π

2

0

= 6π5

11. For each of the following, sketch the curves with the given polar equations and find thearea inside the first curve and outside the second curve.

Page 16: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

13

a.

i. r = 1

ii. r = sin 2θ

π − 4

∫ π

2

0

12sin2 2θ dθ

= π − 2

∫ π

2

0

12(1− cos 4θ)dθ

= π −(

θ − 14sin 4θ

)

π

2

0

= π2

✲✛

b.

i. r = 2 sin θ

ii. r = 1

2 sin θ = 1

sin θ = 12

θ = π6

2

∫ π

2

π

6

12

(

4 sin2 θ − 1)

=

∫ π

2

π

6

(

2(1− cos 2θ)− 1)

=

∫ π

2

π

6

(

1− 2 cos 2θ)

=(

θ − sin 2θ)

π

2

π

6

= π2−(

π6−

√32

)

= π3+

√32

= 2π+3√3

6

✲✛

Page 17: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

14

12. For each of the following, sketch the curve and find an integral that represents thelength of the given polar curve. Do not integrate.

a. r = 4 cos θ

drdθ

= -4 sin θ

r2 = 16 cos2 θ

(

drdθ

)2= 16 sin2 θ

r2 +(

drdθ

)2= 16 cos2 θ + 16 sin2 θ

r2 +(

drdθ

)2=

√16 cos2 θ + 16 sin2 θ

r2 +(

drdθ

)2= 4

∫ π

0

4dθ

= 4θ

π

0

= 4π

✲✛

b. r = 3 cos 2θ

drdθ

= -6 sin 2θ

r2 = 9 cos2 2θ

(

drdθ

)2= 36 sin2 2θ

r2 +(

drdθ

)2= 9 cos2 2θ + 36 sin2 2θ

r2 +(

drdθ

)2=

√9 cos2 2θ + 36 sin2 2θ

r2 +(

drdθ

)2=

√9 + 27 sin2 2θ

r2 +(

drdθ

)2= 3

√1 + 3 sin2 2θ

∫ 2π

0

3√1 + 3 sin2 2θ dθ

✲✛

Page 18: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

15

c. r = 2 cos 3θ

drdθ

= -6 sin 3θ

r2 = 4 cos2 3θ

(

drdθ

)2= 36 sin2 3θ

r2 +(

drdθ

)2= 4 cos2 3θ + 36 sin2 3θ

r2 +(

drdθ

)2=

√4 cos2 3θ + 36 sin2 3θ

r2 +(

drdθ

)2=

√4 + 32 sin2 3θ

r2 +(

drdθ

)2= 2

√1 + 8 sin2 3θ

∫ π

0

2√1 + 8 sin2 3θ dθ

✲✛

d. r = cos θ + 1

drdθ

= - sin θ

r2 = cos2 θ + 2 cos θ + 1

(

drdθ

)2= sin2 θ

r2 +(

drdθ

)2= cos2 θ + 2 cos θ + 1 + sin2 θ

r2 +(

drdθ

)2= 2 cos θ + 2

r2 +(

drdθ

)2=

√2 cos θ + 2

∫ 2π

0

√2 cos θ + 2dθ

✲✛

Page 19: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

16

13. For each of the following, determine whether the series converges absolutely, convergesconditionally, or diverges.

a.∞∑

n=0

en

n!

Since limn→∞

en+1

(n+ 1)!· n!en

= limn→∞

e

n + 1= 0, the series converges by the ratio test.

b.

∞∑

n=1

( n

n + 1

)n2

Since limn→∞

n

( n

n+ 1

)n2

= limn→∞

( n

n+ 1

)n

= 1e, the series converges by the root test.

c.∞∑

n=0

( n

n+ 1

)n

Since limn→∞

( n

n + 1

)n

= 1e, the series diverges by the divergence test.

d.∞∑

n=1

(-1)n

nn

Note that for n ≥ 2,1

nn≤ 1

2n. Since

∞∑

n=1

1

2nis a convergent geometric series,

∞∑

n=1

(-1)n

nn

converges absolutely by the comparison test.

e.∞∑

n=1

1√n · 2

√n

∫ ∞

1

1√x · 2

√xdx

= limt→∞

∫ t

1

1√x · 2

√xdx

= limt→∞

∫ t

1

1√x·(

1

2

)

√x

dx

= limt→∞

(

2

ln 12

·(

1

2

)

√x ∣

t

1

)

= limt→∞

(

2

ln 12

·(

1

2

)

√t

− 1

ln 12

)

= 0

Therefore,∞∑

n=1

1√n · 2

√nconverges by the integral test.

Page 20: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

17

f.∞∑

n=0

n2

n!

Since limn→∞

(n + 1)2

(n + 1)!· n!n2

= limn→∞

(n+ 1)2

n+ 1· 1

n2= lim

n→∞

n2 + 2n+ 1

n3 + n20, the series converges by

the ratio test.

g.

∞∑

n=4

(-1)n

n2 − 5n+ 6

Since

∞∑

n=4

1

n2 − 5n+ 6=

∞∑

n=4

(

1

n− 3− 1

n− 2

)

= 1− 12+ 1

2− 1

3+ 1

3− 1

4+ 1

4· · · , the series

∞∑

n=4

(-1)n

n2 − 5n+ 6is absolutely convergent.

14. For each of the following power series, find the interval of convergence and radius ofconvergence.

a.∞∑

n=1

2nxn

n2

Since limn→∞

2n+1xn+1

(n + 1)2· n2

2nxn

= |2x| < 1 if and only if |x| < 12, the radius of convergence

is 12. Note that if x = 1

2,

∞∑

n=1

2nxn

n2=

∞∑

n=1

1

n2which is a convergent p-series. If x = -1

2,

∞∑

n=1

2nxn

n2=

∞∑

n=1

(-1)

n2which is absolutely convergent. Therefore, the interval of convergence

is[

-12, 12

]

.

b.

∞∑

n=0

5n(x− 2)n

nn

Since limn→∞

n

5n(x− 2)n

nn

= limn→∞

5|x− 2|n

= 0 for all x, the interval of convergence is

(-∞,∞) and the radius of convergence is ∞.

c.∞∑

n=0

n2xn

2n

Page 21: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

18

Since limn→∞

(n+ 1)2xn+1

2n+1· 2n

xnn2

=∣

x

2

∣< 1 if and only if |x| < 2, the radius of convergence

is 2. Note that if x = 2, then∞∑

n=0

n2xn

2n=

∞∑

n=0

n2 which diverges and Note that if x = -2,

then∞∑

n=0

n2xn

2n=

∞∑

n=0

-n2 which diverges. Therefore, the interval of convergence is (-2, 2).

d.∞∑

n=1

(-1)n(x+ π)n

2n

Note that if x = -π − 1, then

∞∑

n=1

(-1)n(x+ π)n

2n=

∞∑

n=1

1

2nwhich diverges. If x = -π + 1,

then

∞∑

n=1

(-1)n(x+ π)n

2n=

∞∑

n=1

(-1)n

2nwhich converges. Therefore, the interval of convergence

is (-π − 1, -π + 1] and the radius of convergence is 1.

15. Let g(x) = x tan-1 x. Express g as a power series. What is the radius of convergence?

Since tan-1 x =∞∑

n=0

(-1)nx2n+1

2n+ 1, x tan-1 x =

∞∑

n=0

(-1)nx2n+2

2n+ 1.

The radius of convergence is 1.

16. Let f(x) =√xex. Find the Maclaurin series of f . What is the radius of convergence?

17. Let f(x) = sin x. Find the Taylor series of f centered at π2. What is the radius of

convergence?

f(x) = sin x

f ′(x) = cosx

f ′′(x) = - sin x

f ′′′(x) = - cos x

f (4)(x) = sin x

...

f(

π2

)

= 1

f ′ (π2

)

= 0

f ′′ (π2

)

= -1

f ′′′ (π2

)

= 0

f (4)(

π2

)

= 1

...

∞∑

n=0

(-1)n(

x− π2

)

(2n)!

Page 22: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

19

18. Let g(x) = cosx. Find the Taylor series of f centered at π4. What is the radius of

convergence?

g(x) = cos x

g′(x) = - sin x

g′′(x) = - cosx

g′′′(x) = sin x

g(4)(x) = sin x

...

g(

π4

)

=√22

g′(

π4

)

= -√22

g′′(

π4

)

= -√22

g′′′(

π4

)

=√22

g(4)(

π4

)

=√22

...

√2

2 · 0! −√2

2 · 1!(

x− π4

)

−√2

2 · 2!(

x− π4

)2+

√2

2 · 3!(

x− π4

)3+

√2

2 · 4!(

x− π4

)4 −√2

2 · 5!(

x− π4

)5

−√2

2 · 6!(

x− π4

)6+

√2

2 · 7!(

x− π4

)7 · · ·

Page 23: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

20

Chapter 2: Math 1572 Summer 2003

Section 2.1: Quiz

Quiz 107-01-02

(1) 19. Differentiate the function f(x) =√x3 − 2x2 + x+ 11.

f(x) = (x3 − 2x2 + x+ 11)12

f ′(x) = 12(x3 − 2x2 + x+ 11)

- 12(3x2 − 4x+ 1)

20. Integrate.

(1) a.

∫ 2

1

(

x2 − x+ 1)

dx =(

13x3 − 1

2x2 + x

)

2

1

= 83− 2 + 2−

(

13− 1

2+ 1)

= 116

(1) b.

(2x3 + 4) (x4 + 8x− 2)6dx = 1

14(x4 + 8x− 2)

7+ C

Quiz 207-02-02

(1) 21. Let h(x) = x+√x and find h

-1(6).

See the student solutions manual.

(1) 22. Let f(x) =√5x+ 2 and find f

-1(x).

See the student solutions manual.

(1) 23. Let f(x) = tan πx2+ x2 + 3 on (-1, 1) and find

(

f-1)′(3).

See the student solutions manual.

Quiz 307-03-02

24. Calculate each of the following.

(1) a. log3127

= -3

Page 24: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

21

(1) b. log27 3 = 13

25. Calculate each of the following.

(1) a. sin-1 12= π

6

(1) b. sin(

cos-1 23

)

x2 + y2 = 1

49+ y2 = 1

y2 = 59

y =√53

Quiz 407-05-02

26. Differentiate.

(1) a. f(x) = e3x3−4x2+1

f ′(x) = e3x3−4x2+1(9x2 − 8x)

(1) b. f(x) = sin-1 (ex)

f ′(x) =1√

1− e2x· ex =

ex√1− e2x

27. For each of the following, find the equation of the line that is tangent to the graph ofthe given function at the specified point.

(1) a. f(x) = ln(x− 1)2; x =√e + 1

f ′(x) = 2x−1

f(√e + 1) = ln e = 1

f ′(√e + 1) = 2√

e

y − 1 = 2√e(x−√

e− 1)

Quiz 507-08-02

(1) 28. Let f(x) = tan πx2+ x2 + 3 on (-1, 1) and find

(

f-1)′(3).

See the student solutions manual.

(1) 29. Given that Q(t) = Q0

(

12

)t

λ = Q0e-kt, solve for k in terms of λ.

Page 25: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

22

Q0

(

12

)t

λ = Q0e-kt

(

12

)t

λ = e-kt

ln(

12

)t

λ = ln e-kt

tλln 1

2= -kt

1λln 1

2= -k

1λ(- ln 2) = -k

1λln 2 = k

k = ln 2λ

Quiz 607-09-02

Integrate.

(1) 30.

∫ 1

0

xex dx

Use integration by parts letting u = x, du = dx, v = ex, and dv = ex dx.

∫ 1

0

xex dx = xex∣

1

0

−∫ 1

0

ex dx = xex∣

1

0

−ex∣

1

0

= e− 0− (e− 1) = 1

(1) 31.

xex2dx = 1

2ex

2+ C

(1) 32.

ln xdx

Use integration by parts letting u = ln x, du = 1xdx, v = x, and dv = dx.

ln xdx = x lnx−∫

x · 1xdx = x ln x−

1dx = x ln x− x+ C

Quiz 707-15-02

33. Integrate.

(1) a.

∫ 1

0

ex sin xdx

Use integration by parts letting u = sin x, du = cosx dx, v = ex, and dv = ex dx.

∫ 1

0

ex sin xdx = ex sin x

1

0

−∫ 1

0

ex cos xdx

Page 26: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

23

Use integration by parts again letting u = cosx, du = - sin x dx, v = ex, and dv = ex dx.

ex sin x

1

0

−∫ 1

0

ex cos xdx = e sin 1−(

ex cosx

1

0

−∫ 1

0

ex(− sin x)dx

)

= e sin 1− e cos 1 + 1−∫ 1

0

ex sin xdx

Therefore, 2

∫ 1

0

ex sin xdx = e sin 1−e cos 1+1 and so

∫ 1

0

ex sin xdx = 12(e sin 1−e cos 1+1).

(1) b.

∫ 3√

32

0

x3

(√4x2 + 9

)3 dx

See page 521 of text.

(1) c.

sin 5x cos 3xdx = 12

(

sin 2x+ sin 8x)

dx = -14cos 2x− 1

16cos 8x+ C

Quiz 807-16-02

34. Integrate.

(1) a.

x2 + 1

x2 − xdx

See the student solutions manual.

(1) b.

e2x

e2x + 3ex + 2dx

See the student solutions manual.

Quiz 907-17-02

35. Determine whether or not the following series converges or diverges.

(1) a.∞∑

n=1

ln

(

n + 1

n

)

Since limn→∞

ln n+1n

1n

= limx→∞

ln x+1x

1x

L′H= lim

x→∞

xx+1

· x−(x+1)x2

- 1x2

= limx→∞

x

x+ 1= 1 and the series

∞∑

n=1

1n

diverges, the series

∞∑

n=1

ln(

n+1n

)

diverges by the limit comparison test.

(1) 36. State the limit comparison theorem for series.

Page 27: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

24

See the text or your class notes.

(1) 37. Prove the limit comparison theorem for series.

See the text or your class notes.

Quiz 1007-19-02

38. Integrate.

(1) a.

1

x ln xdx

Let u = ln x and du = 1xdx.

1

x ln xdx =

1

udu = ln |u|+ C = ln | lnx| + C

(1) b.

ln xdx

Use integration by parts letting u = ln x, du = 1xdx, v = x, and dv = dx.

ln xdx = x lnx−∫

x · 1xdx = x ln x−

1dx = x ln x− x+ C

39. Determine whether or not the following series converges or diverges.

(1) a.∞∑

n=2

1

n2 − 2n+ 1

Note that

∞∑

n=2

1

n2 − 2n + 1=

∞∑

n=2

1

(n− 1)2=

∞∑

n=1

1

n2which is a convergent p-series.

Quiz 1107-22-02

40. Integrate.

(1) a.

∫ π

2

π

6

cot x ln(sin x)dx

Let u = ln(sin x) and du = cotx dx.

Page 28: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

25

∫ π

2

π

6

cotx ln(sin x)dx =

∫ 0

ln 12

udu = 12u2

0

ln 12

= -12

(

ln 12

)2

(1) b.

x2 + 1

x2 − xdx

See the student solutions manual.

(1) c.

e2x

e2x + 3ex + 2dx

See the student solutions manual.

Quiz 1207-23-02

41. For each of the following determine whether the given series converges or diverges.

(1) a.∞∑

n=1

(-1)n+1(

1n

)

Since limn→∞

1

n= 0, the series

∞∑

n=1

(-1)n+1(

1n

)

converges by the alternting series test.

(1) b.∞∑

n=1

1√n3 + 1

Since1√

n3 + 1≤ 1√

n3and

∞∑

n=1

1√n3

is a convergent p-series,

∞∑

n=1

1√n3 + 1

converges by the

comparison test.

(1) c.∞∑

n=0

(

n+ 1

n

)n

Since limn→∞

(

n+ 1

n

)n

= e,

∞∑

n=0

(

n+ 1

n

)n

diverges by the divergence test.

Quiz 1307-24-02

42. Integrate.

(1) a.

∫ 1

0

ex+ex dx

∫ 1

0

ex+ex dx =

∫ 1

0

ex · eex dx

Page 29: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

26

Let u = ex and du = ex dx.

∫ 1

0

ex · eex dx =

∫ e

1

eu du = eu∣

e

1

= ee − e

(1) b.

4x2 − x− 1

x3 − xdx =

∫(

1

x+

2

x+ 1+

1

x− 1

)

dx = ln |x|+2 ln |x+1|+ ln |x− 1|+C

43. For each of the following, determine whether the series is absolutely convergent, con-ditionally convergent, or divergent.

(1) a.

∞∑

n=1

(-1)n(

n+ 1

n2

)n

Since limn→∞

n

(

n+ 1

n2

)n

= limn→∞

n + 1

n2= 0, the series

∞∑

n=1

(-1)n(

n+ 1

n2

)n

is absolutely con-

vergent by the root test.

(1) b.

∞∑

n=1

2n

2n!

For n ≥ 3,2n

2n!≤ 2n

22n=

1

2n. Since

∞∑

n=1

1

2nis a convergent geometric series,

∞∑

n=1

2n

2n!converges

by the comparison test.

(1) c. Find the sum of the series∞∑

n=2

(

1

2

)n

.

Since∞∑

n=0

(

1

2

)n

= 2,∞∑

n=2

(

1

2

)n

= 2− 1− 12= 1

2.

Page 30: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

27

Quiz 1407-30-02

(4) 44. For each of the following, determine which curve represents the graph of the givenparametric equation.

a. x = 2 sin t and y = 3 cos t+ t

b. x = 8 cos t− 1 and y = 6 sin t+ 1

c. x = 310t3 − 2t− 4 and y = 4

5t2 − t− 6

d. x = t sin t and y = t cos t

I

✲✛

II

✲✛

III

✲✛

IV

✲✛

See solutions from section 12.1 of the class notes.

Quiz 15

Page 31: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

28

07-31-02

(1) 45. Let C be the parametric curve defined by x = et and y = ln t. Find the equationof the line that is tangent to the curve at the point corresponding to t = 2.

dxdt

= et

dy

dt= 1

t

dy

dx=

dy

dtdxdt

=1

tet

t = 2

x = e2

y = ln 2

dy

dx=

1

2e2

y − ln 2 = 12e2

(x− e2)

(1) 46. Find the length of the plane curve given by x = et and y = 4 where 0 ≤ t ≤ ln 3.

Note that the curve being described is the line segment with endpoints (1, 4) and (3, 4).This line segment has length 2.

(1) 47. Let C be the parametric curve defined by x = t2 + 1 and y = 6t where√7 ≤ t ≤√

55. Find the surface area of the solid formed by rotating C about the x-axis.

dxdt

= 2t

dy

dt= 6

√55

√7

2π · 6t√4t2 + 36dt =

√55

√7

12πt√4t2 + 36dt =

√55

√7

24πt√t2 + 9dt

Let u = t2 + 9 and du = 2t dt.

√55

√7

24πt√t2 + 9dt =

∫ 64

16

12π√udu = 8π

√u3

64

16

= 8π(512− 64) = 3584π

Quiz 1608-02-02

48. For each of the following, find a power series representation for the given function andfind the radius of convergence.

(1) a. f(x) =1

x+ 2

See page 780 of the text.

(1) b. g(x) = ln(5− x)

See the student solutions manual.

Page 32: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

29

Quiz 1708-06-02

49. Integrate.

(1) a.

3x2 − x+ 2

x3 − x2 + x− 1dx

3x2 − x+ 2

x3 − x2 + x− 1dx

=

3x2 − x+ 2

(x− 1)(x2 + 1)dx

=

∫(

2

x− 1+

x

x2 + 1

)

dx

= 2 ln |x− 1|+ 12ln |x2 + 1|+ C

(1) b.

18x2 + 24x

3x3 + 6x2 + 2dx

Let u = 3x3 + 6x2 + 2 anddu = (9x2 + 12x) dx.

18x2 + 24x

3x3 + 6x2 + 2dx

=

2

udu

= 2 ln |u|+ C

= 2 ln |3x3 + 6x2 + 2|+ C

(1) c.

∫ 1

0

(ee)x dx

∫ 1

0

(ee)x dx

=

∫ 1

0

eex dx

= 1eeex∣

1

0

= 1e(ee − 1)

Quiz 1808-07-02

50. Integrate.

(1) a.

3x2 − x+ 2

x3 − x2 + x− 1dx

See quiz 17.

(1) b.

∫ 1

0

(ee)x dx

See quiz 17.

51. Find the sum of each of the following series.

(1) a.∞∑

n=0

3(

12

)n=

3

1− 12

= 6

Page 33: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

30

(1) b.∞∑

n=0

( ∞∑

k=0

1

2n+1 · 2k

)

=∞∑

n=0

(

1

2n+1

∞∑

k=0

1

2k

)

=∞∑

n=0

2

2n+1 =∞∑

n=0

1

2n= 2

Section 2.2: Quiz 1572

Quiz 106-30-03

(2) 52. Let f(x) =√3x+ 1. Find the equation of the line that is tangent to the graph

of f at x = 1.

f(x) = (3x+ 1)12

f ′(x) = 12(3x+ 1)

- 12 (3)

f ′(x) =3

2√3x+ 1

f(1) = 2

f ′(1) = 34

y − 2 = 34(x− 1)

(3) 53. Find the area of the region bounded by the curves x = 0, x = 1, y = 0, andy = 2x sin x2.

∫ 1

0

2x sin x2 dx

Let u = x2 and du = 2x dx.

∫ 1

0

2x sin x2 dx

=

∫ 1

0

sin udu

= - cosu

1

0

= - cos 1− -1

= 1− cos 1

Quiz 207-01-03

54. For each of the following, determine whether or not the given function is 1–1. If thefunction is 1–1, find the inverse.

(3) a. f(x) = 5x− 6

Suppose that x1 , x2 ∈ R and f(x1) = f(x2). Then

5x1 − 6 = 5x2 − 6

5x1= 5x

2

x1 = x2 .

Page 34: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

31

Therefore, f is 1–1.

Find the inverse of f.

y = 5x− 6

5x = y + 6

x =y + 6

5

f-1(x) =

x+ 6

5

(2) b. f(x) = x2 − 2x− 15

Since f(5) = f(-3) = 0, f is not 1–1.

Quiz 307-02-03

55. Calculate.

(1) a. log3 27 = 3

(1) b. log25 5 = 12

(1) c. log2515= -1

2

(1) d. eln 4 = 4

(1) e. sec-1(√2) = π

4

Quiz 407-07-03

56. Differentiate.

(1) a. f(x) = e√x

f(x) = ex12

f ′(x) = ex12 · 1

2x

- 12

f ′(x) =e√x

2√x

(1) b. g(x) =√ex

g(x) = (ex)12

g(x) = e12 x

g′(x) = e12x · 1

2

g′(x) =

√ex

2

(3) 57. Let f(x) = esinx. Find the equation of the line that is tangent to the graph of fwhen x = 0.

f(x) = esinx f ′(x) = cosx · esinx

Page 35: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

32

f(0) = 1

f ′(0) = 1

y − 1 = 1(x− 0)

y = x+ 1

Quiz 507-08-03

58. Differentiate.

(1) a.

f(x) = 5x

f ′(x) = 5x · ln 5

(1) b.

g(x) = log5 x

g′(x) = 1x ln 5

(1) c.

y = e√x2+1

y′ = e√x2+1 · 1

2(x2 + 1)

- 12 (2x)

y′ =xe

√x2+1

√x2 + 1

59. Integrate.

(1) a.

1

x2 + 1dx = tan-1 x+ C

(1) b.

2x

x2 + 1dx

Let u = x2 + 1 and du = 2x dx.

2x

x2 + 1dx

=

1

udu

= ln |u|+ C

= ln |x2 + 1|+ C

Quiz 607-09-03

60. Differentiate.

(2) a. y = x√

x

ln y = ln x√

x

ln y =√x ln x

y′

y= 1

2x

- 12 ln x+√x · 1

x

y′

y= lnx

2√x+ 1√

x

y′ = y(

lnx+22√x

)

y′ = x√

x

(

lnx+22√x

)

Page 36: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

33

61. Integrate.

(2) a.

2x

x2 + 1dx

Let u = x2 + 1 and du = 2x dx.

2x

x2 + 1dx

=

1

udu

= ln |u|+ C

= ln |x2 + 1|+ C

(2) 62. Let f(x) = x5 + x3 +1. Find the equation of the line that is tangent to the graph

of f-1at the point (3, 1).

f(x) = x5 + x3 + 1

f ′(x) = 5x4 + 3x2

f ′(1) = 8

[f-1]′(3) = 1

8

y − 1 = 18(x− 3)

Page 37: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

34

Quiz 707-11-03

63. Calculate the following limits.

(2) a. limx→0

ln xx

= limx→0

x ln x

= limx→0

lnx1x

L’H= lim

x→0

1x

- 1x2

= limx→0

-x

= 0

64. Integrate.

(2) a.

x sin xdx

Use integration by parts letting u = x, du = dx, v = - cosx, and dv = sin x dx.

x sin xdx = -x cosx−∫

- cosxdx = -x cosx+ sin x+ C

(1) 65. Let f(x) = x5 + x3 +1. Find the equation of the line that is tangent to the graph

of f-1at the point (3, 1).

f(x) = x5 + x3 + 1

f ′(x) = 5x4 + 3x2

f ′(1) = 8

[f-1]′(3) = 1

8

y − 1 = 18(x− 3)

Quiz 807-14-03

66. Integrate.

(2) a.

cotxdx

=

cos x

sin xdx

Let u = sin x and du = cosx dx.

cosx

sin xdx

Page 38: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

35

=

1

udu

= ln |u|+ C

= ln | sinx|+ C

(2) b.

∫ 1

0

xex dx

Use integration by parts letting u = x, du = dx, v = ex, and dv = ex dx.

∫ 1

0

xex dx = xex∣

1

0

−∫ 1

0

ex dx = xex∣

1

0

− ex∣

1

0

= e− 0− (e− 1) = 1

(2) 67.

tan-1 xdx

Use integration by parts letting u = tan-1 x, du = dxx2+1

, v = x, and dv = dx.

tan-1 xdx = x tan-1 x −∫

x

x2 + 1dx = x tan-1 x − 1

2ln |x2 + 1|+ C

Quiz 907-15-03

(6) 68. Let f(x) = ex sin x on the interval [-π, π]. Find the intervals of increase anddecrease, local extrema, intervals of concavity, and inflection points. Use these answers tosketch the graph.

f(x) = ex sin x

f ′(x) = ex sin x+ ex cos x

f ′(x) = ex(sin x+ cosx)

Dec:[

-π, -π4

]

∪[

3π4, π]

Inc:[

-π4, 3π

4

]

Local max:4√e3π√2

at 3π4

Local min: - 1√2 4√eπ

at -π4

f ′(x) = ex(sin x+ cosx)

f ′′(x) = ex(sin x+cosx)+ex(cosx−sin x)

f ′′(x) = 2ex cos x

CD:(

-π, -π2

)

∪(

π2, π)

CU:(

-π2, π2

)

IP:(

-π2, - 1√

)

,(

π2,√eπ)

f(x) = ex sinx

Page 39: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

36

✲✛

π

2-π2

5

-5

Quiz 1007-16-03

(2) 69. Integrate.

∫ eπ

1

sin(ln x)

xdx

Let u = ln x and du = 1xdx.

∫ eπ

1

sin(ln x)

xdx

=

∫ π

0

sin udu

= - cosu

π

0

= 2

70. Answer each of the following as true or false (write the entire word) and justify youranswer.

(2) a. limn→∞

n

n+ 1

n= 0

False.

For all n ∈ N, n

n+ 1

n≥ 1. So lim

n→∞n

n+ 1

n6= 0.

(2) b. The series∞∑

n=1

1nconverges by the divergence test.

False.

This statement is false for two reasons. The first reason is that this series diverges. Thesecond reason is that the divergence test can never be used to show that a series converges.

Page 40: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

37

Quiz 1107-21-03

71. For each of the following, determine whether the given series converges or diverges.

(2) a.

∞∑

n=1

en

n

limn→∞

en

n

= limx→∞

ex

x

L’H= lim

x→∞

ex

1

= ∞

Diverges by the divergence test.

(3) b.

∞∑

n=1

1

n + 1

Hint: Recall that

∞∑

n=1

1

ndiverges.

If

∞∑

n=1

1

n + 1= s, then

∞∑

n=1

1

n= s− 1. This is not possible since

∞∑

n=1

1

ndiverges. Therefore,

∞∑

n=1

1

n+ 1diverges.

Quiz 1207-22-03

(2) 72. Answer the following as true or false (write the entire word) and justify youranswer.

The series

∞∑

n=1

n

endiverges by the divergence test.

False.

limn→∞

n

en

= limx→∞

x

ex

L’H= lim

x→∞

1

ex

= 0

The divergence test fails.

(3) 73. Determine whether the given series converges or diverges.

Page 41: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

38

∞∑

n=1

1

n+ 1

Quiz 1307-23-03

74. Integrate.

(3) a.

√x2 − 1

xdx

1

√x2 − 1

x

θ

x = sec θ

dx = sec θ tan θ dθ

√x2 − 1

xdx

=

√sec2 θ − 1

sec θsec θ tan θ dθ

=

tan2 θ dθ

=

(

sec2 θ − 1)

= tan θ − θ + C

=√x2 − 1− sec-1 x+ C

(3) b.

∫ 1

0

√1− x2 dx

√1− x2

x1

θ

x = sin θ

dx = cos θ dθ

∫ 1

0

√1− x2 dx

=

∫ π

2

0

1− sin2 θ cos θ dθ

=

∫ π

2

0

cos2 θ dθ

= 12

∫ π

2

0

(

1 + cos 2θ)

= 12

(

θ + 12sin 2θ

)

π

2

0

= π4

Quiz 1407-25-03

(5) 75. Integrate.

5x2 + 11x+ 7

x3 + 2x2 + x+ 2dx

Page 42: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

39

=

∫(

4x+ 3

x2 + 1+

1

x+ 2

)

dx =

∫(

4x

x2 + 1+

3

x2 + 1+

1

x+ 2

)

dx

= 2 ln |x2 + 1|+ 3 tan-1 x+ ln |x+ 2|+C

Quiz 1507-28-03

(5) 76. Integrate.

5x2 + 11x+ 7

x3 + 2x2 + x+ 2dx

Quiz 1607-29-03

(2) 77. Differentiate and simplify.

f(x) = ln | sec x+ tan x|

f ′(x) =sec x tanx+ sec2 x

sec x+ tan x

f ′(x) =sec x(tanx+ sec x)

sec x+ tanx

f ′(x) = sec x

Page 43: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

40

78. For each of the following, find the length of the given curve.

(5) a. y =3

3√x2

2; [0, 3

√3]

y = 32x

23

y′ = x- 13

y′ = 13√x

(y′)2 = 13√x2

∫ 3√3

0

1 + 13√x2dx

=

∫ 3√3

0

3√x2 + 13√x2

dx

=

∫ 3√3

0

3√x2 + 13√x

dx

=

∫ 3√3

0

x- 13

(

x23 + 1

)12

dx

=(

x23 + 1

)32

3√3

0

=

(

3√x2 + 1

)3∣

3√3

0

= 8− 1

= 7

(3) b. y = ln(cos x);[

0, π4

]

y = ln(cosx)

y′ = - sinxcos x

y′ = - tan x

(y′)2 = tan2 x

∫ π

4

0

√1 + tan2 xdx

=

∫ π

4

0

√sec2 xdx

=

∫ π

4

0

sec xdx

= ln | sec x+ tan x|∣

π

4

0

= ln |√2 + 1| − ln |1 + 0|

= ln(√2 + 1)

Quiz 1707-30-03

79. For each of the following, determine whether the series converges or diverges.

(2) a.∞∑

n=1

nn

2n

Page 44: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

41

Note that for n ≥ 3,nn

2n=(n

2

)n

≥(

3

2

)n

. Since∞∑

n=1

3n

2nis a divergent geometric series,

∞∑

n=1

nn

2ndiverges by the divergence test.

(2) b.∞∑

n=1

110√n11

Since the series is a p-series with p = 1110

> 1, the series converges.

(4) c.∞∑

n=1

lnn

n2

∫ ∞

1

ln x

x2dx

= limt→∞

∫ t

1

ln x

x2dx

Use integration by parts letting u = ln x, du = 1xdx, v = - 1

x, and dv = 1

x2 dx.

limt→∞

∫ t

1

ln x

x2dx

= limt→∞

[

-lnx

x

1

−∫ t

1

-1

x2dx

]

= limt→∞

(

-ln x

x

1

− 1

x

t

1

)

= limt→∞

(

-ln t

t− 0− 1

t+ 1

)

= 1

Therefore, the series converges by the integral test.

Quiz 1808-01-03

(5) 80. Find the length of the given curve.

y =3

3√x2

2; [0, 3

√3]

Page 45: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

42

Quiz 1908-04-03

81. Let f(x) =√x+ 1. Also, let R be the region bounded by the curves x = 1, x = 5,

y = 0, and y = f(x) and let S be the 3-dimensional solid formed by revolving R about thex-axis.

(2) a. Find the area of R.

∫ 5

1

√x+ 1dx

= 23

(x+ 1)3∣

5

1

= 23

(

6√6− 2

√2)

= 4√6− 4

√2

3

(3) b. Find the volume of S.

π

∫ 5

1

(

x+ 1)

dx

= π(

12x2 + x

)

5

1

= π[

252+ 5−

(

12+ 1)]

= 16π

(4) c. Find the surface area of S.

f(x) =√x+ 1

f ′(x) = 12√x+1

[f ′(x)]2 = 14(x+1)

∫ 5

1

√x+ 1

1 + 14(x+1)

dx

= 2π

∫ 5

1

√x+ 1

4x+54(x+1)

dx

= π

∫ 5

1

√4x+ 5dx

= π6

(4x+ 5)3∣

5

1

= π6(125− 27)

= 49π3

Quiz 2008-05-03

For each of the following, determine whether the series is absolutely convergent, condition-ally convergent, or divergent.

(2) 82.∞∑

n=0

cos nπ

n+ 2

Page 46: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

43

∞∑

n=0

cosnπ

n + 2= 1

2− 1

3+ 1

4− 1

5+ · · ·

The alternating harmonic series converges by the alternating series test but fails to beabsolutely convergent by the divergence test.

(2) 83.

∞∑

n=0

n− 1

n + 1

Since limn→∞

n− 1

n+ 1= 1,

∞∑

n=0

n− 1

n+ 1diverges by the divergence test.

(3) 84.

∞∑

n=1

(-1)nn tan 1n

Apply the divergence test. Since limn→∞

(-1)nn tan 1n= 0 if and only if lim

n→∞

∣(-1)nn tan 1n

∣ = 0,

we need only check limn→∞

n tan 1n.

Since limx→∞

x tan 1x= lim

x→∞

tan 1x

1x

L’H= lim

x→∞

- 1x2 sec

2 1x

- 1x2

= limx→∞

sec2 1x= 1, the series diverges by

the divergence test.

Quiz 2108-06-03

(3) 85. Let C be the parametric curve defined by x = et and y = ln t. Find the equationof the line that is tangent to the curve at the point corresponding to t = 2.

dxdt

= et

dy

dt= 1

t

dy

dx=

dy

dtdxdt

=1

tet

t = 2

x = e2

y = ln 2

dy

dx=

1

2e2

y − ln 2 = 12e2

(x− e2)

86. Let x = t2 + 1 and y = t ln t.

(2) a. Find dy

dxdy

dx=

ln t+ 1

2t

Page 47: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

44

(2) b. Find d2y

dx2

d2y

dx2

=

(1t)(2t)− (ln t + 1)(2)

(2t)2

2t

=-2 ln t

8t3

= -ln t

4t3

Section 2.3: Review

Solutions to Review Problems

Omit questions 13, 16, and 21 due to typos. You are not required to turn in your photocopy.

87. Calculate.

a. csc-1 2 = π6

b. sin (tan-1 3)

y

x= 3

y = 3x

x2 + y2 = 1

x2 + 9x2 = 1

10x2 = 1

x2 = 110

x = 1√10

y = 3√10

sin (tan-1 3) = 3√10

88. Given that loga b = 1, simplify a− b.

Since loga b = 1, a = b and so a− b− 0.

89. Given that loga b = -1, simplify a · b.

Since loga b = -1, b = 1aand so a · b = 1.

90. Given that loga b =12, simplify a

b.

Since loga b =12, b =

√a and so a

b= a√

a=

√a.

91. Given the graph of f, sketch the graph of f-1.

Page 48: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

45

✲✛

✲✛

92. For each of the following, find the equation of the line that that is tangent to the graphof f

-1at the given point.

a. f(x) = x3 + 2x+ 3; x = -30

f ′(x) = 3x2 + 2

f-1(-30) = -3

f ′(-3) = 29

[

f-1]′(-30) = 1

29

y + 3 = 129(x+ 30)

b. f(x) = tanx; x = 1

f ′(x) = sec2 x

f-1(1) = π

4

f ′(π4) = 2

[

f-1]′(1) = 1

2

y − π4= 1

2(x− 1)

93. Calculate the following limits.

a. limx→0

sin x

xL′H= lim

x→0

cos x

1= 1

b. limx→0

ex

ln x= 0

c. limx→∞

ln x

exL′H= lim

x→∞

1

xex= 0

d. limx→∞

(√x2 + 1− x

)

limx→∞

(√x2 + 1− x

)

= limx→∞

(√x2 + 1− x

)

·√x2 + 1 + x√x2 + 1 + x

= limx→∞

1√x2 + 1 + x

e. limx→0

(

sin x)x

First, consider

limx→0

(

ln sin x)x

= limx→0

x ln sin x

Page 49: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

46

= limx→0

ln sin x1x

L′H= lim

x→0-x2 cosx

sin x

= limx→0

-x cosxx

sin x

= 0.

Therefore, limx→0

(

sin x)x

= e0 = 1.

f. limx→0

ln(sin x) = -∞

g. limn→∞

n!

nn

limn→∞

n!

nn

= limn→∞

n(n− 1)(n− 2) · · ·2 · 1n · n · · ·n

= limn→∞

(

n

n· n− 1

n· n− 2

n· · · 2

n· 1n

)

≤ limn→∞

1

n

= 0

h. limn→∞

en

n!

Since limn→∞

en+1

(n + 1)!· n!en

= limn→∞

e

n + 1= 0, the series

∞∑

n=0

en

n!converges by the ratio test.

Therefore, limn→∞

en

n!= 0 by the divergence test.

94. Differentiate.

a. k(x) = esinx

k′(x) = esinx(cosx)

b. f(x) = ln |x3 + x2 − 1|

f ′(x) =3x2 + 2x

x3 + x2 − 1

c. g(x) = tan-1(sin x)

g′(x) =cos x

1 + sin2 x

d. f(x) = sin (ex)

f ′(x) = ex cos (ex)

e. y = xsinx

y = xsinx

ln y = lnxsin x

ln y = sin x ln x

y′

y= cosx ln x+ sin x · 1

x

y′

y=

x cosx ln x+ sin x

x

y′ =x cosx ln x+ sin x

x· y

y′ =x

sinx

(x cosx ln x+ sin x)

x

y′ = xsin x−1

(x cosx ln x+ sin x)

Page 50: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

47

f. h(x) = xex

y = xex

ln y = ln xex

ln y = ex ln x

y′

y= ex ln x+

ex

x

y′

y=

xex ln x+ ex

x

y′ =xex ln x+ ex

x· y

y′ =x

ex

(xex ln x+ ex)

x

y′ = xex−1(xex lnx+ ex)

g. f(x) = eex

f ′(x) = exeex

Page 51: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

48

95. Integrate.

a.

∫ √x2 + 1dx

✟✟✟✟✟✟✟✟✟✟

θ

√x2 + 1

1

x

x = tan θ

dx = sec2 θ dθ

∫ √x2 + 1dx =

∫ √tan2 θ + 1 sec2 θ dθ =

sec3 θ dθ

Use integration by parts letting u = sec x, du = sec x tanx dx, v = tan x, and dv = sec2 x dx.

sec2 x · sec xdx = sec x tanx−∫

sec x · tan2 xdx

sec3 xdx = sec x tanx−∫

sec x(sec2 x− 1)dx

sec3 xdx = sec x tanx−∫

(

sec3 x− sec x)

dx

sec3 xdx = sec x tanx−∫

sec3 xdx+

sec xdx

2

sec3 xdx = sec x tan x+

sec xdx

2

sec3 xdx = sec x tan x+ ln | sec x+ tan x|+ C

sec3 xdx = 12(sec x tanx+ ln | sec x+ tan x|) + C

Page 52: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

49

b.

∫ 1

0

ex sin xdx

Use integration by parts letting u = sin x, du = cosx dx, v = ex, and dv = ex dx.

∫ 1

0

ex sin xdx = ex sin x

1

0

−∫ 1

0

ex cos xdx

Use integration by parts again letting u = cosx, du = - sin x dx, v = ex, and dv = ex dx.

∫ 1

0

ex sin xdx = ex sin x

1

0

−∫ 1

0

ex cos xdx

∫ 1

0

ex sin xdx = e sin 1−(

ex cos x

1

0

−∫ 1

0

ex(- sin x)dx

)

∫ 1

0

ex sin xdx = e sin 1− e cos 1 + 1−∫ 1

0

ex sin xdx

2

∫ 1

0

ex sin xdx = e sin 1− e cos 1 + 1

∫ 1

0

ex sin xdx = 12(e sin 1− e cos 1 + 1)

c.

x2 + 2x+ 3

x3 + x2 + x+ 1dx

x2 + 2x+ 3

x3 + x2 + x+ 1dx

=

x2 + 2x+ 3

(x2 + 1)(x+ 1)dx

=

∫(

2

x2 + 1+

1

x+ 1

)

dx

= 2 tan-1 x+ ln |x+ 1|+ C

Page 53: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

50

d.

sin2 θ cos2 θ dθ

=

(1− cos2 θ) cos2 θ dθ

=

[1− 12(cos 2θ + 1)] · 1

2(cos 2θ + 1)dθ

= 12

(

-12cos 2θ + 1

2

)

(cos 2θ + 1)dθ

= -14

(cos 2θ − 1)(cos 2θ + 1)dθ

= -14

(

cos2 2θ − 1)

= -14

(

12(cos 4θ + 1)− 1

)

= -14

(

12cos 4θ − 1

2

)

= -18

(

cos 4θ − 1)

= -18

(

14sin 4θ − θ

)

+ C

= - 132sin 4θ + 1

8θ + C

e.

sin20 x cos3 xdx

=

sin20 x · cos2 x · cosxdx

=

sin20 x(1− sin2 x) cosxdx

=

(sin20 x− sin22 x) cosxdx

Let u = sin x and du = cosx dx.

(sin20 x− sin22 x) cosxdx

=

(

u20 − u22)

du

= 121u21 − 1

23u23 + C

= 121sin21 x− 1

23sin23 x+ C

f.

2x√x2 − 4

dx

Let u = x2 − 4 and du = 2x dx.

2x√x2 − 4

dx

=

1√udu

= 2√u+ C

= 2√x2 − 4 + C

Page 54: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

51

g.

1√x2 − 4

dx

✟✟✟✟✟✟✟✟✟✟

θ

x √x2 − 4

2

x = 2 sec θ

dx = 2 sec θ tan θ dθ

1√x2 − 4

dx

=

2 sec θ tan θ√4 sec2 θ − 4

=

sec θ dθ

= ln | sec θ + tan θ|+ C

= ln

x

2+

√x2 − 4

2

+ C

h.

∫ π

2

-π2

x4 sin xdx

Since f(x) = x4 sin x is an odd function,

∫ π

2

-π2

x4 sin xdx = 0. Alternatively, use integration

by parts 4 times.

96. Find the solution of the differential equation that satisfies the given conditions.

a.dy

dx=

3

2y; x ≥ 2, y(2) = 1

dy

dx=

3

2y

2y dy = 3 dx

2y dy =

3dx

y2 = 3x+ C

1 = 6 + C

C = -5

y2 = 3x− 5

b.dy

dx=

-y2 − 2

2xy; x > 0, y(1) = 2

dy

dx=

-y2 − 2

2xy

2y

y2 + 2dy = -

1

xdx

2y

y2 + 2dy =

-1

xdx

ln |y2 + 2| = - ln |x|+ C

ln 6 = - ln 1 + C

C = ln 6

ln |y2 + 2| = - ln |x|+ ln 6

y2 + 2 = 6x

xy2 + 2x = 6

Page 55: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

52

97. Let C be the graph of y = 19

√x(x− 27) from x = 1 to x = 9. Also, let R be the region

bounded by the curves x = 1, x = 9, C, and the x-axis. Finally, let S be the solid formedby revolving R about the x-axis.

y = 19

√x(x− 27)

y = 19

√x3 − 3

√x

y′ = 16

√x− 3

2√x

[y′]2 =(√

x

6− 3

2√x

)2

[y′]2 = x36

− 12+ 9

4x

[y′]2 + 1 = x36

+ 12+ 9

4x

[y′]2 + 1 =x2 + 18x+ 81

36x

[y′]2 + 1 =(x+ 9)2

36x

[y′]2 + 1 =

(x+ 9)2

36x

[y′]2 + 1 =x+ 9

6√x

[y′]2 + 1 =√x

6+ 3

2√x

a. Find the arc length of C.

∫ 9

1

(√x

6+ 3

2√x

)

dx =(

19

√x3 + 3

√x)

9

1

= 12− 289= 80

9

b. Find the area of R.

-

∫ 9

1

(

19

√x3 − 3

√x)

dx =(

2√x3 − 2

45

√x5)

9

1

= 54− 545−(

2− 245

)

= 2165

− 8845

= 185645

c. Find the surface area of S.

-2π

∫ 9

1

19

√x(x− 27)

(

x+ 9

6√x

)

dx

= - π27

∫ 9

1

(x− 27)(x+ 9)dx

= - π27

∫ 9

1

(

x2 − 18x− 243)

dx

= - π27

(

13x3 − 9x2 − 243

2x)

9

1

= - π27(-3159

2+ 781

6)

= - π27

· -43483

= 4348π81

d. Find the volume of S.

π

∫ 9

1

(

19

√x3 − 3

√x)2

dx = π

∫ 9

1

(

181x3 − 2

3x2 + 9x

)

dx

Page 56: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

53

= π(

1324

x4 − 29x3 + 9

2x2)

9

1

= π[

814− 162 + 729

2−(

1324

− 29+ 9

2

)]

= 17696π81

98. Let C be the graph of y =√x(x − 1

3) from x = 1 to x = 9. Also, let R be the region

bounded by the curves x = 1, x = 9, C, and the x-axis. Finally, let S be the solid formedby revolving R about the x-axis.

y =√x(x− 1

3) from

y =√x3 − 1

3

√x

y′ = 32

√x− 1

6√x

[y′]2 =(

3√x

2− 1

6√x

)2

[y′]2 = 9x4− 1

2+ 1

36x

[y′]2 + 1 = 9x4+ 1

2+ 1

36x

[y′]2 + 1 =81x2 + 18x+ 1

36x

[y′]2 + 1 =(9x+ 1)2

36x

[y′]2 + 1 =

(9 + 1)2

36x

[y′]2 + 1 =9x+ 1

6√x

[y′]2 + 1 = 3√x

2+ 1

6√x

a. Find the arc length of C.

∫ 9

1

(

3√x

2+ 1

6√x

)

dx =(√

x3 + 13

√x)

9

1

= 28− 43= 80

3

b. Find the area of R.

∫ 9

1

(√x3 − 1

3

√x)

dx =(

25

√x5 − 2

9

√x3)

9

1

= 4865

− 6−(

25− 2

9

)

= 4565

− 845

= 409645

c. Find the surface area of S.

∫ 9

1

√x(x− 1

3)

(

9x+ 1

6√x

)

dx

= π3

∫ 9

1

(x− 13)(9x+ 1)dx

= π3

∫ 9

1

(

9x2 − 2x− 13

)

dx

= π3

(

3x3 − x2 − 13x)

9

1

= π3(2103− 5

3)

= π3· 6304

3

= 6304π9

d. Find the volume of S.

Page 57: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

54

π

∫ 9

1

(√x3 − 1

3

√x)2

dx

= π

∫ 9

1

(

x3 − 23x2 + 1

9x)

dx

= π(

14x4 − 2

9x3 + 1

18x2)

9

1

= π[

65614

− 162 + 92−(

14− 2

9+ 1

18

)]

= 4448π3

99. Let C be the graph of y = x2

8− ln x from x = 1 to x = 4. Also, let R be the region

bounded by the curves C, x = 1, and x = 4. Finally, let S be the solid formed by revolvingR about the x-axis.

a. Find the arc length of C.

b. Find the area of R.

c. Find the surface area of S.

d. Find the volume of S.

100. Let C be the plane curve defined by the parametric equations x = et cos t and y =et sin t for 0 ≤ t ≤ π.

x = et cos t

dx

dt= et cos t− et sin t

y = et sin t

dy

dt= et sin t+ et cos t

dy

dx=

dy

dtdxdt

=et sin t+ et cos t

et cos t− et sin t=

sin t+ cos t

cos t− sin t

(

dx

dt

)2

= e2t(cos t− sin t)2 = e2t(cos2 t+ sin2 t− 2 cos t sin t) = e2t(1− 2 cos t sin t)

(

dy

dt

)2

= e2t(cos t + sin t)2 = e2t(cos2 t+ sin2 t + 2 cos t sin t) = e2t(1 + 2 cos t sin t)

(

dx

dt

)2

+

(

dy

dt

)2

= 2e2t

(

dx

dt

)2

+

(

dy

dt

)2

=√2et

a. Find the equation of the line that is tangent to C at the point where t = π4.

Page 58: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

55

t = π4

x =

√2e

π

4

2

y =

√2e

π

4

2

dxdt

= 0

dy

dxis undefined

The tangent line is vertical.

x =

√2e

π

4

2

b. Find the length of C.

∫ π

0

√2et dt =

√2et∣

π

0

=√2 (eπ − 1)

c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ π

0

√2et · et sin tdt = 2π

∫ π

0

√2e2t sin tdt = 2

√2 π

∫ π

0

e2t sin tdt

Use integration by parts letting u = sin t, du = cos t dt, v = 12e2t, and dv = e2t dt.

2√2 π

∫ π

0

e2t sin tdt = 2√2π

(

12e2t sin t

π

0

−∫ π

0

12e2t cos tdt

)

2√2 π

∫ π

0

e2t sin tdt = -√2 π

∫ π

0

e2t cos tdt

Use integration by parts again letting u = cos t, du = - sin t dt, v = 12e2t, and dv = e2t dt.

2√2 π

∫ π

0

e2t sin tdt = -√2 π

(

12e2t cos t

π

0

−∫ π

0

-12e2t sin tdt

)

2√2 π

∫ π

0

e2t sin tdt = -√2 π

(

-12e2π − 1

2−∫ π

0

-12e2t sin tdt

)

2√2 π

∫ π

0

e2t sin tdt =

√2πe2π

2+

√2π

2−

√2π

2

∫ π

0

e2t sin tdt

2√2 π

∫ π

0

e2t sin tdt =

√2πe2π

2+

√2π

2− 1

4

(

2√2π

∫ π

0

e2t sin tdt

)

5

4

(

2√2π

∫ π

0

e2t sin tdt

)

=

√2πe2π

2+

√2π

2

Page 59: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

56

2√2 π

∫ π

0

e2t sin tdt =4

5

(√2πe2π

2+

√2π

2

)

2√2 π

∫ π

0

e2t sin tdt =2√2πe2π + 2

√2π

5

101. Let C be the plane curve defined by the parametric equations x = cos3 θ and y = sin3 θfor 0 ≤ θ ≤ π

2.

x = cos3 θ

dx

dθ= 3 cos2 θ · (- sin θ)

y = sin3 θ

dy

dθ= 3 sin2 θ · cos θ

dy

dx=

dy

dθdxdθ

=3 sin2 θ · cos θ-3 cos2 θ · sin θ = - tan θ

(

dx

)2

= 9 cos4 θ · sin2 θ

(

dy

)2

= 9 sin4 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 9 sin2 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 3 sin θ · cos θ

a. Find the equation of the line that is tangent to C at the point where θ = π6.

θ = π6

x = 3√3

8

y = 18

dy

dx= - 1√

3

y − 18= - 1√

3

(

x− 3√3

8

)

b. Find the length of C.

∫ π

2

0

3 sin θ · cos θ dθ = 32sin2 θ

π

2

0

= 32

c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ π

2

0

(

sin3 θ)

3 sin θ · cos θ dθ = 6π

∫ π

2

0

sin4 θ · cos θ dθ = 6π5sin5

π

2

0

= 6π5

102. For each of the following, sketch the curves with the given polar equations and findthe area inside the first curve and outside the second curve.

Page 60: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

57

a.

i. r = 1

ii. r = sin 2θ

π − 4

∫ π

2

0

12sin2 2θ dθ

= π − 2

∫ π

2

0

12(1− cos 4θ)dθ

= π −(

θ − 14sin 4θ

)

π

2

0

= π2

✲✛

b.

i. r = 2 sin θ

ii. r = 1

2 sin θ = 1

sin θ = 12

θ = π6

2

∫ π

2

π

6

12

(

4 sin2 θ − 1)

=

∫ π

2

π

6

(

2(1− cos 2θ)− 1)

=

∫ π

2

π

6

(

1− 2 cos 2θ)

=(

θ − sin 2θ)

π

2

π

6

= π2−(

π6−

√32

)

= π3+

√32

= 2π+3√3

6

✲✛

Page 61: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

58

103. For each of the following, sketch the curve and find an integral that represents thelength of the given polar curve. Do not integrate.

a. r = 4 cos θ

drdθ

= -4 sin θ

r2 = 16 cos2 θ

(

drdθ

)2= 16 sin2 θ

r2 +(

drdθ

)2= 16 cos2 θ + 16 sin2 θ

r2 +(

drdθ

)2=

√16 cos2 θ + 16 sin2 θ

r2 +(

drdθ

)2= 4

∫ π

0

4dθ

= 4θ

π

0

= 4π

✲✛

b. r = 3 cos 2θ

drdθ

= -6 sin 2θ

r2 = 9 cos2 2θ

(

drdθ

)2= 36 sin2 2θ

r2 +(

drdθ

)2= 9 cos2 2θ + 36 sin2 2θ

r2 +(

drdθ

)2=

√9 cos2 2θ + 36 sin2 2θ

r2 +(

drdθ

)2=

√9 + 27 sin2 2θ

r2 +(

drdθ

)2= 3

√1 + 3 sin2 2θ

∫ 2π

0

3√1 + 3 sin2 2θ dθ

✲✛

Page 62: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

59

c. r = 2 cos 3θ

drdθ

= -6 sin 3θ

r2 = 4 cos2 3θ

(

drdθ

)2= 36 sin2 3θ

r2 +(

drdθ

)2= 4 cos2 3θ + 36 sin2 3θ

r2 +(

drdθ

)2=

√4 cos2 3θ + 36 sin2 3θ

r2 +(

drdθ

)2=

√4 + 32 sin2 3θ

r2 +(

drdθ

)2= 2

√1 + 8 sin2 3θ

∫ π

0

2√1 + 8 sin2 3θ dθ

✲✛

d. r = cos θ + 1

drdθ

= - sin θ

r2 = cos2 θ + 2 cos θ + 1

(

drdθ

)2= sin2 θ

r2 +(

drdθ

)2= cos2 θ + 2 cos θ + 1 + sin2 θ

r2 +(

drdθ

)2= 2 cos θ + 2

r2 +(

drdθ

)2=

√2 cos θ + 2

∫ 2π

0

√2 cos θ + 2dθ

✲✛

Page 63: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

60

104. For each of the following, determine whether the series converges absolutely, convergesconditionally, or diverges.

a.∞∑

n=0

en

n!

Since limn→∞

en+1

(n+ 1)!· n!en

= limn→∞

e

n + 1= 0, the series converges by the ratio test.

b.

∞∑

n=1

( n

n + 1

)n2

Since limn→∞

n

( n

n+ 1

)n2

= limn→∞

( n

n+ 1

)n

= 1e, the series converges by the root test.

c.∞∑

n=0

( n

n+ 1

)n

Since limn→∞

( n

n + 1

)n

= 1e, the series diverges by the divergence test.

d.∞∑

n=1

(-1)n

nn

Note that for n ≥ 2,1

nn≤ 1

2n. Since

∞∑

n=1

1

2nis a convergent geometric series,

∞∑

n=1

(-1)n

nn

converges absolutely by the comparison test.

e.∞∑

n=1

1√n · 2

√n

∫ ∞

1

1√x · 2

√xdx

= limt→∞

∫ t

1

1√x · 2

√xdx

= limt→∞

∫ t

1

1√x·(

1

2

)

√x

dx

= limt→∞

(

2

ln 12

·(

1

2

)

√x ∣

t

1

)

= limt→∞

(

2

ln 12

·(

1

2

)

√t

− 1

ln 12

)

= 0

Therefore,∞∑

n=1

1√n · 2

√nconverges by the integral test.

Page 64: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

61

f.∞∑

n=0

n2

n!

Since limn→∞

(n + 1)2

(n + 1)!· n!n2

= limn→∞

(n+ 1)2

n+ 1· 1

n2= lim

n→∞

n2 + 2n+ 1

n3 + n20, the series converges by

the ratio test.

g.

∞∑

n=4

(-1)n

n2 − 5n+ 6

Since

∞∑

n=4

1

n2 − 5n+ 6=

∞∑

n=4

(

1

n− 3− 1

n− 2

)

= 1− 12+ 1

2− 1

3+ 1

3− 1

4+ 1

4· · · , the series

∞∑

n=4

(-1)n

n2 − 5n+ 6is absolutely convergent.

105. For each of the following power series, find the interval of convergence and radius ofconvergence.

a.∞∑

n=1

2nxn

n2

Since limn→∞

2n+1xn+1

(n + 1)2· n2

2nxn

= |2x| < 1 if and only if |x| < 12, the radius of convergence

is 12. Note that if x = 1

2,

∞∑

n=1

2nxn

n2=

∞∑

n=1

1

n2which is a convergent p-series. If x = -1

2,

∞∑

n=1

2nxn

n2=

∞∑

n=1

(-1)

n2which is absolutely convergent. Therefore, the interval of convergence

is[

-12, 12

]

.

b.

∞∑

n=0

5n(x− 2)n

nn

Since limn→∞

n

5n(x− 2)n

nn

= limn→∞

5|x− 2|n

= 0 for all x, the interval of convergence is

(-∞,∞) and the radius of convergence is ∞.

c.∞∑

n=0

n2xn

2n

Page 65: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

62

Since limn→∞

(n+ 1)2xn+1

2n+1· 2n

xnn2

=∣

x

2

∣< 1 if and only if |x| < 2, the radius of convergence

is 2. Note that if x = 2, then∞∑

n=0

n2xn

2n=

∞∑

n=0

n2 which diverges and Note that if x = -2,

then∞∑

n=0

n2xn

2n=

∞∑

n=0

-n2 which diverges. Therefore, the interval of convergence is (-2, 2).

d.∞∑

n=1

(-1)n(x+ π)n

2n

Note that if x = -π − 1, then

∞∑

n=1

(-1)n(x+ π)n

2n=

∞∑

n=1

1

2nwhich diverges. If x = -π + 1,

then

∞∑

n=1

(-1)n(x+ π)n

2n=

∞∑

n=1

(-1)n

2nwhich converges. Therefore, the interval of convergence

is (-π − 1, -π + 1] and the radius of convergence is 1.

106. Let g(x) = x tan-1 x. Express g as a power series. What is the radius of convergence?

Since tan-1 x =∞∑

n=0

(-1)nx2n+1

2n+ 1, x tan-1 x =

∞∑

n=0

(-1)nx2n+2

2n+ 1.

The radius of convergence is 1.

107. Let f(x) =√xex.

108. Let f(x) = sin x. Find the Taylor series of f centered at π2. What is the radius of

convergence?

f(x) = sin x

f ′(x) = cosx

f ′′(x) = - sin x

f ′′′(x) = - cos x

f (4)(x) = sin x

...

f(

π2

)

= 1

f ′ (π2

)

= 0

f ′′ (π2

)

= -1

f ′′′ (π2

)

= 0

f (4)(

π2

)

= 1

...

∞∑

n=0

(-1)n(

x− π2

)

(2n)!

Page 66: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

63

109. Let g(x) = cosx. Find the Taylor series of f centered at π4. What is the radius of

convergence?

g(x) = cos x

g′(x) = - sin x

g′′(x) = - cosx

g′′′(x) = sin x

g(4)(x) = sin x

...

g(

π4

)

=√22

g′(

π4

)

= -√22

g′′(

π4

)

= -√22

g′′′(

π4

)

=√22

g(4)(

π4

)

=√22

...

√2

2 · 0! −√2

2 · 1!(

x− π4

)

−√2

2 · 2!(

x− π4

)2+

√2

2 · 3!(

x− π4

)3+

√2

2 · 4!(

x− π4

)4 −√2

2 · 5!(

x− π4

)5

−√2

2 · 6!(

x− π4

)6+

√2

2 · 7!(

x− π4

)7 · · ·

Section 2.4: Exam 1

Midterm Exam 1572 Summer 2003

110. Differentiate.

(3) a. f(x) = ex4+x2−4

f ′(x) = (4x3 + 2x)ex4+x2−4

(3) b. g(x) = ln | cosx|

g′(x) =- sin x

cosx

g′(x) = - tanx

(3) c. h(x) = tan-1 ex

h′(x) =ex

1 + e2x

(5) d. y = xex

ln y = lnxex

ln y = ex ln x

ddx

ln y = ddx

(

ex ln x)

y′

y= ex ln x+ ex · 1

x

y′

y=

ex(x ln x+ 1)

x

y′ =yex(x ln x+ 1)

x

y′ =xexex(x ln x+ 1)

x

Page 67: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

64

y′ = xex−1ex(x ln x+ 1)

(3) 111. State the definition of a one-to-one function.

112. Let f(x) = x7 + x5 + 2x.

(2) a. Find f ′(x).

f ′(x) = 7x6 + 5x4 + 2

(4) b. Use the derivative of f to prove that f is one-to-one.

Proof : Since f ′(x) > 0 for all x ∈ R, f is strictly increasing and therefore, one-to-one.

(4) c. Find the equation of the line that is tangent to the graph of f-1(x) at the point

where x = 4.

f-1(4) = 1

f ′(x) = 7x6 + 5x4 + 2

f ′(1) = 14

(

f-1)′(4) = 1

14

y − 1 = 114(x− 4)

Page 68: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

65

113. Calculate the following limits.

(3) a. limx→∞

ex

x

L’H= lim

x→∞

ex

1= ∞

(6) b. limx→0

xx

= limx→0

elnxx

= limx→0

ex lnx

= elim

x→0x lnx

limx→0

x ln x

= limx→0

ln x1x

L’H= lim

x→0

1x

- 1x2

= limx→0

-x2

= 0

elim

x→0x lnx

= e0

= 1

114. Integrate.

(4) a.

∫ eπ

1

sin(lnx)

xdx

Let u = ln x and du = 1xdx.

∫ eπ

1

sin(ln x)

xdx

=

∫ π

0

sin udu

= - cosu

π

0

= 2

(5) b.

∫ π

3

π

4

tan2 x csc xdx

=

∫ π

3

π

4

sin x

cos2 xdx

=

∫ π

3

π

4

tan x sec xdx

= sec x

π

3

π

4

= 2−√2

(4) c.

sin 2x cos 3xdx

=

12(sin(-x) + sin 5x)dx

=

(

12sin(-x) + 1

2sin 5x

)

dx

= -12cos(-x)− 1

10cos 5x+ C

= -12cosx− 1

10cos 5x+ C

(5) d.

ex

1 + e2xdx

Let u = ex and du = ex dx.

ex

1 + e2xdx

Page 69: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

66

=

1

1 + u2du

= tan-1 u+ C

= tan-1 ex + C

(4) e.

x4 ln xdx

Use integration by parts letting u = ln x, du = 1xdx, v = 1

5x5, and dv = x4 dx.

x4 lnxdx = 15x5 ln x−

15x4 dx = 1

5x5 ln x− 1

25x5 + C

115. For each of the following, determine whether the series converges or diverges.

(4) a.

∞∑

n=1

3n3 + 2n− 1

6n3 + n2

limn→∞

3n3 + 2n− 1

6n3 + n2=

1

2

Diverges by the divergence test.

(5) b.

∞∑

n=1

1

n2 + n

=∞∑

n=1

1

n(n + 1)

=∞∑

n=1

(

1

n− 1

n+ 1

)

= limn→∞

(

1− 1n+1

)

= 1

(5) c.∞∑

n=1

n

n+ 1

n

For all n ∈ N, n

n + 1

n≥ 1.

So limn→∞

n

n+ 1

n6= 0.

Diverges by the divergence test.

(3) 116. If possible, give an example of a sequence {xn}∞n=1 such that lim

n→∞x

n= 0 and

∞∑

n=1

xndiverges. If this is not possible, explain why it is not.

Section 2.5: Final

Final Exam Math 1572 Summer 2002

117. Calculate.

a. tan-1 1 = π4

b. sec(

sin-1√32

)

= sec π3= 2

c. log9 3 = 12

d. log319= -2

Page 70: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

67

118. Find the equation of the line that that is tangent to the graph of f-1at the given

point.

f(x) = 2x3 + x+ 3; x = -15

f ′(x) = 6x2 + 1

f-1(-15) = -2

f ′(-2) = 25

[

f-1]′(-15) = 1

25

y + 2 = 125(x+ 15)

119. Calculate the following limits.

a. limx→∞

x2

exL’H

= limx→∞

2x

exL’H

= limx→∞

2

ex= 0 b. lim

x→0

cosx

x= ∞

c. limn→∞

en

n!

Since limn→∞

en+1

(n + 1)!· n!en

= limn→∞

e

n + 1= 0, the series

∞∑

n=0

en

n!converges by the ratio test.

Therefore, limn→∞

en

n!= 0 by the divergence test.

120. Differentiate.

a. f(x) = ex7+x2

f ′(x) = ex7+x2

(7x6 + 2x)

b. g(x) = ln | sin x|

g′(x) =cosx

sin x= cot x

c. h(x) = tan-1(x2 + 4x+ 1)

h′(x) =2x+ 4

(x2 + 4x+ 1)2 + 1

d. f(x) = sec(sin x)

f ′(x) = sec(sin x) · tan(sin x) · cos x

e. y = x(x2+1)

y = x(x2+1)

ln y = lnx(x2+1)

ln y = (x2 + 1) lnx

y′

y= 2x ln x+

x2 + 1

x

y′

y=

2x2 ln x+ x2 + 1

x

y′ =2x2 ln x+ x2 + 1

x· y

y′ =2x2 ln x+ x2 + 1

x· x(

x2+1)

y′ = xx2

(2x2 ln x+ x2 + 1)

Page 71: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

68

121. Integrate.

a.

2x+ 1

x2 + 1dx =

∫(

2x

x2 + 1+

1

x2 + 1

)

dx = ln |x2 + 1|+ tan-1 x+ C

b.

∫ π

2

0

x sin xdx

Use integration by parts letting u = x, du = dx, v = - cosx, and dv = sin x dx.

∫ π

2

0

x sin xdx

= -x cos x

π

2

0

−∫ π

2

0

- cosxdx

= -x cosx

π

2

0

+ sinx

π

2

0

= 1

c.

sin3 xdx

sin3 xdx

=

sin2 x · sin xdx

=

(1− cos2 x) sin xdx

Let u = cosx and du = - sin x dx.

(1− cos2 x) sin xdx

=

-(1− u2)du

=

(

u2 − 1)

du

= 13u3 − u+ C

= 13cos3 x− cos x+ C

d.

4

x2 − 2x− 3dx =

∫(

1

x− 3− 1

x+ 1

)

dx = ln |x− 3| − ln |x+ 1|+ C

e.

sec3 xdx =

sec2 x · sec xdx

Use integration by parts letting u = sec x, du = sec x tanx dx, v = tan x, and dv = sec2 x dx.

sec2 x · sec xdx = sec x tanx−∫

sec x · tan2 xdx

sec3 xdx = sec x tanx−∫

sec x(sec2 x− 1)dx

sec3 xdx = sec x tanx−∫

(

sec3 x− sec x)

dx

Page 72: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

69

sec3 xdx = sec x tanx−∫

sec3 xdx+

sec xdx

2

sec3 xdx = sec x tan x+

sec xdx

2

sec3 xdx = sec x tan x+ ln | sec x+ tan x|+ C

sec3 xdx = 12(sec x tanx+ ln | sec x+ tan x|) + C

122. Let C be the graph of y = 13

√x(x− 3) from x = 3 to x = 9. Also, let R be the region

bounded by the curves x = 3, x = 9, C, and the x-axis. Finally, let S be the solid formedby revolving R about the x-axis.

y = 13

√x(x− 3)

y = 13

√x3 −√

x

y′ = 12

√x− 1

2√x

[y′]2 =(√

x

2− 1

2√x

)2

[y′]2 = x4− 1

2+ 1

4x

[y′]2 + 1 = x4+ 1

2+ 1

4x

[y′]2 + 1 =x2 + 2x+ 1

4x

[y′]2 + 1 =(x+ 1)2

4x

[y′]2 + 1 =

(x+ 1)2

4x

[y′]2 + 1 =x+ 1

2√x

[y′]2 + 1 =√x

2+ 1

2√x

a. Find the arc length of C.

∫ 9

3

(√x

2+ 1

2√x

)

dx =(

13

√x3 +

√x)

9

3

= 12− 2√3

b. Find the area of R.

∫ 9

3

(

13

√x3 −√

x)

dx =(

215

√x5 − 2

3

√x3)

9

3

= 1625

− 18−(

65

√3− 2

√3)

= 725+ 4

5

√3 = 72+4

√3

5

c. Find the surface area of S.

∫ 9

3

13

√x(x− 3)

(

x+ 1

2√x

)

dx = π3

∫ 9

3

(x− 3)(x+ 1)dx

Page 73: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

70

= π3

∫ 9

3

(

x2 − 2x− 3)

dx

= π3

(

13x3 − x2 − 3x

)

9

3

= π3(135 + 9)

= π3(135 + 9)

= 48π

d. Find the volume of S.

π

∫ 9

3

(

13

√x3 −√

x)2

dx

= π

∫ 9

3

(

19x3 − 2

3x2 + x

)

dx

= π(

136x4 − 2

9x3 + 1

2x2)

9

3

= π[

7294

− 162 + 812−(

94− 6 + 9

2

)]

= 60π

123. Let C be the plane curve defined by the parametric equations x = 23t3 and y = t2 + 1

for 0 ≤ t ≤ 2√2.

x = 23t3

dx

dt= 2t2

y = t2 + 1

dy

dt= 2t

dy

dx=

dy

dtdxdt

=2t

2t2=

1

t

(

dx

dt

)2

= 4t4

(

dy

dt

)2

= 4t2

(

dx

dt

)2

+

(

dy

dt

)2

= 4t4 + 4t2

(

dx

dt

)2

+

(

dy

dt

)2

=√4t4 + 4t2

(

dx

dt

)2

+

(

dy

dt

)2

= 2t√t2 + 1

a. Find the equation of the line that is tangent to C at the point where t =√3.

t =√3

x = 2√3

y = 4

dy

dx= 1√

3

y − 4 = 1√3(x− 2

√3)

b. Find the length of C.

Page 74: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

71

∫ 2√2

0

2t√t2 + 1dt = 2

3

(t2 + 1)3∣

2√2

0

= 18− 23= 52

3

c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ 2√2

0

(t2 + 1) · 2t√t2 + 1dt

= 2π

∫ 2√2

0

2t√

(t2 + 1)3 dt

= 2π(

25

(t2 + 1)5)

2√2

0

= 45π(√

(t2 + 1)5)

2√2

0

= 45π(√

(t2 + 1)5)

2√2

0

= 45π(243− 1)

= 968π5

124. Let C be the plane curve defined by the parametric equations x = cos3 θ and y = sin3 θfor 0 ≤ θ ≤ π

2.

x = cos3 θ

dx

dθ= 3 cos2 θ · (- sin θ)

y = sin3 θ

dy

dθ= 3 sin2 θ · cos θ

dy

dx=

dy

dtdxdt

=3 sin2 θ · cos θ-3 cos2 θ · sin θ = - tan θ

(

dx

)2

= 9 cos4 θ · sin2 θ

(

dy

)2

= 9 sin4 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 9 sin2 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 3 sin θ · cos θ

a. Find the equation of the line that is tangent to C at the point where θ = π6.

θ = π6

x = 3√3

8

y = 18

dy

dx= - 1√

3

y − 18= - 1√

3

(

x− 3√3

8

)

b. Find the length of C.

∫ π

2

0

3 sin θ · cos θ dθ = 32sin2 θ

π

2

0

= 32

Page 75: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

72

c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ π

2

0

(

sin3 θ)

3 sin θ · cos θ dθ = 6π

∫ π

2

0

sin4 θ · cos θ dθ = 6π5sin5

π

2

0

= 6π5

125. For each of the following, sketch the curve with the given polar equation and find thearea enclosed by the curve.

a. r = 8 sin θ

16π

✲✛

Page 76: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

73

b. r = 4 cos 2θ

8

∫ π

4

0

12(4 cos 2θ)2 dθ

= 64

∫ π

4

0

cos2 2θ dθ

= 32

∫ π

4

0

(

1 + cos 4θ)

= 32(

θ + 14sin 4θ

)

π

4

0

= 8π

✲✛

126. Find the length of the polar curve r = eθ with 0 ≤ θ ≤ 2.

drdθ

= eθ

drdθ

= eθ

r2 +(

drdθ

)2= 2e2θ

r2 +(

drdθ

)2=

√2eθ

∫ 2

0

√2eθ dθ =

√2eθ∣

2

0

=√2(e2 − 1)

127. For each of the following, determine whether the series converges absolutely, convergesconditionally, or diverges.

a.

∞∑

n=1

n!

n2

Sincen!

n2≥ n(n− 1)(n− 2)

n2for n ≥ 3 and lim

n→∞

n(n− 1)(n− 2)

n2= ∞, lim

n→∞

n!

n2= ∞.

Therefore,∞∑

n=1

n!

n2diverges by the divergence test.

b.∞∑

n=1

(

sinn

n

)n

Since limn→∞

n

(

sinn

n

)n∣∣

= limn→∞

| sinn|n

= 0,∞∑

n=1

(

sinn

n

)n

converges absolutely by the root

test.

Page 77: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

74

c.∞∑

n=1

√n

n2 + 2n + 5

Since

√n

n2 + 2n+ 5≤

√n

n2=

1

n32

and∞∑

n=1

1

n32

is a convergent p-series,∞∑

n=1

√n

n2 + 2n + 5con-

verges by the comparison test.

d.∞∑

n=1

(-1)n

3√n

The series∞∑

n=1

(-1)n

3√n

converges by the alternating series test but fails to be absolutely

convergent since∞∑

n=1

13√n

is a divergent p-series.

e.∞∑

n=1

(

n+ 1

n

)n

Since limn→∞

∞∑

n=1

(

n+ 1

n

)n

= e > 0,

∞∑

n=1

(

n + 1

n

)n

diverges by the divergence test.

128. For each of the following power series, find the interval of convergence and radius ofconvergence.

a.∞∑

n=0

n!xn

en

Since limn→∞

(n+ 1)!xn+1

en+1· en

n!xn

= limn→∞

(n+ 1)|xn|e

= ∞ for all x 6= 0, the interval of con-

vergence is {0} and the radius of convergence is 0.

b.

∞∑

n=1

(-1)n(x− 2)n

n

Since

∞∑

n=1

(-1)n

nconverges and

∞∑

n=1

1

ndiverges, the interval of convergence must be (1, 3]

and so the radius of convergence is 1.

129. Let g(x) = ex.

a. Give the Maclaurin series for g and find the radius of convergence.

Page 78: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

75

g(x) = ex

g′(x) = ex

g(n)(x) = ex for all n

g(0) = 1

g′(0) = 1

g(n)(0) = 1 for all n

Thus, the Maclaurin series representation for ex is 1 + x+ x2

2!+ x3

3!+ · · · =

∞∑

n=0

xn

n!.

Since limn→∞

xn+1

(n + 1)!· n!xn

= limn→∞

|x|n + 1

= 0 for all x, the interval of convergence is (-∞,∞)

and the radius of convergence is ∞.

b. Use your answer from the previous part to express e2 as an infinite series.

e2 =∞∑

n=0

2n

n!

Page 79: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

76

Chapter 3: Fall 2005

Section 3.1: Exam 1 Math 1572 Fall 2005

Exam 1 Math 1572 Fall 2005

130. Let f(x) = x55 + 11x43 + 12x.

(3) a. Show that f is 1–1.

Proof : Since f ′(x) = 55x54+473x42+12 = ≥ 12 > 0, f is strictly increasing which impliesthat f is 1–1.

(3) b. f-1(-24) = -1

131. Differentiate.

(4) a. f(x) = esinx

f ′(x) = cosxesinx

(4) b. g(x) = ln(x3 − 21x+ 1)

g′(x) =3x2 − 21

x3 − 21x+ 1

(4) c. h(x) = sin-1

(cosx)

h′(x) =- sin x√1− cos2 x

=- sin x√sin2 x

=- sin x

| sin x|

(4) d. y = xlnx

ln y = ln xlnx

ln y = ln x ln x

ln y = (ln x)2

y′

y= 2 lnx

x

y′ = y · 2 lnxx

y′ = xlnx · 2 lnxx

y′ = 2xlnx−1 ln x

(Page 484: 39) (3) 132. A ladder 10 ft long leans against a vertical wall. If the bottom ofthe ladder slides away from the base of the wall at a speed of 2 ft/s, how fast is the anglebetween the ladder and the wall changing when the bottom of the ladder is 6 ft from thebase of the wall?

See the student solutions manual.

133. Calculate the following limits.

(4) a. limx→∞

x

exL’H= lim

x→∞

1

ex= 0 (4) b. lim

x→-∞

x

ex= lim

x→∞-xex = -∞

Page 80: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

77

134. Integrate.

(4) a.

(sec2 x) etanx dx = etan x + C

(4) b.

∫ 4

2

x3 lnxdx

Use integration by parts letting u = ln x,du = 1

xdx, v = 1

4x4, and dv = x3 dx.

∫ 4

2

x3 ln xdx

= 14x4 lnx

4

2

−∫ 4

2

14x3 dx

= 14x4 lnx

4

2

− 116x4

4

2

= 64 ln 4− 4 ln 2− (16− 1)

= 64 ln 4− 4 ln 2− 15

= 64 ln 22 − 4 ln 2− 15

= 128 ln 2− 4 ln 2− 15

= 124 ln 2− 15

(4) c.

cos2 xdx

=

12(1 + cos 2x)dx

=

(

12+ 1

2cos 2x

)

dx

= 12x+ 1

4sin 2x+ C

(4) d.

∫ π

4

0

tan3 θ sec2 θ dθ

= 14tan4 θ

π

4

0

= 14

(4) e.

tan-1 xdx

Use integration by parts letting u =tan-1 x, du = dx

1+x2 , v = x, and dv = dx.

tan-1 xdx

= x tan-1−∫

x

1 + x2dx

= x tan-1−12ln(1 + x2) + C

Total Points: 310

Page 81: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

78

Chapter 4: Math 1572 Fall 2006

Section 4.1: Exam 1

Exam 1 Math 1572 Fall 2006

135. Calculate the following limits.

(4) a. limx→0

sin-1

x

x

L’H= lim

x→0

1√1− x2

= 1

(4) b. limx→0

x ln x

= limx→0

ln x1x

L’H= lim

x→0

1x

- 1x2

= limx→0

-x

= 0

136. Differentiate.

(4) a. y = ln | sin x|

y′ =cosx

sin x= cot x

(4) b. f(x) = ln xx

f(x) = x ln x

f ′(x) = ln x+ xx

f ′(x) = ln x+ 1

(4) c. f(x) = sin-1

ex

f ′(x) =ex√

1− e2x

(4) d. f(x) = esin-1

x

f ′(x) =esin

-1x

√1− x2

137. Integrate.

(4) a.

∫ π

4

0

tan xdx

- ln | cosx|∣

π

4

0

= - ln√22

= ln√2

(4) b.

3x+ 13

x2 + 9x+ 20dx

=

∫(

1

x+ 4+

2

x+ 5

)

dx

= ln |x+ 4|+ 2 ln |x+ 5|+ C

(4) c.

2x3

x2 + 1dx

Page 82: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

79

=

2xx2

x2 + 1dx

Let u = x2 + 1 and du = 2x dx.

2xx2

x2 + 1dx

=

u− 1

udx

=

(

1− 1u

)

dx

= u− ln |u|+ C

= x2 + 1− ln |x2 + 1|+ C

(4) d.

∫ √1− x2 dx

(4) e.

∫ e

1

ln x2

xdx =

∫ e

1

2 lnx

xdx

Let u = ln x and du = 1xdx.

∫ e

1

2 lnx

xdx

=

∫ 1

0

2udu

= u2

1

0

= 1

(4) f.

x sec-1xdx

Use integration by parts letting u = sec-1x, du = 1

x√x2−1

dx, v = 12x2, and dv = x dx.

x sec-1xdx = 1

2x2 sec

-1x−

x

2√x2 − 1

dx = 12x2 sec

-1x− 1

2

√x2 − 1 + C

Section 4.2: Exam 2

Exam 2 Math 1572 Fall 2006

(Page 588: 5) (5) 138. Find the length of the curve defined by f(x) = 6√x3 + 1 from

x = 0 to x = 1.

(Page 595: 7) (5) 139. Find the surface area of the solid of revolution created by rotatingthe following curve about the x-axis.

y =√x; from x = 4 to x = 9.

140. For each of the following, determine whether the series is absolutely convergent,conditionally convergent, or divergent.

(5) a.∞∑

n=0

1

4n

Page 83: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

80

This is a geometric series with r = 4.

∞∑

n=0

1

4n=

4

3

(5) b.∞∑

n=1

n!

nn

For n ≥ 3,n!

nn=

1 · 2 · 3 · · ·nn · n · n · · ·n ≤ 2

n2. Since

∞∑

n=1

1

n2is a convergent p-series,

∞∑

n=1

n!

nnconverges

by the comparison test.

(5) c.∞∑

n=0

en

n!

Since limn→∞

en+1

(n+ 1)!· n!en

= limn→∞

e

n + 1= 0, the series

∞∑

n=0

en

n!converges by the ratio test.

(5) d.

∞∑

n=1

nn

(n2 + 1)n

Since limn→∞

n

nn

(n2 + 1)n= lim

n→∞

n

(n2 + 1)= 0, the series

∞∑

n=1

nn

(n2 + 1)nconverges by the root

test.

Page 84: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

81

(5) e.∞∑

n=1

(

n + 1

n

)n

Since limn→∞

(

n+ 1

n

)n

= e > 0,∞∑

n=1

(

n + 1

n

)n

diverges by the divergence test.

(5) f.∞∑

n=1

(-1)n√n

First, note that

∞∑

n=1

(-1)n√n

converges by the alternating series test. The series is not abso-

lutely convergent since∞∑

n=1

1√n

is a divergent p-series.

(Page 784: 31) (5) g.

∞∑

n=1

5n

4n + 3n

(5) h.

∞∑

n=1

sin n+ 2

n

Sincesin n+ 2

n≥ 1

nand

∞∑

n=1

1

nis a divergent p-series,

∞∑

n=1

sinn+ 2

ndiverges.

Section 4.3: Exam 3

Exam 3 Math 1572 Fall 2006

141. Eliminate the parameter to find a Cartesian equation of the curve and sketch thecurve.

(6) a. x = et, y = t, t ∈ R

t = ln x

y = ln x

y = lnx

✲✛

Page 85: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

82

142. Let C be the plane curve defined by the parametric equations x = cos3 θ and y = sin3 θfor 0 ≤ θ ≤ π

2.

x = cos3 θ

dx

dθ= 3 cos2 θ · (- sin θ)

y = sin3 θ

dy

dθ= 3 sin2 θ · cos θ

dy

dx=

dy

dtdxdt

=3 sin2 θ · cos θ-3 cos2 θ · sin θ = - tan θ

(

dx

)2

= 9 cos4 θ · sin2 θ

(

dy

)2

= 9 sin4 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 9 sin2 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 3 sin θ · cos θ

(6) a. Find the equation of the line that is tangent to C at the point where θ = π6.

θ = π6

x = 3√3

8

y = 18

dy

dx= - 1√

3

y − 18= - 1√

3

(

x− 3√3

8

)

(6) b. Find the length of C.

∫ π

2

0

3 sin θ · cos θ dθ = 32sin2 θ

π

2

0

= 32

(6) c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ π

2

0

(

sin3 θ)

3 sin θ · cos θ dθ = 6π

∫ π

2

0

sin4 θ · cos θ dθ = 6π5sin5

π

2

0

= 6π5

143. Let C be the plane curve with parametric equations x = 2 cos θ and y = 4 sin θ for0 ≤ θ ≤ π.

(6) a. Find the area of the region enclosed by C.

dx

dθ= -2 sin θ

dy

dθ= 4 cos θ

∫ π

0

2 cos θ · 4 cos θ dθ∣

=

∫ π

0

8 cos2 θ dθ

Page 86: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

83

=

∫ π

0

4(1 + cos 2θ)dθ

=(

4θ + 2 sin 2θ)

π

0

= 4π

144. Consider the polar curve r = 4 cos 2θ.

(6) a. Sketch the curve.

r = 4 cos 2θ

✲✛

(6) b. Calculate the area enclosed bythe curve.

r = 4 cos 2θ

8

∫ π

4

0

12(4 cos 2θ)2 dθ

= 64

∫ π

4

0

cos2 2θ dθ

= 32

∫ π

4

0

(

1 + cos 4θ)

= 32(

θ + 14sin 4θ

)

π

4

0

= 8π

(6) c. Give the integral whose value is the length of the curve. Do not evaluate the integral.

145. Find the solution of the differential equation that satisfies the given conditions.

(Page 643: 11) (6) a.dy

dx= y2 + 1; y(1) = 0

(6) 146. A tank contains 500 gallons of brine which contains .5 pounds of salt per gallon.Pure water flows into the tank at a rate of 10 gallons per minute. The solution is keptthoroughly mixed and drains from the tank at a rate of 10 gallons per minute. Express theamount of salt in the tank as a function of time.

Let Q = Q(t) be the amount of salt in the tank at time t.

dQ

dt= -

Q

50

dQ

Q= -

dt

50

dQ

Q=

-dt

50

ln |Q| = - t50

+ C

Since Q(0) = 250, C = ln 250.

Page 87: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

84

ln |Q| = t50

+ ln 250

Q = et50+ln 250

Q = 250e- t50

Page 88: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

85

Chapter 5: Math 1572 Spring 2007

Section 5.1: Exam 1

Exam 1 Math 1572 Spring 2007

(4) 147.

Given the graph of f, sketch the graph of f-1.

y = f(x)

✲✛

y = f-1

(x)

✲✛

(4) 148. Suppose that g(x) = f-1(x), f(2) = 7, and f ′(2) = 5. Find g′(7).

g′(7) = 15

(Page 431: 15) (4) 149. Find the domain and range of f(x) =1

ex + 1.

150. Calculate.

(Page 483: 7) (4) a. tan[sin-1(23)] (4) b. eln 6 = 6

151. Differentiate.

(4) a. g(x) = ln(x3 + x2 − 4)

g′(x) =3x2 + 2x

x3 + x2 − 4

(4) b. f(x) = etan−1 x

f ′(x) =etan

−1 x

x2 + 1

(Page 450: 43) (4) c. y = xx

Page 89: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

86

(4) 152. A radioactive substance decays from 50 grams to 45 grams in one year. Findthe half-life.

Q(t) = Q0

12

t

λ

45 = 50 · 12

4550

= 12

ln 910

= ln 12

ln 910

= 1λln 1

2

λ =ln 1

2

ln 910

153. Determine whether each of the following sequences converges or diverges.

(4) a.

{

n2

n!

}∞

n=1

limn→∞

n2

n!

≤ limn→∞

n2

n(n− 1)(n− 2)

= limn→∞

n2

n3 − 3n2 + 2n

= 0

(4) b.{( n

n+ 1

)n}∞

n=1

limn→∞

( n

n + 1

)n

= 1e

154. For each of the following, determine whether the series converges or diverges.

(4) a.

∞∑

n=1

n+ 1

n2

Sincen+ 1

n2=

1

n+

1

n2≥ 1

nand

∞∑

n=1

1

ndiverges,

∞∑

n=1

n+ 1

n2diverges by the comparison test.

(4) b.

∞∑

n=1

1

nn

Since1

nn≤ 1

2nand

∞∑

n=1

1

2nconverges,

∞∑

n=1

1

nnconverges by the comparison test.

Section 5.2: Exam 2

Exam 2 Math 1572 Spring 2007

Page 90: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

87

155. Integrate.

(5) a.

∫ 1

0

x2ex3dx = 1

3ex

3

1

0

= 13e− 1

3

(5) b.

1

x√x2 + 1

dx

1

x

θ

√ x2 + 1

x = tan θ

dx = sec2 θ dθ

1

x√x2 + 1

dx

=

cot θ cos θ sec2 θ dθ

=

csc θ dθ

= ln | csc θ − cot θ|+ C

= ln∣

√x2+1x

− 1x

∣+ C

(5) c.

4

x2 − 2x− 3dx

=

∫(

1

x− 3− 1

x+ 1

)

dx

= ln |x− 3| − ln |x+ 1|+ C

(5) d.

∫ π

2

0

sin9 x cos3 xdx

=

∫ π

2

0

sin9 x cos2 x cos xdx

=

∫ π

2

0

sin9 x(1− sin2 x) cosxdx

=

∫ π

2

0

(sin9 x− sin11 x) cos xdx

=(

110sin10 x− 1

12sin12 x

)

π

2

0

= 110

− 112

= 160

(5) e.

x√x+ 1dx

Let u = x+ 1 and du = dx.

x√x+ 1dx

=

u12 (u− 1)du

=

(

u32 − u

12

)

du

= 25u

52 − 2

3u

32 + C

= 25(x+ 1)

52 − 2

3(x+ 1)

32 + C

(5) f.

x sec x tan xdx

Use integration by parts letting u = x, du = dx, v = sec x and dv = sec x tanx dx.

x sec x tanxdx = x sec x−∫

sec xdx = x sec x− ln | sec x+ tanx| + C

Page 91: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

88

156. For each of the following, determine whether the series is absolutely convergent,conditionally convergent, or divergent.

(5) a.∞∑

n=1

(

n + 1

n

)n

Since limn→∞

(

n+ 1

n

)n

= e,∞∑

n=1

(

n+ 1

n

)n

diverges by the divergence test.

Note that the root test is inconclusive.

(5) b.∞∑

n=2

(-1)n

n√lnn

Since limn→∞

1

n√lnn

= 0,∞∑

n=2

(-1)n

n√lnn

converges by the alternating series test. Also, since

∫ ∞

2

1

x√ln x

dx= limt→∞

∫ t

2

1

x√ln x

dx= limt→∞

2√ln x

t

2

= limt→∞

(

2√ln t− 2 ln 2

)

=∞,∞∑

n=2

1

n√lnn

diverges by the integral test. Therefore,∞∑

n=2

(-1)n

n√lnn

is conditionally convergent.

(5) c.∞∑

n=1

(n + 1)3n

n!

Since limn→∞

(n + 2)3n+1

(n+ 1)!· n!

(n+ 1)3n

= limn→∞

3(n+ 2)

(n+ 1)(n+ 1)= lim

n→∞

3n+ 6

n2 + 2n+ 1= 0, the se-

ries is absolutely convergent by the ratio test.

(5) d.

∞∑

n=1

sin n

n2

Since

sinn

n2

≤ 1

n2and

∞∑

n=1

1

n2is a convergent p-series,

∞∑

n=1

sinn

n2is absolutely convergent

by the comparison test.

(5) e.∞∑

n=1

tan-1 n

n

Sincetan-1 n

n≥ π

4nand

∞∑

n=1

π

4nis a divergent p-series,

∞∑

n=1

tan-1 n

ndiverges by the compar-

ison test.

Page 92: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

89

Section 5.3: Exam 3

Exam 3 Math 1572 Spring 2007

(5) 157. Find the length of the following curve.

y = 12

√x(x− 2); 16 ≤ x ≤ 48

y′ = 14x

- 12 (x− 2) + 12

√x

y′ = (x−2)4√x+ 1

2√x

y′ = x−2+24√x

y′ =√x

4

(y′)2 + 1 =√

x16

+ 1

∫ 48

16

x16

+ 1dx

=(

323

( x16

+ 1)3)

48

16

= 2563

− 32√2

3

158. Let R be the region bounded by the curves y =√x, x = 3

4, x = 2, and the x-axis.

Also, let S be the solid formed by rotating R about the x-axis.

(5) a. Find the area of R.

∫ 2

34

√xdx

= 23x

32

2

34

= 4√2

3−

√34

= 16√2−3

√3

12

(5) b. Find the surface area of S.

y′ = 12√x

∫ 2

34

2π√x√

14x

+ 1dx

=

∫ 2

34

2π√x

4x+ 1

4xdx

=

∫ 2

34

π√4x+ 1dx

= π6(4x+ 1)

32

2

34

= π6(27− 8)

= 19π6

(5) c. Find the center of mass of R.

x

= 1216

√2−3

√3

∫ 2

34

x√xdx

= 1216

√2−3

√3

(

25

√x5)

2

34

= 1216

√2−3

√3

(

25

√x5)

2

34

Page 93: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

90

= 1216

√2−3

√3· 25

(

4√2− 9

√3

32

)

y

= 1216

√2−3

√3

∫ 2

34

12xdx

= 1216

√2−3

√3

(

14x2)

2

34

= 1216

√2−3

√3

(

1− 964

)

(Page 605: 1) (5) 159. An aquarium 5 ft long and 2 ft wide, 3 ft deep is full of water.Find the hydrostatic force on one end of the aquarium.

(5) 160. Eliminate the parameter to find a Cartesian equation of the curve and sketchthe curve.

x = et,

y = t,

t ∈ R

t = ln x

y = ln x

y = lnx

✲✛

161. Let C be the plane curve defined by the parametric equations x = cos3 θ and y = sin3 θfor 0 ≤ θ ≤ π

2.

x = cos3 θ

dx

dθ= 3 cos2 θ · (- sin θ)

y = sin3 θ

dy

dθ= 3 sin2 θ · cos θ

dy

dx=

dy

dtdxdt

=3 sin2 θ · cos θ-3 cos2 θ · sin θ = - tan θ

(

dx

)2

= 9 cos4 θ · sin2 θ

(

dy

)2

= 9 sin4 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 9 sin2 θ · cos2 θ

(

dx

)2

+

(

dy

)2

= 3 sin θ · cos θ

Page 94: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

91

(5) a. Find the equation of the line that is tangent to C at the point where θ = π6.

θ = π6

x = 3√3

8

y = 18

dy

dx= - 1√

3

y − 18= - 1√

3

(

x− 3√3

8

)

(5) b. Find the length of C.

∫ π

2

0

3 sin θ · cos θ dθ = 32sin2 θ

π

2

0

= 32

(5) c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ π

2

0

(

sin3 θ)

3 sin θ · cos θ dθ = 6π

∫ π

2

0

sin4 θ · cos θ dθ = 6π5sin5

π

2

0

= 6π5

(5) 162. A tank contains 1000 gallons of brine which contains .25 pounds of salt pergallon. Brine which contains .5 pounds of salt per gallon flows into the tank at a rate of 10gallons per minute. The solution is kept thoroughly mixed and drains from the tank at arate of 10 gallons per minute. Express the amount of salt in the tank as a function of time.

Let Q = Q(t) be the amount of salt in the tank at time t.

dQ

dt= 5− Q

100

dQ

dt= 500−Q

100

dQ

500−Q= dt

100

dQ

500−Q=

dt100

- ln |500−Q| = t100

+ C

Since Q(0) = 250, C = - ln 250.

- ln |500−Q| = t100

− ln 250

- ln(500−Q) = t100

− ln 250

ln(500−Q) = - t100

+ ln 250

500−Q = e- t100+ln 250

Q = 500− e- t100+ln 250

Q = 500− 250e- t25

Page 95: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

92

Chapter 6: Math 1572 Summer 2007

Section 6.1: Exam 1

Exam 1 Math 1572 Summer 2007

163. Let f(x) = ex + 5.

(2) a. Show that f is one-to-one.

Proof : Since f ′(x) = ex > 0, f is strictly increasing and hence 1–1.

(2) b. Find (f-1)′(6).

(f-1)(6) = 0

f ′(0) = 1

(f-1)′(6) =

1

f ′(f -1(6))= 1

(2) c. Find f-1(x).

f-1(x) = ln(x− 5)

(2) d. Find (f-1)′(x). Hint: Use this answer to check your answer in part b.

(f-1)′(x) =

1

x− 5

(2) e. Sketch the graph of f and f-1on the same axes.

164. Solve for x.

(3) a. log416 = x

x = 2

(3) b. 3x = 5

ln 3x = ln 5

x ln 3 = ln 5

x = ln 5ln 3

(3) c. log5x = 2

x = 25

(3) d. sec x =√2

x = π4

(3) e. tan(sin-1 4

5) = x

Page 96: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

93

Let θ = sin-1 4

5. Then sin θ = 4

5, cos θ = 3

5, and tan θ = 4

3.

Page 97: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

94

165. Differentiate.

(3) a. h(t) = esin t

h′(t) = esin t · cos t

(3) b. f(x) =√ln x

f(x) = (ln x)12

f ′(x) = 12(ln x)

- 12 · 1x= 1

2x√lnx

(3) c. g(x) = log x

g′(x) = 1(ln 10)(ln x)

(Page 450: 45) (3) d. y = xsinx

(Page 431: 15) (3) 166. Find the domain and range of f(x) =1

1 + ex.

(3) 167. Find the half-life of a radioactive substance that decays from 50 mg to 40 mg intwo years.

Q = 50(

12

)

t

λ

50(

12

)

= 40

(

12

)

= 45

ln(

12

)

= ln 45

2λln 1

2= ln 4

5

λ =2 ln 1

2

ln 45

168. Integrate.

(4) a.

∫ π

0

x sin xdx (Page 516: 27) (4) b.

cosx ln(sin x)dx

Section 6.2: Exam 2

Exam 2 Math 1572 Summer 2007

169. Integrate.

(5) a.

3x2 − x+ 2

(x+ 1)(x2 + 1)dx

=

∫(

3

x+ 1− 1

x2 + 1

)

dx

= 3 ln |x+ 1| − tan-1 x+ C

(5) b.

cos θ sec2(sin θ)dθ

= tan(sin θ) + C

(5) c.

∫ 1

0

1√x2 + 1

dx

1

x

θ

√ x2 + 1

Page 98: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

95

x = tan θ

dx = sec2 θ dθ

∫ 1

0

1√x2 + 1

dx

=

∫ π

4

0

cos θ sec2 θ dθ

=

∫ π

4

0

sec θ dθ

= ln | sec θ + tan θ|∣

π

4

0

= ln(√2 + 1)

(5) d.

x√x+ 1

dx

Let u =√x+ 1.

Then x = u2 − 1 and dx = 2u du.

x√x+ 1

dx

=

2(u2 − 1)du

= 23u3 − 2u+ C

= 23

(x+ 1)3 − 2√x+ 1 + C

Page 99: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

96

170. Let C be the graph of y = 14x2 − ln

√x from x = 1 to x = 4. Also, let R be the region

bounded by the curves x = 1, x = 4, C, and the x-axis. Finally, let S be the solid formedby revolving R about the x-axis.

y = 14x2 − ln

√x

y′ = 12x− 1

2x

(y′)2 = 14x2 − 1

2+ 1

4x2

(y′)2 + 1 = 14x2 + 1

2+ 1

4x2

(y′)2 + 1 =x4 + 2x2 + 1

4x2

(y′)2 + 1 =(x2 + 1)2

4x2

(y′)2 + 1 =x2 + 1

2x

(y′)2 + 1 = 12x2 + 1

2x

(5) a. Find the length of C.

∫ 4

1

(

12x+ 1

2x

)

dx

=(

14x2 + 1

2lnx)

4

1

= 4 + 12ln 4− (1

4+ 0)

= 154+ ln 2

(5) b. Find the surface area of S.

∫ 4

1

2π(x2 − ln√x)(1

2x+ 1

2x)dx

=

∫ 4

1

π(x2 − ln√x)(x+ 1

x)dx

= π

∫ 4

1

(

x3 + x− x ln√x− ln

√x

x

)

dx

= π

∫ 4

1

(

x3 + x− 12x ln x− lnx

2x

)

dx

= π

∫ 4

1

(

x3 + x− lnx2x

− 12x ln x

)

dx

= π2

∫ 4

1

(

2x3 + 2x− lnxx

− x ln x)

dx

= π2

(

12x4 + x2 − 1

2(ln x)2 − 1

2x2 ln x+ 1

4x2)

4

1

= π2

(

12x4 + 5

4x2 − 1

2(ln x)2 − 1

2x2 ln x

)

4

1

= π(

14x4 + 5

8x2 − 1

4(ln x)2 − 1

4x2 ln x

)

4

1

= π(

64 + 10− 14(ln 4)2 − 4 ln 4− 1

4− 5

8

)

= π(

74− 78− 1

4(ln 4)2 − 4 ln 4

)

Page 100: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

97

171. Determine whether each of the following sequences converges or diverges.

(5) a.{ n

en

}∞

n=1

limn→∞

n

en

L’H= lim

n→∞

1

en

= 0

(5) b.

{

(

n + 1

n

)2n}∞

n=1

limn→∞

(

n + 1

n

)2n

= limn→∞

[(

1 + 1n

)n]2

= e2

172. For each of the following, determine whether the given series converges or diverges.

(5) a.

∞∑

n=1

n + 1

n

Since limn→∞

n + 1

n= 1, the series diverges by the divergence test.

(5) b.

∞∑

n=1

1

n5n

Since1

n5n≤ 1

5nand

∞∑

n=1

1

5nis a convergent geometric series, the series

∞∑

n=1

1

n5nconverges

by the comparison test.

(5) c.

∞∑

n=1

lnn

n

Sincelnn

n≥ 1

nfor n ≥ 3 and

∞∑

n=1

1

ndiverges, the series

∞∑

n=1

lnn

ndiverges by the comparison

test.

Section 6.3: final

Final Exam Math 1572 Summer 2007

173. Differentiate.

(3) a. h(x) = sin-1

x (3) b. g(x) = (ex)3

(3) c. f(x) = ln(tan-1x)

Page 101: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

98

174. Integrate.

(3) a.

x ln xdx (3) b.

x− 8

x2 − x− 2dx (3) c.

x2

√x− 1

dx

Page 102: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

99

175. Let C be the plane curve with parametric equations x = cos t and y = 2 sin t where0 ≤ t ≤ 2π.

(3) a. Sketch the graph of C.

(3) b. Find the equation of the line that is tangent to the curve at the point correspondingto t = π

6.

(3) c. Find the area of the region enclosed by C.

(3) d. Find the surface area of the solid formed by rotating C about the x-axis. Hint: Useonly the part of C defined by 0 ≤ t ≤ π.

Page 103: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

100

176. (3) a. Sketch the graph of the polar curve r = 2 cos 3θ.

(3) b. Find the area of the region enclosed by the graph of the polar curve r = 2 cos 3θ.

Page 104: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

101

177. For each of the following, determine whether the series converges absolutely, convergesconditionally, or diverges.

(3) a.∞∑

n=0

1

2n(3) b.

∞∑

n=2

(-1)n+1

n lnn

(3) c.

∞∑

n=1

( n

n+ 1

)n2

(3) d.

∞∑

n=1

esinn

n2

Page 105: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

102

(3) 178. Find the radius of convergence and the interval of convergence of the power

series∞∑

n=1

(x+ 1)n

n.

(3) 179. Express1

1− xas a power series.

(3) 180. What function is represented by the power series

∞∑

n=1

nxn−1. Hint: Calculate

[ ∞∑

n=1

nxn−1

]

dx.

(3) 181. Find the Maclaurin Series for f(x) = ex.

Points: 791

Page 106: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Chapter 7: Math 1572 Fall 2007

Section 7.1: Quizzes

Page 107: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 1

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Determine whether or not each of the following is 1–1.

(Page 420: 9) (1) a. f(x) = 12(x+ 5) (Page 420: 13) (1) b. h(x) = x4 + 5

(1) 2. Find a formula for the inverse of the function f(x) =√10− 3x.

Page 108: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 2

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Calculate.

(Page 439: 5) (1) a. log5125

(Page 439: 7) (1) b. log12 3 + log12 48

(Page 439: 31) (1) 2. Solve the following for x.

5x−3 = 10

Page 109: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 3

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Calculate.

(Page 483: 3) (1) a. tan-1 √

3 (Page 483: 3) (1) b. sin-1

- 1√2

2. Differentiate.

(Page 431: 33) (1) a. f(x) = e1x (Page 431: 39) (1) b. y = ee

x

Page 110: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 4

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Differentiate.

(Page 449: 3) (1) a. f(θ) = ln(cos θ) (Page 449: 27) (1) b. y = log10 x

(Page 449: 33) (1) 2. Find f ′(e) where f(x) =x

ln x.

(Page 449: 35) (1) 3. Find f ′(e) where f(x) = ln(ln x).

Page 111: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 5

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Differentiate.

(Page 450: 43) (1) a. y = xx (Page 484: 23) (1) b. y = tan-1 √

x

(Page 484: 49) (1) 2. A ladder 10 ft long leans against a vertical wall. If the bottom ofthe ladder slides away from the base of the wall at a speed of 2 ft/s, how fast is the anglebetween the ladder and the wall changing when the bottom of the ladder is 6 ft from thebase of the wall?

Page 112: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 6

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Integrate.

(Page 530: 5) (1) a.

∫ 2

√2

1

t3√t2 − 1

dt (Page 530: 11) (1) b.

∫ √1− 4x2 dx

Page 113: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 7

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Integrate.

(Page 540: 15) (1) a.

∫ 1

0

2x+ 3

(x+ 1)2dx (Page 540: 29) (1) b.

x+ 4

x2 + 2x+ 5dx

Page 114: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 8

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Integrate.

(Page 546: 15) (1) a.

∫ 12

0

x√1− x2

dx (Page 546: 37) (1) b.

cos2 θ tan2 θ dθ

Page 115: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 9

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Integrate.

(Page 546: 29) (1) a.

∫ 5

0

3w − 1

w + 2dw (Page 546: 43) (1) b.

ex√1 + ex dx

Page 116: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 10

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Integrate.

(Page 546: 41) (1) a.

θ tan2 θ dθ (Page 546: 23) (1) b.

∫ 1

0

(1 +√x)8 dx

Page 117: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 11

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. For each of the following, determine whether the sequence converges or diverges.

(1) a. an=

2n

3n+1 (1) b. an=

n2

en(1) c. a

n=

n!

2n

Page 118: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 12

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Determine whether each of the following series is convergent or divergent.

(Page 756: 21) (1) a.∞∑

n=1

n

n + 5(Page 756: 23) (1) b.

∞∑

n=2

2

n2 − 1

Page 119: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 13

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Determine whether each of the following series is convergent or divergent.

(Page 756: 29) (1) a.∞∑

n=1

n√2 (Page 756: 31) (1) b.

∞∑

n=1

tan-1 n

Page 120: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 14

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Determine whether each of the following series is convergent or divergent.

(Page 770: 9) (1) a.∞∑

n=1

cos2 n

n2 + 1(Page 770: 11) (1) b.

∞∑

n=2

n2 + 1

n3 − 1

Page 121: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 15

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Determine whether each of the following series is convergent or divergent.

(Page 765: 17) (1) a.∞∑

n=1

n

n2 + 1(Page 760: 19) (1) b.

∞∑

n=1

ne-n2

Page 122: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 16

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Determine whether each of the following series is convergent or divergent.

(Page 765: 21) (1) a.∞∑

n=2

1

n lnn(Page 760: 23) (1) b.

∞∑

n=1

1

n3 + n

Page 123: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 17

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Determine whether each of the following series is convergent or divergent.

(Page 770: 17) (1) a.∞∑

n=1

1√n2 + 1

(Page 770: 31) (1) b.∞∑

n=1

sin(

1n

)

Page 124: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 18

Name:

Directions: Show all of your work and justify all of your answers.

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

1. Determine whether each of the following series is convergent or divergent.

(Page 770: 27) (1) a.∞∑

n=1

(

1 + 1n

)2e-n (Page 770: 29) (1) b.

∞∑

n=1

1

n!

Section 7.2: Exam 1

Exam 1 Math 1572 Fall 2007

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

(3) 2. If f(x) = 2x3 + x+ 4, find (f-1)′(7).

Solve for x.

(3) a. 3x = 7 (3) b. log4 x = -12

(3) c. logx 9 = 2

(3) d. tanx = 1 (3) e. tan(

sin-1 18

)

Page 125: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

122

3. Differentiate.

(3) a. f(x) = etan x (3) b. g(x) = tan-1x2 (3) c. h(x) = ln(x3+x)

4. Calculate the following limits.

(3) a. limx→0

1− cosx

sin x(3) b. lim

x→0x

x

Page 126: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

123

5. Integrate.

(3) a.

∫ 1

0

xex2dx

(3) b.

x2 ln xdx

(3) c.

sin-1 xdx

Page 127: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

124

(3) d.

1

x2 + 4dx

(3) e.

4√sin x cosxdx

(3) f.

sin2 x sec xdx

Exam 1 Math 1572 Fall 2007

(3) 6. If f(x) = 2x3 + x+ 4, find (f-1)′(7).

f ′(x) = 6x2 + 4

f-1(7) = 1

(f-1)′(7) = 1

10

7. Solve for x.

(3) a. 3x = 7

ln 3x = ln 7

x ln 3 = ln 7

x = ln 7ln 3

(3) b. log4 x = -12

x = 4- 12

x = 12

(3) c. logx 9 = 2

x2 = 9

x = 3

(3) d. tanx = 1

x = π4

(3) e. tan(

sin-1 18

)

Let

θ = sin-1 18

y = sin θ = 18

x2 + y2 = 1

x =√638

tan θ = y

x= 1√

63

8. Differentiate.

(3) a. f(x) = etan x

f ′(x) = sec2 xetan x

(3) b. g(x) = tan-1x2

Page 128: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

125

g′(x) =2x

1 + x4

(3) c. h(x) = ln(x3 + x)

h′(x) =3x2 + 1

x3 + x

Page 129: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

126

9. Calculate the following limits.

(3) a. limx→0

1− cosx

sin x

limx→0

1− cosx

sin x

L’H= lim

x→0

sin x

cosx

= 0

(3) b. limx→0

xx

= limx→0

elnxx

limx→0

ln xx

= limx→0

x ln x

= limx→0

ln x1x

L’H= lim

x→0

1x

- 1x2

= limx→0

-x

= 0

= limx→0

elnxx

= e0

= 1

10. Integrate.

(3) a.

∫ 1

0

xex2dx

= 12ex

2

1

0

= 12(e− 1)

(3) b.

x2 ln xdx

Use integration by parts letting u = ln x,du = 1

xdx, v = 1

3x3, and dv = x2 dx.

x2 lnxdx = 13x3 ln x −

13x3 · 1

xdx =

13x3 ln x−

13x2 dx = 1

3x3 ln x− 1

9x3 +C

(3) c.

sin-1 xdx

Use integration by parts letting u =sin-1 x, du = dx√

1−x2 , v = x, and dv = dx.

sin-1 xdx = x sin-1−∫

x√1− x2

dx =

x sin-1+√1− x2 + C

(3) d.

1

x2 + 4dx

= 12tan-1 x

2+ C

(3) e.

4√sin x cos xdx

= 45(sin x)

54 + C

(3) f.

sin2 x sec xdx

=

1− cos2 x

cosxdx

Page 130: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

127

=

(

sec x− cosx)

dx= ln | sec x+ tan x| − sin x+ C

Section 7.3: Exam 2

Exam 2 Math 1572 Fall 2007

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

(30) 11. Integrate. Choose six and only six. Make your choices clear.

a.

cosxesinx dx b.

∫ π

4

0

tan2 θ dθ c.

1

tan-1 x(x2 + 1)dx

Page 131: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

128

d.

sin x sec3 xdx e.

x√x+ 1

dx f.

x2 + x+ 3

(x+ 2)(x2 + 1)dx

Page 132: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

129

g.

∫ 1

0

1√x2 + 1

dx h.

2x

x4 + 2x2 + 2dx

Page 133: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

130

(10) 12. Determine whether each of the following is convergent or divergent.

a.

∫ ∞

1

ln x

xdx b.

∫ ∞

1

| sinx|x2

dx

(5) 13. Find the arc length of the graph of the function y = ln(cosx) from 0 to π4.

(5) 14. Let R be the region bounded by the curves y =√x, y = 0, and x = 1. Also, let

S be the solid formed by revolving R about the x-axis. Find the surface area of S.

Exam 2 Math 1572 Fall 2007

(30) 15. Integrate. Choose six and only six. Make your choices clear.

a.

cosxesinx dx = esinx + C

b.

∫ π

4

0

tan2 θ dθ

=

∫ π

4

0

(

sec2 θ − 1)

=(

tan θ − θ)

π

4

0

= 1− π4

c.

1

tan-1 x(x2 + 1)dx

= ln | tan-1 x|+ C

d.

sin x sec3 xdx

=

tan x sec2 xdx

= 12tan2 x+ C

e.

x√x+ 1

dx

Let u =√x+ 1.

Then x = u2 − 1 and dx = 2u du.

x√x+ 1

dx

=

2u(u2 − 1)

udu

=

(

2u2 − 2)

du

= 23u3 − 2u+ C

= 23

(x+ 1)3 − 2(x+ 1) + C

f.

x2 + x+ 3

(x+ 2)(x2 + 1)dx

=

∫(

1

x+ 2+

1

x2 + 1

)

dx

= ln |x+ 2|+ tan-1 x+ C

g.

∫ 1

0

1√x2 + 1

dx

Page 134: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

131

1

x

θ

√ x2 + 1

x = tan θ

dx = sec2 θ dθ

∫ 1

0

1√x2 + 1

dx

=

∫ π

4

0

cos θ sec2 θ dθ

=

∫ π

4

0

sec θ dθ

= ln | sec θ + tan θ|∣

π

4

0

= ln(√2 + 1)

h.

2x

x4 + 2x2 + 2dx

=

2x

(x2 + 1)2 + 1dx

= tan-1(x2 + 1) + C

(10) 16. Determine whether each of the following is convergent or divergent.

a.

∫ ∞

1

ln x

xdx

Note that lnxx

≥ 1xfor all x ≥ e. Since

∫ ∞

1

1xdx is divergent,

∫ ∞

1

lnxxdx is divergent by the

comparison theorem.

b.

∫ ∞

1

| sin x|x2

dx

Note that | sinx|x2 ≤ 1

x2 for all x. Since

∫ ∞

1

1x2 dx is convergent (2 > 1),

∫ ∞

1

| sinx|x2 dx is

convergent by the comparison theorem.

(5) 17. Find the arc length of the graph of the function y = ln(cosx) from 0 to π4.

y′ = - tanx

(y′)2 + 1

=√tan2 x+ 1

=√sec2 x

= sec x

∫ π

4

0

sec xdx

= ln | sec x+ tan x|∣

π

4

0

= ln(√2 + 1)

Page 135: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

132

(5) 18. Let R be the region bounded by the curves y =√x, y = 0, and x = 1. Also, let

S be the solid formed by revolving R about the x-axis. Find the surface area of S.

y =√x

y′ = 12√x

(y′)2 + 1

=√

14x

+ 1

=√

4x+14x

∫ 1

0

2π√x√

4x+14x

dx

=

∫ 1

0

2π√x√4x+1√4x

dx

=

∫ 1

0

π√4x+ 1dx

=

∫ 1

0

π(4x+ 1)12 dx

= 16π(4x+ 1)

32

1

0

= π6(5√5− 1)

Exam 2 Math 1572 Fall 2007

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

(30) 19. Integrate. Choose six and only six. Make your choices clear.

a.

etan-1 x

x2 + 1dx b.

∫ π

4

0

(

tan2 θ + θ)

dθ c.

tan-1 x

xdx

Page 136: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

133

d.

tanx

cos2 xdx e.

√x+ 1

xdx f.

x2 + x+ 3

(x+ 2)(x2 + 1)dx

Page 137: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

134

g.

√3

2

0

1√1− x2

dx h.

2

x2 + 2x+ 2dx

Page 138: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

135

(10) 20. Determine whether each of the following is convergent or divergent.

a.

∫ ∞

1

ln x

x2dx b.

∫ ∞

1

| sinx|√x3

dx

(5) 21. Find the arc length of the graph of the function y = ln(cosx) from 0 to π4.

(5) 22. Let R be the region bounded by the curves y =√x, y = 0, and x = 1. Also, let

S be the solid formed by revolving R about the x-axis. Find the surface area of S.

Section 7.4: Exam 3

Exam 3 Math 1572 Fall 2007

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

23. For each of the following, determine whether the series is absolutely convergent, con-ditionally convergent, or divergent.

(5) a.

∞∑

n=1

1

n2(5) b.

∞∑

n=0

(-1)n2n

n!

(5) c.

∞∑

n=2

(-1)n+1

n lnn(5) d.

∞∑

n=0

n!

en2

Page 139: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

136

(5) e.∞∑

n=1

sin 1n

1n

(5) f.∞∑

n=1

2n

nn

(5) g.

∞∑

n=0

sinn

en

Page 140: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

137

24. For each of the following power series, find the interval of convergence and radius ofconvergence.

(5) a.∞∑

n=1

(-1)n(x− 2)n

n

(5) b.∞∑

n=0

n!xn

en

Page 141: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

138

(Page 795: 5) (5) 25. Find a power series representation for the following function anddetermine the interval of convergence.

f(x) =1

1− x3

(5) 26. Find the Maclaurin series for f(x) = cosx.

Exam 3 Math 1572 Fall 2007

Page 142: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

139

27. For each of the following, determine whether the series is absolutely convergent, con-ditionally convergent, or divergent.

(5) a.∞∑

n=1

1

n2

This series converges since it is a p-series with p = 2.

(5) b.∞∑

n=0

(-1)n2n

n!

Since limn→∞

(-1)n2n+1

(n+ 1)!· (-1)

nn!

2n

= limn→∞

2

n+ 1= 0,

∞∑

n=0

(-1)n2n

n!converges absolutely by the

Ratio Test.

(Page 784: 11) (5) c.∞∑

n=2

(-1)n+1

n lnn

(Page 784: 25) (5) d.∞∑

n=0

n!

en2

(5) e.∞∑

n=1

sin 1n

1n

Since limn→∞

sin 1n

1n

= 1, the series diverges by the Divergence Test.

(5) f.

∞∑

n=1

2n

nn

Since limn→∞

n

2n

nn= lim

n→∞

2

n= 0, the series converges by the Root Test.

(5) g.

∞∑

n=0

sinn

en

Since

sinn

en

≤ 1

enand

∞∑

n=0

1

en=

1

1− 1e

=e

e− 1, the series converges by the Comparison

Test.

Page 143: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

140

28. For each of the following power series, find the interval of convergence and radius ofconvergence.

(5) a.∞∑

n=1

(-1)n(x− 2)n

n

Since∞∑

n=1

(-1)n

nconverges and

∞∑

n=1

1

ndiverges, the interval of convergence must be (1, 3]

and so the radius of convergence is 1.

(5) b.∞∑

n=0

n!xn

en

Since limn→∞

(n+ 1)!xn+1

en+1· en

n!xn

= limn→∞

(n+ 1)|xn|e

= ∞ for all x 6= 0, the interval of con-

vergence is {0} and the radius of convergence is 0.

(Page 795: 5) (5) 29. Find a power series representation for the following function anddetermine the interval of convergence.

f(x) =1

1− x3

(5) 30. Find the Maclaurin series for f(x) = cosx.

Exam 3 Math 1572 Fall 2007

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

31. For each of the following, determine whether the series is absolutely convergent, con-ditionally convergent, or divergent.

(5) a.

∞∑

n=1

1

nn!(5) b.

∞∑

n=0

(-e)n

(n+ 1)!

(5) c.∞∑

n=2

1

lnnn(5) d.

∞∑

n=0

n!

n2e

Page 144: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

141

(5) e.∞∑

n=1

n tan 1n

(5) f.∞∑

n=1

n

πn

(5) g.

∞∑

n=1

n

sinn

Page 145: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

142

32. For each of the following power series, find the interval of convergence and radius ofconvergence.

(5) a.∞∑

n=1

(-1)n(x− 2)n

n!

(5) b.∞∑

n=0

n!xn

en!

Page 146: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

143

(Page 795: 5) (5) 33. Find a power series representation for the following function anddetermine the interval of convergence.

f(x) = ln |1− x|

(5) 34. Find the Maclaurin series for f(x) = tan-1 x.

Section 7.5: Final

Final Exam Math 1572 Fall 2007

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

35. Differentiate.

(3) a. h(x) = ln(sin x) (3) b. g(x) = (ex)3

(3) c. f(x) = tan-1x

(3) 36. Find the half-life of a radioactive that decays from 100 g to 30 g in 3 days.

37. Integrate.

(3) a.

xex dx (3) b.

tan3 θ dθ (3) c.

x2

√x− 1

dx

Page 147: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

144

38. Let C be the plane curve with parametric equations x = cos t and y = 2 sin t where0 ≤ t ≤ 2π.

(3) a. Find the equation of the line that is tangent to the curve at the point correspondingto t = π

6.

(3) b. Find the area of the region enclosed by C.

39. (3) a. Sketch the graph of the polar curve r = 2 cos 3θ.

(3) b. Find the area of the region enclosed by the graph of the polar curve r = 2 cos 3θ.

Page 148: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

145

40. For each of the following, determine whether the series converges absolutely, convergesconditionally, or diverges.

(3) a.∞∑

n=0

1

en(3) b.

∞∑

n=0

(-1)n n

n2 + 1

(3) c.

∞∑

n=1

1

nn!(3) d.

∞∑

n=1

sin(

1n

)

Page 149: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

146

(3) 41. Find the radius of convergence and the interval of convergence of the power series∞∑

n=1

(x+ 1)n

n.

(3) 42. Express1

1− xas a power series.

(3) 43. What function is represented by the power series

∞∑

n=1

nxn−1. Hint: Calculate

[ ∞∑

n=1

nxn−1

]

dx.

Section 7.6: Final

Final Exam Math 1572 Spring 2007

Name:

E-mail (optional):

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

44. Differentiate.

(2) a. f(x) = tan-1 ex (2) b. f(x) = ln(lnx)

45. Integrate.

(3) a.

ln xdx (3) b.

tan95 θ sec4 θ dθ

Page 150: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

147

(3) c.

∫ √1− x2 dx (3) d.

x2

√1− x3

dx

(3) e.

x

x+ 7dx (3) f.

tan2 xdx

Page 151: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

148

46. For each of the following, determine whether the series converges absolutely, convergesconditionally, or diverges.

(2) a.∞∑

n=1

cosnπ

n(2) b.

∞∑

n=1

tan-1 n

n

(2) c.

∞∑

n=2

1

n(lnn2)(2) d.

∞∑

n=1

en

nn

Page 152: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

149

47. For each of the following power series, find the interval of convergence and radius ofconvergence.

(2) a.∞∑

n=0

n!xn

en

(2) b.∞∑

n=1

(x− 3)n

n

48. Let f(x) = ex.

(2) a. Give the Maclaurin series for f and find the radius of convergence.

Page 153: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

150

49. Let C be the graph of y = ln x from x = 1 to x = e. Also, let R be the region boundedby the curves x = 1, x = e, C, and the x-axis. Finally, let S be the solid formed by revolvingR about the x-axis. For each of the following, give the integral that represents the givenvalue. Do not evaluate the integral.

(2) a. The arc length of C.

(2) b. The area of R.

(2) c. The surface area of S.

(2) d. The volume of S.

Page 154: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

151

50. Consider the polar curve r = 5 cos 2θ.

(2) a. Sketch the curve.

✲✛

(2) b. Find the area enclosed by the curve.

(2) c. Give the integral that represents the length of the curve. Do not evaluate theintegral.

Page 155: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

152

(2) 51. Find the solution of the differential equation that satisfies the given conditions.

dy

dx=

-y2 − 2

2xy; x > 0, y(1) = 2

(2) 52. A tank contains 1000 gallons of brine which contains .25 pounds of salt per gallon.Pure water flows into the tank at a rate of 10 gallons per minute. The solution is keptthoroughly mixed and drains from the tank at a rate of 10 gallons per minute. Express theamount of salt in the tank as a function of time.

Page 156: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

153

(Page 606: 27) (2) 53. Find the centroid of the region bounded by the curves y =√x

and y = x.

(Page 599: example 2) (2) 54. Find the hydrostatic force on one end of a cylindricaldrum with radius 3 ft if the drum is submerged in water 10 ft deep. Recall that the weightdensity of water is 62.5 lb/ft3.

Page 157: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

154

Chapter 8: Math 1572 Spring 2016

Section 8.1: Quizzes

Page 158: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 19(01-15-16)

Name:

Directions: Show all of your work and justify all of your answers.

For each of the following, determine whether or not the function is 1–1. If so, find theinverse.

(1) 1. f(x) = x3 − x

Since f(0) = f(-1) = f(1) = 0, f is not 1–1.

(1) a. f(x) = 2√x− 1

The function f is 1–1.

Proof : Suppose that x1 , x2 ∈ R such that f(x1) = f(x2). Then

f(x1) = f(x2)

2√x1 − 1 = 2

√x2 − 1

√x

1− 1 =

√x

2− 1

x1 − 1 = x2 − 1

x1= x

2

as desired.

y = 2√x− 1

x = 2√y − 1

x2=

√y − 1

y − 1 = x2

4

y = x2

4+ 1

f-1(x) = x2

4+ 1

Page 159: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 20(01-20-16)

Name:

Directions: Show all of your work and justify all of your answers.

(1) b. Give the domain and range of the following function.

g(x) =1

1 + ex

D: (-∞,∞)

R: (0, 1)

(1) c. Solve for x.

log2(3x+ 1) = 4

24 = (3x+ 1)

16 = (3x+ 1)

3x = 15

x = 5

d. Answer the following as true or false (write the entire word) and justify your answer.

(1) i. ln 42

= ln 2

True.

ln 42

= 12ln 4

= ln 412

= ln 2

(1) ii. ln 162

= ln 8

False.

ln 162

= 12ln 16

= ln 1612

= ln 4

6= ln 8

Page 160: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 21(01-25-16)

Name:

Directions: Show all of your work and justify all of your answers.

e. Calculate.

(1) i. csc-1 2 = π6

(1) ii. sin (tan-1 3)

y

x= 3

y = 3x

x2 + y2 = 1

x2 + 9x2 = 1

10x2 = 1

x2 = 110

x = 1√10

y = 3√10

sin (tan-1 3)

= 3√10

(1) f. Differentiate.

f(x) = e√

x

f(x) = ex12

f ′(x) = ex12 · 1

2x

- 12

f ′(x) =e√

x

2√x

Page 161: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 22(01-27-16)

Name:

Directions: Show all of your work and justify all of your answers.

g. Differentiate.

(1) i. f(x) = ln(x5 + 3x)

f ′(x) =5x4 + 3

x5 + 3x

h. g(x) = ln | sin x|

g′(x) =cos x

sin x= cot x

Differentiate.

(1) i. y = xx2

y = xx2

ln y = ln xx2

ln y = x2 ln x

y′

y= 2x ln x+ x2

x

y′

y= 2x ln x+ x

y′ = y(2x lnx+ x)

y′ = xx2

(2x ln x+ x)

y′ = xx2+1

(2 lnx+ 1)

Page 162: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 23(02-02-16)

Name:

Directions: Show all of your work and justify all of your answers.

(1) j. Differentiate the following.

f(x) = tan-1(sin x)

f ′(x) =cos x

1 + sin2 x

k. Calculate the following limits.

(1) i. limx→∞

ln x

xL′H= lim

x→∞

1x

1= 0

(1) ii. limx→∞

x100

ex

L′H= lim

x→∞

100x99

ex

L′H= lim

x→∞

9900x98

ex

...

L′H= lim

x→∞

100!

ex

= 0

Page 163: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 24(02-10-16)

Name:

Directions: Show all of your work and justify all of your answers.

l. Integrate.

(1) i.

∫ π

4

0

tan100 θ sec2 θ dθ

= 1101

tan101 θ

π

4

0

= 1101

(1) ii.

sin2 x

cos xdx

=

1− cos2 x

cosxdx

=

∫(

1

cos x− cos2 x

cos x

)

dx

=

(

sec x− cosx)

dx

= ln | sec x+ tan x| − sin x+ C

Page 164: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 25(02-17-16)

Name:

Directions: Show all of your work and justify all of your answers.

(2) m. Evaluate the following integral.

1

(x2 + 1)32

dx

1

x

θ

√ x2 + 1

x = tan θ

dx = sec2 θdθ

1

(x2 + 1)32

dx

=

cos3 θ · sec2 θ dθ

=

cos θ dθ

= sin θ + C

=x√

x2 + 1+ C

Page 165: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 26(02-19-16)

Name:

Directions: Show all of your work and justify all of your answers.

(2) n. Evaluate the following integral.

x2 + 2x+ 6

(x+ 1)(x2 + 4)dx

A

(x+ 1)+

Bx+ C

x2 + 4=

x2 + 2x+ 6

(x+ 1)(x2 + 4)dx

A(x2 + 4) + (Bx+ C)(x+ 1) = x2 + 2x+ 6

Let x = -1.

5A = 5

A = 1

From the x2 term:

A +B = 1

B = 0

From the x term:

B + C = 2

C = 2

x2 + 2x+ 6

(x+ 1)(x2 + 4)dx =

∫(

1

(x+ 1)+

2

x2 + 4

)

dx = ln |x+ 1|+ tan-1 (x

2

)

+ C

Page 166: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 27(02-26-16)

Name:

Directions: Show all of your work and justify all of your answers.

(4) o. Integrate.

i.

sin-1 xdx

Use integration by parts letting u = sin-1 x, du = dx√1−x2 , v = x, and dv = dx.

sin-1 xdx = x sin-1−∫

x√1− x2

dx = x sin-1+√1− x2 + C

ii.

3x2 + x+ 1

(x− 2)(x2 + 1)dx =

∫(

3

x− 2+

1

x2 + 1

)

dx = 3 ln |x− 2|+ tan-1x+ C

iii.

1

x√x2 − 1

dx = sec-1x+ C

iv.

x2√x− 1dx

Let u =√x− 1.

x = u2 + 1

dx = 2udu∫

x2√x− 1dx =

2u2 (u2 + 1)2du =

2u6 + 4u4 + 2u2 du = 27u7 + 4

5u5 + 2

3u3 + C

= 27(x− 1)3

√x− 1 + 4

5(x− 1)2

√x− 1 + 2

3(x− 1)

√x− 1 + C

Page 167: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 28(03-16-16)

Name:

Directions: Show all of your work and justify all of your answers.

(1) p. Let R be the region bounded by the curves y =√x, x = 1, and the x-axis. Find the

center of mass of R.

∫ 1

0

√xdx = 2

3x

32

1

0

= 23

x = 32

∫ 1

0

x√xdx = 3

2

(

25

√x5)

1

0

= 35

y = 32

∫ 1

0

12xdx = 3

8x2

1

0

= 38

(

35, 38

)

Page 168: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 29(03-22-16)

Name:

Directions: Show all of your work and justify all of your answers.

q. Find the solution of the differential equation that satisfies the given conditions.

(1) i. dy

dx= 6x2 + 1; y(1) = 4

dy

dx= 6x2 + 1

dy = (6x2 + 1) dx

dy =

(

6x2 + 1)

dx

y = 2x3 + x+ C

4 = 2 + 1 + C

C = 1

y = 2x3 + x+ 1

(1) ii.dy

dx=

x+ 2

xy2; y(1) = 3

dy

dx=

x+ 2

xy2

y2 dy =x+ 2

xdx

y2 dy =

x+ 2

xdx

y2 dy =

(

1 + 2x

)

dx

13y3 = x+ 2 ln |x|+ C

9 = 1 + 2 ln 1 + C

C = 8

13y3 = x+ 2 ln |x|+ 8

(1) r. A tank contains 1000 gallons of brine which contains .25 pounds of salt per gallon.Brine which contains .5 pounds of salt per gallon flows into the tank at a rate of 10 gallonsper minute. The solution is kept thoroughly mixed and drains from the tank at a rate of10 gallons per minute. Express the amount of salt in the tank as a function of time.

Let Q = Q(t) be the amount of salt in the tank at time t.

dQ

dt= 5− Q

100

dQ

dt= 500−Q

100

dQ

500−Q= dt

100

dQ

500−Q=

dt100

- ln |500−Q| = t100

+ C

Since Q(0) = 250, C = - ln 250.

- ln |500−Q| = t100

− ln 250

- ln(500−Q) = t100

− ln 250

ln(500−Q) = - t100

+ ln 250

500−Q = e- t100+ln 250

Page 169: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

166

Q = 500− e- t100+ln 250

Q = 500− 250e- t25

Page 170: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 30(03-25-16)

Name:

Directions: Show all of your work and justify all of your answers.

s. Determine whether each of the following sequences converges or diverges.

(1) i.

{

lnnn

n

}∞

n=1

limn→∞

lnnn

n

= limn→∞

n lnn

n

= limn→∞

lnn

= ∞

(1) ii.

{

lnn

en

}∞

n=1

limn→∞

lnn

en

= limx→∞

ln x

ex

L’H= lim

x→∞

1x

ex

= limx→∞

1

xex

= 0

Page 171: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 31(03-30-16)

Name:

Directions: Show all of your work and justify all of your answers.

t. For each of the following, determine whether the given series converges or diverges.

(1) i.

∞∑

n=1

1

n!

Note that for n ≥ 4, 1n!

≤ 1n2 . Since

∞∑

n=1

1n2 converges,

∞∑

n=1

1n!

converges by the Comparison

Test.

Note that for n ≥ 4, 1n!

≤ 12n. Since

∞∑

n=1

12n

converges,∞∑

n=1

1n!

converges by the Comparison

Test.

Since limn→∞

1(n+1)!

1n!

= limn→∞

n!(n+1)!

= limn→∞

1n+1

= 0,∞∑

n=1

1n!

converges by the Ratio Test.

(1) ii.∞∑

n=1

n!

nn

Note that n!nn = n(n−1)(n−2)···2·1

n·n·n·n···n·n = nn· n−1

n· n−2

n· · · 2

n· 1n≤ 2

n2 . Since∞∑

n=1

2n2 converges,

∞∑

n=1

n!nn

converges by the Comparison Test.

Since limn→∞

(n+1)!

(n+1)(n+1)

n!nn

= limn→∞

(n + 1)!nn

(n+ 1)(n+1)n!= lim

n→∞

(n + 1)n!nn

(n+ 1)(n+1)n!= lim

n→∞

nn

(n+ 1)n= lim

n→∞

( n

n + 1

)n

= 1e,

∞∑

n=1

n!nn converges by the Ratio Test.

Page 172: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 32(04-01-16)

Name:

Directions: Show all of your work and justify all of your answers.

u. For each of the following, determine whether the given series converges or diverges.

(1) i.

∞∑

n=0

(

n+ 1

n

)n

Since limn→∞

(

n+1n

)n= e, the series diverges by the divergence test.

(1) ii.∞∑

n=0

( n

n + 1

)n

Since limn→∞

(

nn+1

)n= 1

e, the series diverges by the divergence test.

Page 173: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 33

Name:

Directions: Show all of your work and justify all of your answers.

(3) 1. For each of the following, determine whether the series converges absolutely,converges conditionally, or diverges.

a.

∞∑

n=0

en

n!

Since limn→∞

en+1

(n+1)!· n!en

= limn→∞

en+1

= 0, the series∞∑

n=0

en

n!converges by the Ratio test.

b.∞∑

n=1

( n

n + 1

)n2

Since limn→∞

n

(

nn+1

)n2

= limn→∞

(

nn+1

)n= 1

e, the series converges by the Root Test.

c.∞∑

n=1

(-1)n

nn!

For n ≥ 2, 1nn! ≤ 1

2n. Since

∞∑

n=1

12n

is a convergent geometric series,∞∑

n=1

1nn! converges by the

Comparison Test. Therefore,∞∑

n=1

(-1)n

nn! is absolutely convergent. Also, since limn→∞

n

(-1)n

nn!

∣=

limn→∞

n

1nn! = lim

n→∞1

n(n−1)! = 0, the series is is absolutely convergent by the Root Test.

d.

∞∑

n=0

cosnπ

n+ 1= 1

1− 1

2+ 1

3− 1

4+ · · ·

The Alternating Harmonic Series converges by the Alternating Series Test but fails to beabsolutely convergent by the Integral Test.

e.∞∑

n=1

nn

en

This series diverges by the Root Test since limn→∞

n

nn

en= lim

n→∞ne= ∞.

Page 174: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

171

f.∞∑

n=1

1

(lnn)n

Since lnn ≥ 2 for all n ≥ 8 > e2, 1(lnn)n

≤ 12n

for all n ≥ 8. Hence,∞∑

n=1

1(lnn)n

converges by

the Comparison Test since∞∑

n=1

12n

is a convergent geometric series. Also, since limn→∞

n

1(lnn)n

= limn→∞

1lnn

= 0, the series converges by the Root Test.

g.∞∑

n=0

( ∞∑

k=0

1

2n+1 · 2k

)

∞∑

n=0

( ∞∑

k=0

1

2n+1 ·2k

)

=∞∑

n=0

(

1

2n+1

∞∑

k=0

1

2k

)

=∞∑

n=0

2

2n+1 =∞∑

n=0

12n

= 2

h.

∞∑

n=1

(

n2 + 1

n3

)n

Since limn→∞

n

(

n2+1n3

)n= lim

n→∞n2+1n3 = 0,

∞∑

n=1

(

n2+1n3

)nconverges by the Root Test.

i.∞∑

n=1

ln

(

n+ 1

n

)

Since limn→∞

ln n+1n

1n

= limx→∞

ln x+1x

1x

L′H= lim

x→∞

xx+1

· x−(x+1)x2

- 1x2

= limx→∞

x

x+ 1= 1 and the series

∞∑

n=1

1n

diverges, the series∞∑

n=1

ln(

n+1n

)

diverges by the Limit Comparison Test.

j.∞∑

n=1

n

n + 1

n

For all n ∈ N, n

n+1n

≥ 1. So limn→∞

n

n+1n

6= 0 which implies that the series diverges by the

Divergence Test.

k.∞∑

n=1

n!

nn

For n ≥ 3, n!nn = 1·2·3···n

n·n·n···n ≤ 2n2 . Since

∞∑

n=1

1n2 is a convergent p-series,

∞∑

n=1

n!nn converges by the

Comparison Test.

Page 175: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

172

l.∞∑

n=1

esinn

n2

Since esinn

n2 ≤ 1n2 for all n ∈ N and

∞∑

n=1

1n2 is a convergent p-series,

∞∑

n=1

esinn

n2 converges by the

Comparison Test.

Page 176: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 34(04-15-16)

Name:

Directions: Show all of your work and justify all of your answers.

1. For each of the following power series, find the interval of convergence and radius ofconvergence.

(1) a.∞∑

n=0

n!xn

en

Since limn→∞

(n+ 1)!xn+1

en+1· en

n!xn

= limn→∞

(n+ 1)|xn|e

= ∞ for all x 6= 0, the interval of con-

vergence is {0} and the radius of convergence is 0.

(1) b.

∞∑

n=1

(-1)n(x− 2)n

n

Since

∞∑

n=1

(-1)n

nconverges and

∞∑

n=1

1

ndiverges, the interval of convergence must be (1, 3]

and so the radius of convergence is 1.

Page 177: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 35(04-20-16)

Name:

Directions: Show all of your work and justify all of your answers.

(1) 1. Express f(x) = ln(1− x) as a power series.

f ′(x) = -11−x

= -∞∑

n=0

xn

f(x) = -∞∑

n=0

1n+1

xn+1 = -∞∑

n=1

1nxn

(1) 2. What function is represented by the power series

∞∑

n=1

nxn−1. Hint: Calculate

[ ∞∑

n=1

nxn−1

]

dx.

Let f(x) =∞∑

n=1

nxn−1.

f(x)dx =

∫[ ∞∑

n=1

nxn−1

]

dx =∞∑

n=1

xn + C = 11−x

+ C

f(x) = 1(1−x)2

Page 178: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 36(04-29-16)

Name:

Directions: Show all of your work and justify all of your answers.

1. Let C be the plane curve defined by the parametric equations x = cos2 θ and y = sin3 θwhere -π

2≤ θ ≤ π

2. Also, let R be the region bounded by C and the y-axis.

a. Sketch C.

✲✛

1-1

1

-1

(1) b. Find the area of R.

x′ = -2 cos θ sin θ∣

∫ π

2

-π2

-2 cos θ sin θ sin3 θ dθ

= 4

∫ π

2

0

cos θ sin4 θ dθ

= 45sin5 θ

π

2

0

= 45

(1) c. Find the length of C.

x′ = -2 cos θ sin θ

y′ = 3 sin2 θ cos θ

∫ π

2

-π2

√4 cos2 θ sin2 θ + 9 sin4 θ cos2 θ dθ

= 2

∫ π

2

0

√4 cos2 θ sin2 θ + 9 sin4 θ cos2 θ dθ

= 2

∫ π

2

0

cos θ sin θ√4 + 9 sin2 θ dθ

= 227

(

4 + 9 sin2 θ)3

π

2

0

= 227(13

√13− 8)

Page 179: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

176

2. Let R be the region inside the cardioid r = 1 + cos θ and outside the circle r = 1.

a. Sketch the cardioid and the circle.

✲✛

-1-2-3 1 2 3

-1

-2

-3

1

2

3

(1) b. Find the area of R.

12

∫ π

2

-π2

[

(1 + cos θ)2 − 1]

=

∫ π

2

0

[

(1 + cos θ)2 − 1]

=

∫ π

2

0

(

cos2 θ + 2 cos θ)

=

∫ π

2

0

[

12(1 + cos 2θ) + 2 cos θ

]

=

∫ π

2

0

(

12+ 1

2cos 2θ + 2 cos θ

)

=(

12θ + 1

4sin 2θ + 2 sin θ

)

π

2

0

= π4+ 2

(1) c. Find the length of the boundary of R.

Note 1: Part of the boundary lies on thecardioid and part of the boundary lies onthe circle.

r = 1 + cos θ

r′ = - sin θ

∫ π

2

-π2

(1 + cos θ)2 + sin2 θ dθ + π

= 2

∫ π

2

0

(1 + cos θ)2 + sin2 θ dθ + π

= 2

∫ π

2

0

√1 + 2 cos θ + cos2 θ + sin2 θ dθ + π

= 2

∫ π

2

0

√2 + 2 cos θ dθ + π

= 2

∫ π

2

0

4 cos2(

θ2

)

dθ + π

= 2

∫ π

2

0

2 cos(

θ2

)

dθ + π

= 8 sin(

θ2

)

π

2

0

= 4√2 + π

Section 8.2: Exam 1

Exam 1 Math 1572 Spring 2016

Page 180: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

177

(10) 3. For the function below, find the inverse. You may assume without proof that thefunction is 1–1.

f(x) =√x+ 1 + 3

x =√y + 1 + 3

x− 3 =√y + 1

(x− 3)2 = y + 1

y = (x− 3)2 − 1

f-1(x) = (x− 3)2 − 1

4. Calculate each of the following.

(10) a. sin-1

√32

= π3

sin π3=

√32

(10) b. tan(

sin-1 3

7

)

Consider the unit circle.

y = 37

x2 + y2 = 1

x2 + 949

= 1

x2 = 4049

x =√407

tan(

sin-1 3

7

)

=37√407

= 3√40

= 32√10

5. Solve for x.

(10) a. ex+7

= 4

ln ex+7

= ln 4

x+ 7 = ln 4

x = ln 4− 7

(10) b. ln(x+ 1) = 3

x+ 1 = e3

x = e3 − 1

6. Differentiate each of the following.

(10) a. f(x) = sin (ex)

f ′(x) = ex cos (ex)

(10) b. g(x) = ln(x4 + x)

g′(x) =4x3 + 1

x4 + x

(10) c. h(x) = sec-1(x3)

h′(x) =3x2

x3√x6 − 1

=3

x√x6 − 1

(10) d. y =√x

x

ln y = ln√x

x

ln y = x ln√x

ln y = 12x ln x

ddx

ln y = ddx

(

12x lnx

)

Page 181: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

178

y′

y= 1

2

(

ln x+ x · 1x

)

y′ = 12y (lnx+ 1)

y′ = 12

√x

x(ln x+ 1)

(10) 7. Find the half-life of a radioactive substance that decays from 3 lb to 34lb in 6

years.

Q = Q0

(

12

)

t

λ

34= 3

(

12

)

14=(

12

)

(

12

)2=(

12

)

2 = 6λ

2λ = 6

λ = 3

Alternatively:

14=(

12

)

ln 14= ln

(

12

)

ln 14= 6

λln 1

2

λ ln 14= 6 ln 1

2

λ =6 ln 1

2

ln 14

= 3

8. Calculate the following limits.

(10) a. limx→1

ln x

x− 1L′H= lim

x→1

1x

1= 1

(10) b. limx→0

xe1x = lim

x→0

e1x

1x

L′H= lim

x→0

- 1x2 e

1x

- 1x2

= limx→0

e1x = ∞

9. Integrate.

(10) a.

∫ 1

0

xex dx

Use integration by parts letting u = x, du = dx, v = ex, and dv = ex dx.

∫ 1

0

xex dx = xex∣

1

0

−∫ 1

0

ex dx = xex∣

1

0

− ex∣

1

0

= e− 0− (e− 1) = 1

(10) b.

tan-1xdx

Use integration by parts letting u = tan-1 x, du = dxx2+1

, v = x, and dv = dx.

Page 182: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

179

tan-1 xdx = x tan-1 x −∫

x

x2 + 1dx = x tan-1 x− 1

2ln |x2 + 1|+ C

Section 8.3: Exam 2

Exam 2 Math 1572 Spring 2016

10. Integrate.

(10) a.

tan θ dθ = ln | sec θ|+ C

(10) b.

sec5 θ tan3 θ dθ

=

sec4 θ tan2 θ sec θ tan θ dθ

=

sec4 θ (sec2 θ − 1) sec θ tan θ dθ

=

(sec6 θ − sec4 θ) sec θ tan θ dθ

= 17sec7 θ − 1

5sec5 θ + C

(10) c.

∫ √4− x2 dx

√4− x2

x2

θ

x = 2 sin θ

dx = 2 cos θ dθ

∫ √4− x2 dx

=

(2 cos θ)(2 cos θ)dθ

=

4 cos2 θ dθ

= 2

(

1 + cos 2θ)

= 2θ + sin 2θ

= 2θ + 2 sin θ cos θ

= 2 sin-1 (x

2

)

+ 2 · x2·√4−x2

2+ C

= 2 sin-1 (x

2

)

+ x√4−x2

2+ C

(10) d.

2x2 − 5x+ 1

(x+ 1)(x− 1)2dx

Ax+1

+ Bx−1

+ C(x−1)2

= 2x2−5x+1(x+1)(x−1)2

A(x−1)2+B(x+1)(x−1)+C(x+1) = 2x2−5x+1

Let x = 1.

2C = -2

C = -1

Let x = -1.

4A = 8

A = 2

Ax2 +Bx2 = 2x2

A+B = 2

B = 0

2x2 − 5x+ 1

(x+ 1)(x− 1)2dx

=

(

2x+1

− 1(x−1)2

)

dx

= 2 ln |x+ 1|+ 1x−1

+ C

Page 183: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

180

(10) e.

x√x+ 1

dx

i.

Let u =√x+ 1.

x = u2 − 1

dx = 2udu

x√x+ 1

dx

=

u2 − 1

u· 2udu

=

(

2u2 − 2)

du

= 23u3 − 2u+ C

= 23

(x+ 1)3 − 2√x+ 1 + C

ii.

Let u = x+ 1.

x = u− 1

dx = du

x√x+ 1

dx

=

u− 1√u

du

=

(

u12 − u

- 12

)

du

= 23u

32 − 2u

12 + C

= 23

(x+ 1)3 − 2√x+ 1 + C

iii.

1

√x

√x+ 1

θ

√x = tan θ

x = tan2 θ

dx = 2 tan θ sec2 θdθ∫

x√x+ 1

dx

=

tan2 θ√tan2 θ + 1

· 2 tan θ sec2 θ dθ

=

tan2 θ√sec2 θ

· 2 tan θ sec2 θ dθ

=

2 tan2 θ tan θ sec θ dθ

= 2

(sec2 θ − 1) tan θ sec θ dθ

= 2

(

sec2 θ tan θ sec θ − tan θ sec θ)

= 2(

13sec3 θ − sec θ

)

+ C

= 2(

13

√x+ 1

3 −√x+ 1

)

+ C

= 23

(x+ 1)3 − 2√x+ 1 + C

iv.

Use integration by parts.

u = x

du = dx

v = 2√x+ 1

Page 184: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

181

dv = 1√x+1

dx

x√x+ 1

dx

= 2x√x+ 1−

2√x+ 1dx

= 2x√x+ 1− 4

3(x+ 1)

32+ C

= 23

(x+ 1)3 − 2√x+ 1 + C

v.

x√x+ 1

dx=

x+ 1− 1√x+ 1

dx=

∫(

x+ 1√x+ 1

− 1√x+ 1

)

dx=

∫(√

x+ 1− 1√x+ 1

)

dx

=

(

(x+ 1)12 − (x+ 1)

- 12

)

dx = 23(x+ 1)

32 − 2 (x+ 1)

12dx = 2

3

(x+ 1)3 − 2√x+ 1 + C

Page 185: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

182

11. Determine whether each of the following is convergent or divergent.

(10) a.

∫ ∞

1

x2

ex3 dx

limt→∞

∫ t

1

x2

ex3 dx = limt→∞

-13e-x

3

t

1

= limt→∞

(

-13e-t

3 − - 13e

)

= limt→∞

(

13e

− 1

3et3

)

= 13e

(10) b.

∫ ∞

1

1

x4 + ex + 1dx

Note that1

x4 + ex + 1≤ 1

x4. Since

∫ ∞

1

1

x4dx converges,

∫ ∞

1

1

x4 + ex + 1dx converges by

the Comparison Theorem for Improper Integrals.

(10) 12. Find the length of the following curve.

y = 23x

32 , 0 ≤ x ≤ 3

y′ = x12

(y′)2 + 1 =√x+ 1

∫ 3

0

√x+ 1dx = 2

3(x+ 1)

32

3

0

= 143

(10) 13. For the following, find the surface area of the solid obtained by rotating thegiven curve about the x-axis.

y = 13x3, 0 ≤ x ≤ 1

y′ = x2

2πy√

(y′)2 + 1 = 23πx3

√x4 + 1

∫ 1

0

23πx3

√x4 + 1dx = 1

9π(x4 + 1)

32

1

0

= 19π(

2√2− 1

)

Page 186: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

183

14. A barrel in the shape of a right circular cylinder has radius 1 ft and height 4 ft. Thebarrel is full of water. Recall that the density of water is 62.5 lb/ft3.

(10) a. If the barrel is sitting upright on its bottom, what is the is the hydrostatic forceacting on the bottom?

62.5× 4× π lb = 250π lb

(10) b. Suppose the barrel is laying on its side. Find the hydrostatic force acting on theend (formerly the bottom).

Partition the unit circle into n horizontal strips of height 2n.

The depth is represented by 1− x for -1 ≤ x ≤ 1.

The the length of a horizontal strip is represented by 2√1− x2.

The hydrostatic force on the end is given by the following.

limn→∞

n∑

i=1

62.5 ·(

1− 2in

)

· 2n· 2√

1−(

2in

)2

= 125

∫ 1

-1

(1− x)√1− x2 dx

= 125

∫ 1

-1

(√1− x2 − x

√1− x2

)

dx

= 125

[∫ 1

-1

√1− x2 dx−

∫ 1

-1

x√1− x2 dx

]

= 125π2

(See the note below.)

Note 2: The integral

∫ 1

-1

√1− x2 dx can be evaluated using trigonometric substitution and

∫ 1

-1

x√1− x2 dx can be evaluated using substitution. Alternatively, note that

∫ 1

-1

√1− x2 dx

is the area of the upper half of the unit circle which is π2and that f(x) = x

√1− x2dx is an

odd function which means that

∫ 1

-1

x√1− x2 dx = 0.

Section 8.4: Exam 3

Exam 3 Math 1572 Spring 2016

Page 187: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

184

(10) 15. Find the centroid of the region bounded by the curves y =√x, y = 0, and x =

4.

A =

∫ 4

0

√xdx = 2

3

√x3

4

0

= 163

x = 316

∫ 4

0

x√xdx = 3

16

∫ 4

0

√x3 dx = 3

1625·√x5

4

0

= 316

· 645= 12

5

y = 316

∫ 4

0

12(√x)

2dx = 3

16

∫ 4

0

12xdx = 3

16· 14x2

4

0

= 34

(

125, 34

)

(10) 16. Find the solution of the differential equation that satisfies the given conditions.

y2 dy

dx= 1

x; y(1) = 3

y2dy = dxx

y2 dy =

1xdx

13y3 = ln |x|+ C

y(1) = 3

C = 9

13y3 = ln |x|+ 9

y = 3√

3 ln |x|+ 27

(10) 17. A tank contains 100 gallons of brine which contains .1 pounds of salt per gallon.Pure water flows into the tank at a rate of 2 gallons per minute. The solution is keptthoroughly mixed and drains from the tank at a rate of 2 gallons per minute. Express theamount of salt in the tank as a function of time.

Let Q = Q(t) be the amount of salt in the tank at time t.

dQ

dt= -

Q

50

dQ

Q= -

dt

50

dQ

Q=

-dt

50

ln |Q| = - t50

+ C

Since Q(0) = 10, C = ln 10.

ln |Q| = t50

+ ln 10

Q = et50+ln 10

Q = 10e- t50

18. Determine whether each of the following sequences converges or diverges. If it converges,find the limit.

(10) a.{

ln(

n+1n

)}∞

n=1

Page 188: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

185

Since the function f(x) = ln x is continuous, limn→∞

ln(

n+1n

)

= ln(

limn→∞

(

n+1n

)

)

= ln 1 = 0.

Page 189: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

186

(10) b. {1, 0, 1, 0, 0, 1, 0, 0, 0, 1, . . .}

Since this sequence has a subsequence that converges to 0 and a subsequence that converges1, the sequence does not converge.

(10) 19. Give the sum of the following geometric series.

∞∑

n=0

53n = 5

1− 13

= 152

(10) 20. Is the following series absolutely convergent, conditionally convergent, or diver-gent?

∞∑

n=1

(-1)n1

lnn

Since limn→∞

1lnn

= 0, the series converges by the Alternating Series Test. Also, note that for

n ≥ 3, 1n≤ 1

lnn. Since

∞∑

n=1

1nis a divergent p-series,

∞∑

n=1

1lnn

diverges by the Comparison Test.

So the series is conditionally convergent.

21. For each of the following, determine whether the series converges or diverges.

(10) a.

∞∑

n=1

4n

n!

Since limn→∞

(

4n+1

(n+1)!· n!4n

)

= limn→∞

4n+1

= 0,∞∑

n=1

4n

n!converges by the Ratio Test.

(10) b.∞∑

n=1

lnn

n

Since 1n

≤ lnnn

for all n ≥ 3 and∞∑

n=1

1n

is a divergent p-series,∞∑

n=1

lnnn

diverges by the

Comparison Test. The Integral Test can also be used.

(10) c.

∞∑

n=1

en

2n=

∞∑

n=1

(e

2

)n

Since this series is a geometric series with r = e2> 1, the series diverges. The Ratio Test,

Root Test, Divergence Test, and the Integral Test can also be used.

Page 190: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

187

(10) d.∞∑

n=1

lnn

en

Since limn→∞

(

ln(n+1)en+1 · en

lnn

)

= limn→∞

(

ln(n+1)e lnn

)

= 1elimn→∞

(

ln(n+1)lnn

)

= 1elimx→∞

(

ln(x+1)lnx

) L’H= 1

elimn→∞

(

xx+1

)

= 1e

< 1,∞∑

n=1

lnnen

converges by the Ratio Test. Also, since lnnen

≤ nen

and∞∑

n=1

nen

converges by the Ratio

Test and the Root Test,∞∑

n=1

lnnen

converges by the Comparison Test.

(10) e.∞∑

n=1

n√2

Note that for all n ∈ N, 1 ≤ n√2. So lim

n→∞n√2 6= 0 (the limit is in fact 1). Hence, the series

diverges by the Divergence Test.

(10) f.

∞∑

n=1

n

n2 + 2n

Note that nn2+2n

≤ n2n

for all n ∈ N. Since limn→∞

(

n+1

2n+1 · 2n

n

)

= 12,

∞∑

n=1

n2n

converges by the

Ratio Test. So∞∑

n=1

nn2+2n

converges by the Comparison Test.

(10) g.∞∑

n=1

(

4

n

)n

Since limn→∞

n

(

4n

)n= lim

n→∞4n= 0,

∞∑

n=1

(

4n

)nconverges by the Root Test.

Section 8.5: Final Exam

Final Exam Math 1572 Spring 2016

Name:

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero.

22. Differentiate each of the following.

(10) a. g(x) = esinx (10) b. g(x) = tan-1(x2)

Page 191: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

188

(10) c. y = xx2(10) 23. Calculate the following limit.

limx→0

x

sin-1x

Page 192: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

189

24. Integrate.

(10) a.

x ln xdx (10) b.

x7

x8 + 1dx

(10) c.

tan2 θ dθ (10) d.

esinx

sec xdx

Page 193: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

190

(10) e.

1

x2 − 1dx (10) f.

∫ 1

0

√1− x2 dx

(10) 25. Find the centroid of the region bounded by the curves y =√x, y = 0, and x =

1.

Page 194: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

191

(10) 26. Find the solution of the differential equation that satisfies the given conditions.

y2 dy

dx= 1

x; y(1) = 1

(10) 27. A tank contains 100 gallons of brine which contains 0.10 pounds of salt pergallon. Pure water flows into the tank at a rate of 4 gallons per minute. The solution iskept thoroughly mixed and drains from the tank at a rate of 4 gallons per minute. Expressthe amount of salt in the tank as a function of time.

Page 195: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

192

(10) 28. Find the interval of convergence and radius of convergence of the following powerseries.

∞∑

n=1

(-1)n(x− 4)n

n

(10) 29. Let f(x) = ln x. Find the Taylor series of f centered at 1. What is the radiusof convergence?

Page 196: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

193

30. (10) a. Given that ex =∞∑

n=0

xn

n!, prove that d

dxex = ex.

(10) b. Find the sum of the series∞∑

n=0

(√2)

n

n!.

(10) 31. Let C be the plane curve with parametric equations x = cos t and y = sin t.Sketch C and find the equation of the line that is tangent to C at the point where t = π

6.

✲✛

1-1

1

-1

Page 197: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

194

(10) 32. Let C be the curve with polar equation r = 3 cos 2θ, 0 ≤ θ ≤ 2π. Sketch C andfind the area of the region it encloses.

✲✛

-1-2-3 1 2 3

-1

-2

-3

1

2

3

(10) 33. Let C be the curve with polar equation r = 2 sin θ, 0 ≤ θ ≤ π. Sketch C and findits length.

✲✛

-1-2-3 1 2 3

-1

-2

-3

1

2

3

Page 198: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

195

Chapter 9: Spring 2018

Section 9.1: Quizzes

Page 199: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 3701-12-18

Name:

Directions: Show all of your work and justify all of your answers.

1. Let f(x) = 4 3√x+ 1.

(1) a. Show that f is 1–1.

Proof : Suppose that x1 , x2 ∈ R such that f (x1) = f (x2). Then

f (x1) = f (x

2)

4 3√x1 + 1 = 4 3

√x2 + 1

4 3√x1 = 4 3

√x2

3√x1 = 3

√x2

(

3√x

1

)3=(

3√x

2

)3

x1 = x2 .

Therefore, f is 1–1.

(1) b. Find f-1.

y = 4 3√x+ 1

x = 4 3√y + 1

4 3√y = x− 1

3√y = x−1

4

y =(

x−14

)3

(1) 2. Suppose that g is an invertible differentiable function such that g′(x) = x4 +x2 +1

and g(2) = 10. Find [g-1]′(10).

[g-1]′(10) = 1

g′[g-1 (10)]= 1

g′(2)= 1

21

Page 200: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 3801-17-18

Name:

Directions: Show all of your work and justify all of your answers.

1. Calculate and simplify each of the following.

(1) a. tan(

sin-1 1

5

)

Let θ = sin-1 1

5.

✲✛

15

θ

(

x, 15

)

x

y = 15

x2 + y2 = 1

x2 + 125

= 1

x = 2√6

5

tan θ = y

x= 1

2√6

(1) b. sin(

tan-1 1

5

)

Let θ = tan-1 1

5.

✲✛

y

θ

(x, y)

x

tan θ = y

x

15= y

x

x = 5y

x2 + y2 = 1

25y2 + y2 = 1

y = 1√26

sin θ = y = 1√26

(1) 2. Differentiate.

f(x) = tan-1 (√

x+ 1)

f ′(x) = 1(√x+1)2+1

· 12(x+1)

- 12 = 12(x+2)

√x+1

Page 201: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

198

(1) 3. Integrate.∫

x√1− x4

dx = 12sin

-1

x2 + C

Page 202: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 3901-22-18

Name:

Directions: Show all of your work and justify all of your answers.

1. Differentiate.

(1) a. f(x) = ln√x+ 1

f(x) = 12ln(x+ 1)

f ′(x) = 12(x+1)

(1) b. g(x) = sin ex2

g′(x) = 2xex2cos ex

2

2. Integrate.

(1) a.

x2

x3 + 1dx = 1

3ln |x3 + 1|+ C

(1) b.

e2x + 1

exdx =

ex + e-x dx = ex − e-x + C

Page 203: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 4001-24-18

Name:

Directions: Show all of your work and justify all of your answers.

Differentiate.

(1) 1. y = x√

x

ln y = ln x√

x

ln y =√x ln x

y′

y= 1

2x

- 12 ln x+√x · 1

x

y′

y= lnx

2√x+ 1√

x

y′ = y(

lnx+22√x

)

y′ = x√

x

(

lnx+22√x

)

(1) 2. A bacteria culture starts with 100 bacteria and grows at a rate proportional to itssize. After 5 hours the culture contains 400 bacteria. Express the number of bacteria in theculture as a function of time.

P (t) = 100ert

400 = 100e5r

4 = e5r

5r = ln 4

r = 15ln 4

P (t) = 100et ln 45 = 100 · 4

t5

(1) 3. Calculate the following limit.

limx→∞

ex

ln x

L′H= lim

x→∞

ex

1x

= limx→∞

xex

= ∞

Page 204: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 4102-09-18

Name:

Directions: Show all of your work and justify all of your answers.

1. Determine whether each of the following sequences converges or diverges.

(1) a.

{

n2

en

}∞

n=1

limn→∞

n2

ex

L′H= lim

n→∞

2n

ex

L′H= lim

n→∞

2

ex

= 0

(1) b.

{

n!

nn

}∞

n=1

limn→∞

n!

nn

= limn→∞

n(n− 1)(n− 2) · · ·2 · 1n · n · n · · ·n · n

limn→∞

(

n

n· (n− 1)

n· (n− 2)

n· · · 2

n· 1n

)

≤ limn→∞

1

n

= 0

2. Integrate.

(1) a.

tan3 x sec2 xdx = 14tan4 x+ C

(1) b.

tan2 xdx =

(

sec2 x− 1)

dx = tanx− x+ C

Page 205: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 4202-14-18

Name:

Directions: Show all of your work and justify all of your answers.

1. Integrate.

(1) a.

x2 + x+ 2

(x+ 1)(x2 + 1)dx

Solution 1:

Use partial fraction decomposition.

x2 + x+ 2

(x+ 1)(x2 + 1)=

A

x+ 1+

Bx+ C

x2 + 1

x2+x+2 = A(x2+1)+ (Bx+C)(x+1)

x2+x+2 = Ax2+Bx2+Bx+Cx+A+C

Comparing coefficients yields:

A + B = 1B + C = 1A + C = 2

Let x = -1.

Then we have

2A = 2

A = 1

which implies that

B = 0

and

C = 1.

x2 + x+ 2

(x+ 1)(x2 + 1)dx

=

∫(

1

x+ 1+

1

x2 + 1

)

dx

= ln |x+ 1|+ tan-1x+ C

Solution 2:

x2 + x+ 2

(x+ 1)(x2 + 1)dx

=

∫(

x2 + 1

(x+ 1)(x2 + 1)+

x+ 1

(x+ 1)(x2 + 1)

)

dx

=

∫(

1

x+ 1+

1

x2 + 1

)

dx

= ln |x+ 1|+ tan-1x+ C

(1) b.

x3 + 3x2 + 1

x3 + 1dx

=

∫(

x3 + 1

x3 + 1+

3x2

x3 + 1

)

dx

=

∫(

1 +3x2

x3 + 1

)

dx

= x+ ln |x3 + 1|+ C

Page 206: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 43

Name:

Directions: Show all of your work and justify all of your answers.

(1) 1. Integrate.

∫ 3

0

x√x+ 1dx

Use substitution.

u =√x+ 1

x+ 1 = u2

x = u2 − 1

dx = 2udu

∫ 3

0

x√x+ 1dx

=

∫ 2

1

2u2(u2 − 1)du

=

∫ 2

1

(

2u4 − 2u2)

du

=(

25u5 − 2

3u3)

2

1

= 645− 16

3−(

25− 2

3

)

= 11615

(1) 2. Determine whether the following improper integral is convergent or divergent.

∫ ∞

1

xex2dx

Divergent.

∫ ∞

1

xex2dx = lim

t→∞

∫ t

1

xex2dx = lim

t→∞12ex

2

t

1

= limt→∞

12

(

et2 − e

)

= ∞

∫ ∞

1

xe-x2dx

Convergent.

∫ ∞

1

xe-x2dx = lim

t→∞

∫ t

1

xe-x2dx = lim

t→∞-12e-x

2

t

1

= limt→∞

-12

(

e-t2 − e-1

)

= limt→∞

-12

(

1

et2 − 1

e

)

= 12e

Page 207: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 44

Name:

Directions: Show all of your work and justify all of your answers.

1. For each of the following, determine whether the series is absolutely convergent, condi-tionally convergent, or divergent.

(1) a.

∞∑

n=1

(-1)nlnn

n

Since limn→∞

lnnn

L′H= lim

n→∞1n= 0,

∞∑

n=1

(-1)nlnn

nconverges the Alternating Series Test.

Since

∫ ∞

1

ln x

xdx = lim

t→∞

∫ t

1

ln x

xdx = lim

t→∞12(ln x)2

t

1

= limt→∞

12(ln t)2 = ∞,

∞∑

n=1

lnn

ndiverges

by the Integral Test.

Therefore,

∞∑

n=1

(-1)nlnn

nis conditionally convergent.

(1) b.∞∑

n=1

en

n!

Since limn→∞

en+1

(n+1)!

en

n!

= limn→∞

en+1

(n+1)!· n!en

= limn→∞

en+1

= 0,

∞∑

n=1

en

n!converges absolutely by the Ratio

Test.

(1) c.

∞∑

n=1

( n

n+ 1

)n

Since limn→∞

n

( n

n + 1

)n

= limn→∞

n

n+ 1= 1, the Root Test is inconclusive. However, since

limn→∞

( n

n+ 1

)n

= 1e,

∞∑

n=1

( n

n + 1

)n

diverges by the Divergence Test.

d.∞∑

n=1

( n

n + 1

)n2

Page 208: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

205

Since limn→∞

n

( n

n + 1

)n2

= limn→∞

( n

n+ 1

)n

= 1e,

∞∑

n=1

( n

n+ 1

)n2

converges absolutely by the

Root Test.

Page 209: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

206

2. Recall that the weight density of water is 62.5 lb/ft3. An aquarium is in the shape ofa rectangular prism. Its length is 2 ft, its width is 1 ft, and its height is 1 ft. Find thehydrostatic force on each of the following.

a. the bottom

F = δdA = 62.5× 1× 2 = 125

125 lb

b. an end

Partition the end of the tank into n horizontal strips of height 1n.

The depth is represented by x for 0 ≤ x ≤ 1.

The the length of a horizontal strip is 1.

The hydrostatic force on the end is given by the following.

limn→∞

n∑

i=1

62.5 · in· 1n· 1 = 62.5

∫ 1

0

xdx = 62.5(

12x2)

1

0

= 31.25

31.25 lb

c. a side

Partition the side of the tank into n horizontal strips of height 1n.

The depth is represented by x for 0 ≤ x ≤ 1.

The the length of a horizontal strip is 2.

The hydrostatic force on the end is given by the following.

limn→∞

n∑

i=1

62.5 · in· 1n· 2 = 125

∫ 1

0

xdx = 125(

12x2)

1

0

= 62.5

62.5 lb

Also, note that since the area of a side is twice the area of an end, the hydrostatic force ona side is twice the hydrostatic force on an end.

Page 210: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 45

Name:

Directions: Show all of your work and justify all of your answers.

(1) 1. Find the radius of convergence and the interval of convergence of the following.

∞∑

n=1

(x− 2)n

n

Since∞∑

n=1

(-1)n

nconverges and

∞∑

n=1

1

ndiverges, the interval of convergence must be [1, 3).

Therefore, the radius of convergence is 1. Alternatively, the ratio test can be used.

2. Find the solution of the differential equation that satisfies the given conditions.

dy

dx= 3y, y(0) = 1, y > 0

dy

dx= 3y

1ydy = 3dx

1ydy =

3dx

ln y = 3x+ C

y(0) = 1

ln 1 = 0 + C

C = 0

ln y = 3x

y = e3x

Page 211: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 46

Name:

Directions: Show all of your work and justify all of your answers.

(2) 1. Give the interval of convergence and the radius of convergence of

∞∑

n=0

x2n

(2n)!.

Since limn→∞

x2(n+1)

[2(n+ 1)]!· (2n)!x2n

= limn→∞

x2

(2n+ 2)(2n+ 1)

= 0, the interval of convergence is

R and the radius of convergence is ∞.

(1) 2. Let f(x) =∞∑

n=0

x2n

(2n)!. Find f ′(x).

f ′(x) =

∞∑

n=1

x2n−1

(2n− 1)!

3. For each of the following, determine whether the series is absolutely convergent, condi-tionally convergent, or divergent.

a.∞∑

n=0

(-e)n

4n

This is a geometric series with r = -e4. So it converges to

1

1 + e4

= 44+e

. Also, note that

∞∑

n=0

en

4n=

1

1− e4

= 44−e

. So the series is absolutely convergent.

b.∞∑

n=1

( n

n + 1

)n

Since limn→∞

( n

n + 1

)n

= 1e6= 0, the series diverges by the Divergence Test.

c.∞∑

n=1

sin(

nπ2

)

√n

Page 212: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

209

Since∞∑

n=1

sin(

nπ2

)

√n

=∞∑

n=0

(-1)n√2n+ 1

and limn→∞

1√2n+ 1

= 0, the series converges by the

Alternating Series Test. Since

∫ ∞

1

1√2x+ 1

dx = limt→∞

∫ t

1

1√2x+ 1

dx = limt→∞

√2x+ 1

t

1

=

limt→∞

(√2t+ 1−

√3)

= ∞, the series is not absolutely convergent. Therefore, the series is

conditionally convergent.

Page 213: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 47

Name:

Directions: Show all of your work and justify all of your answers.

(1) 1. Find the radius of convergence and the interval of convergence of the following.

∞∑

n=1

(x+ 3)n

n

Since∞∑

n=1

(-1)n

nconverges and

∞∑

n=1

1

ndiverges, the interval of convergence must be [-4, -2).

Therefore, the radius of convergence is 1. Alternatively, the ratio test can be used.

2. Sketch the plane curve parameterized by the following.

x = cos t, y = sin2 t, 0 ≤ t ≤ π

x2 + y = 1

y = 1− x2

✲✛

14

12

34

1- 14

- 12

- 34

-1

14

12

34

1

- 14

- 12

- 34

-1

Page 214: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 48

Name:

Directions: Show all of your work and justify all of your answers.

(2) 1. Let C be the plane curve defined by the parametric equations x = ln t + t andy = t2 + t. Find the equation of the line that is tangent to C at the point (1, 2).

dxdt

= 1t+ 1

dy

dt= 2t+ 1

dy

dx=

2t+ 11t+ 1

The point (1, 2) corresponds to t = 1.

When t = 1, dy

dx= 3

2.

y − 2 = 32(x− 1)

Page 215: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 49

Name:

Directions: Show all of your work and justify all of your answers.

1. Let C be the plane curve defined by the parametric equations x = 23t3 and y = t2 +1 for

0 ≤ t ≤ 2√2.

x = 23t3

dx

dt= 2t2

y = t2 + 1

dy

dt= 2t

dy

dx=

dy

dtdxdt

=2t

2t2=

1

t

(

dx

dt

)2

= 4t4

(

dy

dt

)2

= 4t2

(

dx

dt

)2

+

(

dy

dt

)2

= 4t4 + 4t2

(

dx

dt

)2

+

(

dy

dt

)2

=√4t4 + 4t2

(

dx

dt

)2

+

(

dy

dt

)2

= 2t√t2 + 1

(1) a. Find the equation of the line that is tangent to C at the point where t =√3.

t =√3

x = 2√3

y = 4

dy

dx= 1√

3

y − 4 = 1√3(x− 2

√3)

(1) b. Find the length of C.

∫ 2√2

0

2t√t2 + 1dt = 2

3

(t2 + 1)3∣

2√2

0

= 18− 23= 52

3

(1) c. Find the surface area of the solid formed by rotating C about the x-axis.

∫ 2√2

0

(t2 + 1) · 2t√t2 + 1dt

= 2π

∫ 2√2

0

2t√

(t2 + 1)3 dt

= 2π(

25

(t2 + 1)5)

2√2

0

= 45π(√

(t2 + 1)5)

2√2

0

Page 216: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

213

= 45π(√

(t2 + 1)5)

2√2

0

= 45π(243− 1)

= 968π5

2. Consider the polar curve r = cos θ2+ 1 for 0 ≤ θ ≤ 4π.

a. Sketch the curve.

✲✛

b. Find the area of the region inside the large loop and outside the small loop.

2

[

12

∫ π

0

(

cos θ2+ 1)2

dθ − 12

∫ 2π

π

(

cos θ2+ 1)2

]

=

∫ π

0

(

cos θ2+ 1)2

dθ −∫ 2π

π

(

cos θ2+ 1)2

(

cos θ2+ 1)2

=

(

cos2 θ2+ 2 cos θ

2+ 1)

=

[

12(1 + cos θ) + 2 cos θ

2+ 1]

=

[

12cos θ + 2 cos θ

2+ 3

2

]

= 12sin θ + 4 sin θ

2+ 3

2θ + C

∫ π

0

(

cos θ2+ 1)2

dθ −∫ 2π

π

(

cos θ2+ 1)2

Page 217: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

214

=(

12sin θ + 4 sin θ

2+ 3

2θ)

π

0

−(

12sin θ + 4 sin θ

2+ 3

2θ)

π

=[(

0 + 4 + 3π2

)

− (0 + 0 + 0)]

−[

(0 + 0 + 3π)−(

0 + 4 + 3π2

)]

= 4 + 3π2− (3π

2− 4)

= 8

Page 218: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 50

Name:

Directions: Show all of your work and justify all of your answers.

1. Consider the following polar curve for 0 ≤ θ ≤ 2π.

r = cos θ + 1 r = sin θ + 1

(1) a. Sketch the curve.

r = cos θ + 1

✲✛

r = sin θ + 1

✲✛

(1) b. Find the equation of the line that is tangent to the curve at the point where θ = π4.

r = cos θ + 1

x = (cos θ + 1) cos θ = cos2 θ + cos θ

y = (cos θ + 1) sin θ = cos θ sin θ + sin θ

dy

dx= - sin2 θ+cos2 θ+cos θ

-2 cos θ sin θ−sin θ

θ = π4

x =√2+12

y =√2+12

dy

dx=

√22

-√22− 1

= 1−√2

y −√2+12

= (1−√2)(

x−√2+12

)

r = sin θ + 1

x = (sin θ + 1) cos θ = cos θ sin θ + cos θ

y = (sin θ + 1) sin θ = sin2 θ + sin θ

dy

dx= 2 sin θ cos θ+cos θ

- sin2 θ+cos2 θ−sin θ

θ = π4

Page 219: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

216

x =√2+12

y =√2+12

dy

dx=

1 +√22

-√22

= -1−√2

y −√2+12

= (-1−√2)(

x−√2+12

)

(1) c. Give the integral that represents the area of the region enclosed by the curve. Donot evaluate the integral.

r = cos θ + 1

12

∫ 2π

0

(cos θ + 1)2 dθ

r = sin θ + 1

12

∫ 2π

0

(sin θ + 1)2 dθ

(1) d. Give the integral that represents the length of the curve. Do not evaluate theintegral.

r = cos θ + 1

drdθ

= - sin θ

∫ 2π

0

(cos θ + 1)2 + (- sin θ)2 dθ

r = sin θ + 1

drdθ

= cos θ

∫ 2π

0

(sin θ + 1)2 + (cos θ)2 dθ

Page 220: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

Quiz 51

Name:

Directions: Show all of your work and justify all of your answers.

1. Give the equation of the indicated conic section and sketch its graph.

(1) a. Parabola

Focus: (-4, 3)

Directrix: x = 0

Vertex: (-2, 3)

p = -2

(y − 3)2 = -8(x+ 2)

(1) b. Ellipse

Foci: (-2, 1) and (4, 1)

Vertices: (-4, 1) and (6, 1)

c = 3

a = 5

b = 4

Center: (1, 1)

(x−1)2

25+ (y−1)2

16= 1

(1) c. Hyperbola

Foci: (-2, 0) and (2, 0)

Vertices: (-1, 0) and (1, 0)

a = 1

c = 2

b =√3

x2 − y2

3= 1

Page 221: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

218

2. Consider the polar curve r = cos θ2+ 1 for 0 ≤ θ ≤ 4π.

a. Sketch the curve.

✲✛

b. Find the area of the region inside the large loop and outside the small loop.

2

[

12

∫ π

0

(

cos θ2+ 1)2

dθ − 12

∫ 2π

π

(

cos θ2+ 1)2

]

=

∫ π

0

(

cos θ2+ 1)2

dθ −∫ 2π

π

(

cos θ2+ 1)2

(

cos θ2+ 1)2

=

(

cos2 θ2+ 2 cos θ

2+ 1)

=

[

12(1 + cos θ) + 2 cos θ

2+ 1]

=

[

12cos θ + 2 cos θ

2+ 3

2

]

= 12sin θ + 4 sin θ

2+ 3

2θ + C

∫ π

0

(

cos θ2+ 1)2

dθ −∫ 2π

π

(

cos θ2+ 1)2

=(

12sin θ + 4 sin θ

2+ 3

2θ)

π

0

−(

12sin θ + 4 sin θ

2+ 3

2θ)

π

=[(

0 + 4 + 3π2

)

− (0 + 0 + 0)]

−[

(0 + 0 + 3π)−(

0 + 4 + 3π2

)]

Page 222: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

219

= 4 + 3π2− (3π

2− 4)

= 8

Total Points: 42

Section 9.2: Exam 1

Exam 1 Math 1572 Spring 2018

(10) 3. Let f(x) = 3√x5 + 5. Find f

-1.

y = 3√x5 + 5

x = 3√

y5 + 5

x3 = y5 + 5

y5 = x3 − 5

y = 5√x3 − 5

f-1(x) = 5

√x3 − 5.

(10) 4. Suppose that f is a differentiable and invertible function such that f(2) = 7 and

f ′(2) = 3. Find(

f-1)′(7).

(

f-1)′

(7) = 1

f ′[f -1 (7)]= 1

f ′(2)= 1

3

5. Calculate each of the following.

(10) a. sin(

sin-1 1

3

)

= 13

(10) b. sin-1 (

sin 5π2

)

= sin-1 (1

2

)

= π2

(10) c. tan(

cos-1 3

5

)

Let θ = cos-1 3

5.

3

45

θ

tan θ = 43

(10) 6. How long will it take 10 g of a substance with a half-life of 30 days to decay to 4g?

Q = 10(

12

)

t30

10(

12

)

t30

= 4

(

12

)

t30

= 25

ln

[

(

12

)

t30

]

= ln 25

t30ln 1

2= ln 2

5

t =30 ln 2

5

ln 12

Page 223: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

220

7. Differentiate.

(10) a. f(x) = esinx

f ′(x) = esinx · cosx

(10) b. f(x) = sin-1

ex

f ′(x) = ex√1−e2x

8. Calculate the following limits.

(10) a. limx→∞

ln x

xL′H= lim

x→∞

1x

1= 0

(10) b. limx→0

x ln x

= limx→0

lnx1x

L′H= lim

x→0

1x-1x2

= limx→∞

-x

= 0

9. Give a formula or rule for each of the following sequences.

(10) a. {-1, 4, -9, 16, -25, 36, . . .}

={

(-1)n

n2}∞

n=1

(10) b. {1, 3, 4, 7, 11, 18, 29, . . .}

x1 = 1

x2 = 3

For n ≥ 2,

xn+1 = x

n+ x

n−1 .

10. Integrate.

(10) a.

x3

x4 + 1dx = 1

4ln |x4 + 1|+ C (10) b.

tan-1x

x2 + 1dx = 1

2

(

tan-1x)2

+ C

(10) c.

tan-1xdx

Use integration by parts letting u = tan-1x, du = 1

x2+1dx, v = x, and dv = dx.

tan-1xdx = x tan

-1x−

xx2+1

dx = x tan-1x− 1

2ln |x2 + 1|+ C

Page 224: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

221

(10) d.

∫ 2

0

√4− x2 dx

√4− x2

x2

θ

x = 2 sin θ

dx = 2 cos θdθ

∫ 2

0

√4− x2 dx

=

∫ π

2

0

2 cos θ · 2 cos θ dθ

=

∫ π

2

0

4 cos2 θ dθ

=

∫ π

2

0

2(1 + 2 cos 2θ)dθ

= 2(

θ + sin 2θ)

π

2

0

= π

Page 225: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

222

Section 9.3: Exam 2

1. (10) a. Find A and B such thatA

x+

B

x+ 2=

2

x(x+ 2).

A

x+

B

x+ 2=

2

x(x+ 2)

A(x+ 2) +Bx = 2

Ax+Bx+ 2A = 2

2A = 2

A = 1

B = -1

(10) b. Use your answer from the first part to evaluate the following integral.

2

x(x+ 2)dx =

∫(

1

x− 1

(x+ 2)

)

dx = ln |x| − ln |x+ 2|+ C

(10) c. Use your answer from the first part to find the sum of the following series.

∞∑

n=1

2

n(n+ 2)=

∞∑

n=1

(

1

n− 1

(n + 2)

)

sn=

n∑

k=1

2

k(k + 2)=

n∑

k=1

(

1

k− 1

(k + 2)

)

= 11−1

3+1

2−1

4+1

3−1

5+1

4−1

6+· · ·+ 1

n−1− 1

n+1+ 1

n− 1

n+2

= 1 + 12− 1

n+1− 1

n+2

limn→∞

sn= lim

n→∞

(

1 + 12− 1

n+1− 1

n+2

)

= 32

2. Integrate.

(10) a.

sec3 x tan3 xdx=

sec2 x tan2 x sec x tanxdx=

sec2 x (sec2 x− 1) sec x tan xdx

=

(sec4 x− sec2 x) sec x tan xdx = 15sec5 x− 1

3sec3 x+ C

(10) b.

∫ 3

0

x√x+ 1

dx

Let u =√x+ 1. Then x = u2 − 1 and dx = 2udu.

∫ 3

0

x√x+ 1

dx =

∫ 2

1

u2 − 1

u· 2udu = 2

∫ 2

1

(

u2 − 1)

du = 2(

13u3 − u

)

2

1

= 2[(

83− 2)

−(

13− 1)]

= 83

(10) c.

∫ ∞

2

1

x ln xdx = lim

t→∞

∫ t

2

1

x ln xdx = lim

t→∞ln (ln x)

t

2

= limt→∞

[ln (ln t)− ln (ln 2)] = ∞

Page 226: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

223

3. All parts of this problem refer to the following sequence.

{

(-1)n 1n

}∞n=1

(10) a. Is the sequence bounded?

Yes. All terms of the sequence are in the interval[

-1, 12

]

.

(10) b. Is the sequence monotone?

No. Since the terms are alternating from negative to positive, the sequence is neitherincreasing nor decreasing.

(10) c. Does the sequence converge?

Yes. limn→∞

(-1)n 1n= 0

(10) 4. Find the length of the following curve.

y = 23x

32 ; 0 ≤ x ≤ 8

y′ = x12

(y′)2 + 1 =√x+ 1

∫ 8

0

√x+ 1dx = 2

3

(x+ 1)3∣

8

0

= 18− 23= 52

3

(10) 5. Let R be the region bounded by the x-axis, x = 1, and y = 2√x.

a. Find the surface area of the solid obtained by rotating R about the x-axis.

2πy√

(y′)2 + 1 = 4π√x√

1x+ 1 = 4π

√x√

x+1x

= 4π√x+ 1

∫ 1

0

4π√x+ 1dx = 8

3π√

(x+ 1)3∣

1

0

= 83π(

2√2− 1

)

Page 227: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

224

b. Find the center of mass (centroid) of R. y′ = 1√x

A =

∫ 1

0

2√xdx = 4

3x

32

1

0

= 43

x = 34

∫ 1

0

2x√xdx = 3

2

∫ 1

0

x32 dx = 3

5x

52

1

0

= 35

y = 34

∫ 1

0

12(2√x)

2dx = 3

2

∫ 1

0

xdx = 34x2

1

0

= 34

Centroid:(

35, 34

)

(10) 6. Find the solution of the differential equation that satisfies the given conditions.

dy

dx=

x

y√x+ 1

; y(0) = 4

dy

dx=

x

y√x+ 1

y dy =x√x+ 1

dx

y dy =

x√x+ 1

dx

First, evaluate the integral

x√x+ 1

dx.

Let u =√x+ 1. Then x = u2 − 1 and

dx = 2udu.

x√x+ 1

dx

=

u2 − 1

u· 2udu

= 2

(

u2 − 1)

du

= 2(

13u3 − u

)

+ C

= 2(

13

(x+ 1)3 −√x+ 1

)

+ C

= 23

(x+ 1)3 − 2√x+ 1 + C

y dy =

x√x+ 1

dx

12y2 = 2

3

(x+ 1)3 − 2√x+ 1 + C

Use the initial condiction y(0) = 4 tosolve for C.

8 = 23− 2 + C

C = 283

12y2 = 2

3

(x+ 1)3 − 2√x+ 1 + 28

3

(10) 7. A tank in the shape of a rectangular prism is filled with water. The base of thetank is 4 ft by 6 ft and the height is 2 ft. Recall that the weight density of water is 62.5lb/ft3. Find the hydrostatic force on one end of tank.

limn→∞

n∑

i=1

62.5 ·(

2in

)

· 2n· 4 = 250

∫ 2

0

xdx = 125x2

2

0

= 500

500 lb

Page 228: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

225

8. Determine whether each of the following series is convergent or divergent.

(10) a.

∞∑

n=0

(

1

π

)n

Convergent.

This is a geometric series with r = 1π. So the series converges to

1

1− 1π

= ππ−1

.

(10) b.

∞∑

n=1

9

1

n10

Convergent. Note that this is a p-series with p = 109

(10) c.

∞∑

n=2

1

n lnn

Divergent.

Use the integral test.

∫ ∞

2

1

x ln xdx = lim

t→∞

∫ t

2

1

x ln xdx = lim

t→∞ln (ln x)

t

2

= limt→∞

[ln (ln t)− ln (ln 2)] = ∞

Page 229: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

226

Section 9.4: Exam 3

Exam 3 Math 1572 Spring 2018

1. For each of the following, determine whether the given series converges or diverges.

(10) a. i.

∞∑

n=0

(e

2

)n

This is a geometric series with r = e2> 1. So the series diverges.

ii.∞∑

n=0

(

2

e

)n

This is a geometric series with r = e2. So the series converges to

1

1− e2

= 2e−2

.

(10) b. i.∞∑

n=1

n− 1

n + 1

Since limn→∞

n− 1

n+ 1= 1 6= 0, the series diverges by the Divergence Test.

ii.∞∑

n=2

n+ 1

n− 1

Since limn→∞

n+ 1

n− 1= 1 6= 0, the series diverges by the Divergence Test.

(10) c. i.∞∑

n=1

1

This is a p-series with p = π > 1. So the series converges.

ii.

∞∑

n=1

1

ne

This is a p-series with p = e > 1. So the series converges.

Page 230: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

227

(10) d. i.∞∑

n=1

( n

n+ 1

)n2

Since limn→∞

n

( n

n+ 1

)n2

= limn→∞

( n

n+ 1

)n

= 1e< 1, the series converges by the Root Test.

ii.

∞∑

n=1

( n

n + 1

)n

Since limn→∞

( n

n + 1

)n

= 1e6= 0, the series diverges by the Divergence Test.

(10) e. i.

∞∑

n=1

πn

(n + 1)!

Since limn→∞

[

πn+1

(n+ 2)!· (n+ 1)!

πn

]

= limn→∞

π

n+ 2= 0, the series converges by the Ratio Test.

ii.

∞∑

n=1

πn+1

n!

Since limn→∞

[

πn+2

(n+ 1)!· n!

πn+1

]

= limn→∞

π

n + 1= 0, the series converges by the Ratio Test.

(10) 2. Determine whether the given series is absolutely convergent, conditionally con-vergent, or divergent.

iii.

∞∑

n=2

(-1)n

n2 lnn

Since limn→∞

1

n2 lnn= 0, the series converges by the Alternating Series Test. Also, note that

1

n2 lnn≤ 1

n2for all n. Since

∞∑

n=1

1

n2p-series with p = 2, it converges. Hence,

∞∑

n=1

1

n2 lnn

converges by the Comparison Test. Therefore,∞∑

n=2

(-1)n

n2 lnnis absolutely convergent.

iv.∞∑

n=2

(-1)n

n lnn

Since limn→∞

1

n lnn= 0, the series converges by the Alternating Series Test.

Page 231: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

228

Since

∫ ∞

2

1

x lnxdx = lim

t→∞

∫ t

2

1

x ln xdx = lim

t→∞ln (ln x)

t

2

= limt→∞

[ln (ln t)− ln (ln 2)] = ∞,

∞∑

n=2

1

n lnndiverges by the Integral Test. Therefore,

∞∑

n=2

(-1)n

n lnnis conditionally convergent.

(10) 3. Let f(x) = x3 + x2 − x+ 1 [x3 − x2 + x+ 1]. Find the Taylor series of f centeredat 1. What is the radius of convergence?

a. f(x) = x3 + x2 − x+ 1

f ′(x) = 3x2 + 2x− 1

f ′′(x) = 6x+ 2

f ′′′(x) = 6

f (4)(x) = 0

∞∑

n=0

f(n)(1)n!

(x− 1)n

= 2 + 4(x− 1) + 82!(x− 1)2 + 6

3!(x− 1)3

= 2 + 4(x− 1) + 4(x− 1)2 + (x− 1)3

RoC: R

IoC: ∞

b. f(x) = x3 − x2 + x+ 1

f ′(x) = 3x2 − 2x+ 1

f ′′(x) = 6x− 2

f ′′′(x) = 6

f (4)(x) = 0

∞∑

n=0

f(n)(1)n!

(x− 1)n

= 2 + 2(x− 1) + 42!(x− 1)2 + 6

3!(x− 1)3

= 2 + 2(x− 1) + 2(x− 1)2 + (x− 1)3

RoC: R

IoC: ∞

4. Let g(x) = ex.

(10) a. Give the Maclaurin series for g.

g(n)(x) = ex

∞∑

n=0

g(n)(0)xn

n!=

∞∑

n=0

xn

n!

(10) b. Give the 4th-degree Taylor polynomial of g at 0.

T4(x) =4∑

n=0

xn

n!= 1 + x+ x2

2+ x3

3+ x4

24

Page 232: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

229

(10) c. Use your answer from the previous part to approximate 1e[√e]. Do not simplify

your answer.

i. 1e

T4(-1) = 1− x+ 12− 1

3+ 1

24

ii.√e

T4

(

12

)

= 1 + 12+ 1

8+ 1

24+ 1

384

(10) 5. Find the interval of convergence and radius of convergence of the following powerseries.

a.

∞∑

n=1

(x− 5)n

n!

Since limn→∞

[

(x− 5)n+1

(n+ 1)!· n!

(x− 5)n

]

= limn→∞

x− 5

n + 1= 0, the interval of convergence is R and

the radius of convergence is ∞.

b.

∞∑

n=1

(x− 5)n

n

Since

∞∑

n=1

(-1)n

nconverges and

∞∑

n=1

1

ndiverges, the interval of convergence must be [4, 6).

Therefore, the radius of convergence is 1. Alternatively, the ratio test can be used.

(10) 6. Evaluate the following indefinite integral as an infinite series.

a.

1

1− xdx =

( ∞∑

n=0

xn

)

dx =∞∑

n=0

xn+1

n+1+ C

b.

1

1− x2dx =

[ ∞∑

n=0

(x2)n

]

dx =

( ∞∑

n=0

x2n

)

dx =

∞∑

n=0

x2n+1

2n+1+ C

Section 9.5: Final Exam

Final Exam Math 1572 Spring 2018

Page 233: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

230

Name:

Directions: Show all of your work and justify all of your answers. An answer withoutjustification will receive a zero. The use of calculators, phones, electronic devices, or outsidesources will result in a score of 0 on the exam. Sign the attendance sheet.

(10) 7. Find the inverse of the following function.

f(x) = (x+ 7)3

(10) 8. Suppose that f is an invertible and differentiable function such that f(2) = 3 and f ′(2) = 15.

Find(

f-1)′(3).

Page 234: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

231

9. Differentiate each of the following.

(10) a. y = tan (ex) (10) b. y =√ln x

(10) 10. Calculate the following limit.

limx→∞

ln x

x+ tan-1x

(10) 11. Determine whether the following improper integral is convergent or divergent.

∫ ∞

1

1

ln x+ xdx

Page 235: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

232

12. Integrate.

(10) a.

x

x2 + 8x+ 15dx

(10) b.

x+ 4√x+ 5

dx

(10) c.

xex dx

Page 236: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

233

13. let R be the region bounded by the curves y = 6√x, y = 0, and x = 1.

(10) a. Find the area of R.

(10) b. Find the centroid of R.

(10) c. Find the surface area of the solid formed by revolving R about the x-axis.

Page 237: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

234

14. Recall that the weight density of water is 62.5 lb/ft3. An aquarium is in the shape ofa rectangular prism. Its length is 5 ft, its width is 2 ft, and its height is 1 ft. Find thehydrostatic force on each of the following.

(10) a. the bottom (10) b. a side

(10) 15. Find the limit of the sequence defined as follows. Hint: List several terms of thesequence.

x1= 9

For n > 1, xn+1 =

√x

n.

Page 238: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

235

16. Consider the polar curve r = 2 sin θ.

(10) a. Sketch the curve.

✲✛

(10) b. Find the length of the curve.

Page 239: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

236

17. Determine whether each of the following series converges or diverges.

(10) a.

∞∑

n=1

3

1

n2

(10) b.∞∑

n=1

cos n+ 1

en

(10) 18. For the following power series, find the interval of convergence and radius ofconvergence.

∞∑

n=1

(x− 2)n

n

Page 240: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

237

(10) 19. Give the equation of the indicated conic section and sketch its graph.

Ellipse

Center: (4, 3)

Vertex: (4, 8)

Focus: (4, 6)✲✛

(10) 20. Identify the following conic. Find all vertices, foci, asymptotes, and directrices.

y2 − 12x− 6y = 39

(10) 21. Find the inverse of the following function.

f(x) = 3√x+ 7

(10) 22. Suppose that f is an invertible and differentiable function such that f(5) = 2 and f ′(5) = 3.

Find(

f-1)′(2).

23. Differentiate each of the following.

(10) a. y = sin-1

(ex) (10) b. y = xsinx

Page 241: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

238

(10) 24. A bacterial culture grows exponentially from 100 to 5000 in 2 hours. Find theexponential growth rate.

(10) 25. Calculate the following limit.

limx→∞

ln x

ln x+ x

(10) 26. Determine whether the following improper integral is convergent or divergent.

∫ ∞

1

1

ex2 dx

Page 242: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

239

27. Integrate.

(10) a.

1

x2 − 3x+ 2dx

(10) b.

x+ 1√x+ 3

dx

(10) c.

ln xdx

Page 243: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

240

28. let R be the region bounded by the curves y = 14√x, y = 0, and x = 1.

(10) a. Find the area of R.

(10) b. Find the centroid of R.

(10) c. Find the surface area of the solid formed by revolving R about the x-axis.

Page 244: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

241

29. Recall that the weight density of water is 62.5 lb/ft3. An aquarium is in the shape ofa rectangular prism. Its length is 4 ft, its width is 2 ft, and its height is 1 ft. Find thehydrostatic force on each of the following.

(10) a. the bottom (10) b. an end

(10) 30. Find the limit of the sequence defined as follows. Hint: List several terms of thesequence.

x1 =√5

For n > 1, xn+1 =

√5x

n.

Page 245: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

242

31. Consider the polar curve r = cos 2θ.

(10) a. Sketch the curve.

✲✛

(10) b. Find the area of the region enclosed by the curve.

Page 246: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

243

32. Determine whether each of the following sequences converges or diverges.

(10) a.

∞∑

n=1

1

n2

(10) b.

∞∑

n=1

n!

2n

(10) c.∞∑

n=1

(

1

n+ 1

)n

Page 247: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

244

(10) 33. Let f(x) = ln x. Find the Taylor series of f centered at 1. What is the radiusof convergence?

Page 248: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

245

Chapter 10: Spring 2019

Section 10.1: Exam 1

34. Define f : (-∞, -1) ∪ (-1,∞) → R by f(x) =1

x3 + 1.

(10) a. Show that f is 1–1.

Proof : Suppose that u, v ∈ (-∞, -1) ∪(-1,∞) such that f(u) = f(v). Then

f(u) = f(v)

1

u3 + 1=

1

v3 + 1

u3 + 1 = v3 + 1

u3 = v3

u = v.

(10) b. Find f-1.

y =1

x3 + 1

x3 + 1 = 1y

x3 = 1y− 1

x = 3

1y− 1

f-1(y) = 3

1y− 1

35. Define f : (-∞, -1) ∪ (-1,∞) → R by f(x) =1

3√x+ 1

.

(10) a. Show that f is 1–1.

Suppose that u, v ∈ (-∞, -1) ∪ (-1,∞)such that f(u) = f(v). Then

f(u) = f(v)

13√u+ 1

=1

3√v + 1

3√u+ 1 = 3

√v + 1

u+ 1 = v + 1

u = v.

(10) b. Find f-1.

y = 13√x+1

3√x+ 1 = 1

y

x+ 1 = 1y3

x = 1y3

− 1

f-1(y) = 1

y3− 1

Page 249: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

246

36. Define f : R → R by f(x) = x5 + x + 1. Given that f is invertible, find each of thefollowing.

(10) a. f-1(-1) = -1 (10) b. f

-1(1) = 0

(10) c. [f-1]′(-1)

f ′(x) = 5x4 + 1

[f-1]′(-1) = 1

f ′[f -1 (-1)]= 1

f ′(-1)= 1

6

(10) d. [f-1]′(1)

f ′(x) = 5x4 + 1

[f-1]′(1) = 1

f ′[f -1 (1)]= 1

f ′(0)= 1

37. Calculate each of the following.

(10) a. tan-1√3 = π

3

(10) b. sec-1√2 = π

4

(10) c. sec(

tan-1 43

)

Let θ = tan-1 43.

Then tan θ = 43.

3

45

θ

sec θ = 53

sec(

tan-1 43

)

= 53

38. Solve each of the following.

(10) a. 3x

= 25

ln 3x

= ln 25

x ln 3 = ln 25

x = ln 25ln 3

(Page 409: 35) (10) b. e2x − ex − 6 = 0

(ex − 3)(ex + 2) = 0

ex − 3 = 0

ex = 3

x = ln 3

39. Differentiate.

(10) a. f(x) = ex3+x

f ′(x) = ex3+x(3x2 + 1)

(10) b. g(x) = esin-1 x

g′(x) =esin

-1 x

√1− x2

(10) c. g(x) = etan-1 x

g′(x) =etan

-1 x

1 + x2

(10) d. h(x) = tan-1 (ln x)

h′(x) =1x

1 + (ln x)2=

1

x [1 + (ln x)2]

(10) e. h(x) = sin-1 (ln x)

h′(x) =1x

1− (ln x)2=

1

x√

1− (ln x)2

Page 250: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

247

(10) f. y = x(x2)

ln y = ln x(x2)

ln y = x2 ln x

ddx

(

ln y)

= ddx

(

x2 ln x)

y′

y= 2x ln x+ x

y′ = y(2x lnx+ x)

y′ = x(x2)

(2x lnx+ x)

y′ = x(x2+1)

(2 lnx+ 1)

40. Calculate the following limits.

(10) a. limx→∞

ln x

x

L’H

= limx→∞

1x

1= 0

(10) b. limx→0

sin-1 x

ex − 1

L’H

= limx→0

1√1−x2

ex= 1

(10) c. limx→0

tan-1 x

ex − 1

L’H

= limx→0

11+x2

ex= 1

41. Integrate.

(10) a.

1√4− x2

dx = sin-1 x2+ C

(10) b.

ex

1 + e2xdx = tan-1 ex + C

(10) c.

1 + e2x

exdx

=

(

e-x + ex)

dx

= -e-x + ex + C

= ex − 1ex

+ C

(10) d.

ln x

xdx = 1

2(ln x)2 + C

Page 251: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

248

Section 10.2: Exam 2

Exam 2 Math 1572 Spring 2019

42. A bacterial culture grows exponentially from 200 to 300 bacteria in 4 hours.

(10) a. Find the growth function.

Q(t) = Q0ekt

Q(t) = 200ekt

Q(4) = 300

200e4k = 300

e4k = 32

4k = ln 32

k = 14ln 3

2

Q(t) = 200e( 14 ln 3

2)t= 200

(

32

)t

4

(10) b. When will the number of bacte-ria reach 500?

Q(t) = 500

200(

32

)t

4 = 500

(

32

)t

4 = 52

ln[

(

32

)t

4

]

= ln 52

t4ln(

32

)

= ln 52

t =4 ln 5

2

ln 32

43. Integrate.

(10) a.

i.

x cosxdx

Integrate by parts.

u = xdu = dxv = sin xdv = cosx dx∫

x cosxdx

= x sin x−∫

sin xdx

= x sin x+ cosx+ C

ii.

x sin xdx

Integrate by parts.

u = xdu = dxv = - cos xdv = sin x dx∫

x sin xdx

= -x cosx−∫

- cos xdx

= -x cosx+ sin x+ C

Page 252: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

249

(10) b.

i.

tan2 xdx

=

(

sec2 x− 1)

dx

= tanx− x+ C

ii.

sec3 x tan xdx

=

sec2 x sec x tan xdx

= 13sec3 x+ C

(10) c.

i.

cos(tan-1 x)

1 + x2dx = sin(tan-1 x) + C ii.

sin(tan-1 x)

1 + x2dx = - cos(tan-1 x) + C

(10) d.

i.

3x+ 3

x2 + x− 2dx

3x+ 3

x2 + x− 2=

3x+ 3

(x+ 2)(x− 1)

A

x+ 2+

B

x− 1=

3x+ 3

(x+ 2)(x− 1)

A(x− 1) +B(x+ 2) = 3x+ 3

Let x = 1.

B = 2

Let x = -2.

A = 1

3x+ 3

x2 + x− 2dx

=

∫(

1

x+ 2+

2

x− 1

)

dx

= ln |x+ 2|+ 2 ln |x− 1|+ C

ii.

3x

x2 + x− 2dx

3x

x2 + x− 2=

3x

(x+ 2)(x− 1)

A

x+ 2+

B

x− 1=

3x

(x+ 2)(x− 1)

A(x− 1) +B(x+ 2) = 3x

Let x = 1.

B = 1

Let x = -2.

A = 2

3x

x2 + x− 2dx

=

∫(

2

x+ 2+

1

x− 1

)

dx

= 2 ln |x+ 2|+ ln |x− 1|+ C

Page 253: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

250

(10) e.

i.

∫ 4

0

√16− x2 dx

Use trigonometric substitution.

√16− x2

x4

θ

x = 4 sin θ

dx = 4 cos θ dθ

θ = sin-1 x4

∫ 4

0

√16− x2 dx

=

∫ π

2

0

4 cos θ · 4 cos θ dθ

=

∫ π

2

0

16 cos2 θ dθ

=

∫ π

2

0

8(1− cos 2θ)dθ

=(

8θ − 4 sin 2θ)

π

2

0

= 4π

Alternatively, note that the integral rep-resents the area of one-fourth of the circlecentered at (0, 0) with radius 4.

ii.

∫ 3

0

√9− x2 dx

Use trigonometric substitution.

√9− x2

x3

θ

x = 3 sin θ

dx = 3 cos θ dθ

θ = sin-1 x3

∫ 4

0

√9− x2 dx

=

∫ π

2

0

3 cos θ · 3 cos θ dθ

=

∫ π

2

0

9 cos2 θ dθ

=

∫ π

2

0

92(1− cos 2θ)dθ

=(

92θ − 9

4sin 2θ

)

π

2

0

= 9π4

Alternatively, note that the integral rep-resents the area of one-fourth of the circlecentered at (0, 0) with radius 3.

Page 254: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

251

(10) f.

i.

tan-1 xdx

Integrate by parts.

u = tan-1 xdu = 1

x2+1dx

v = xdv = dx

tan-1 xdx

= x tan-1 x−∫

x

x2 + 1dx

= x tan-1 x− 12ln(x2 + 1) + C

ii.

sin-1 xdx

Integrate by parts.

u = sin-1 xdu = 1√

1−x2 dxv = xdv = dx

sin-1 xdx

= x sin-1 x−∫

x√1− x2

dx

= x sin-1 x+√1− x2 + C

(10) g.

i.

x+ 4√x+ 3

dx

Use substitution.

u = x+ 3

du = dx∫

x+ 4√x+ 3

dx

=

u+ 1√u

du

=

(√u+ 1√

u

)

du

= 23u

32 + 2u

12 + C

= 23

(x+ 3)3 + 2√x+ 3 + C

Alternatively:

x+ 4√x+ 3

dx

=

∫(

x+ 3√x+ 3

+1√x+ 3

)

dx

=

∫(√

x+ 3 +1√x+ 3

)

dx

= 23

(x+ 3)3 + 2√x+ 3 + C

Page 255: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

252

ii.

x+ 3√x+ 2

dx

Use substitution.

u = x+ 2

du = dx∫

x+ 3√x+ 2

dx

=

(√u+ 1√

u

)

du

= 23u

32 + 2u

12 + C

= 23

(x+ 2)3 + 2√x+ 2 + C

Alternatively:

x+ 3√x+ 2

dx

=

∫(

x+ 2√x+ 2

+1√x+ 2

)

dx

=

∫(√

x+ 2 +1√x+ 2

)

dx

= 23

(x+ 2)3 + 2√x+ 2 + C

(10) h.

i.

∫ π

4

0

esinx

sec xdx

∫ π

4

0

esinx

sec xdx

=

∫ π

4

0

esinx cosxdx

= esinx

π

4

0

= e

√2

2 − 1

ii.

∫ π

4

0

etan x

cos2 xdx

=

∫ π

4

0

etan x sec2 xdx

= etan x

π

4

0

= e− 1

Page 256: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

253

44. Determine whether each of the following is convergent or divergent.

(10) a.

∫ ∞

3

lnx

xdx

∫ ∞

3

ln x

xdx = lim

t→∞

∫ t

3

ln x

xdx = lim

t→∞12(ln x)2

t

3

= 12limt→∞

[

(ln t)2 − (ln 3)2]

= ∞

Alternatively, note that for x ≥ 3, lnxx

> 1x. Since

∫ ∞

3

1

xdx diverges,

∫ ∞

3

ln x

xdx diverges

by the Comparison Theorem for Improper Integrals.

(10) b.

i.

∫ ∞

1

1

x3 +√x+ 1

dx

Note that for x ≥ 1, 1x3+

√x+1

< 1x3 . Since

∫ ∞

1

1

x3dx converges,

∫ ∞

1

1

x3 +√x+ 1

dx con-

verges by the Comparison Theorem for Improper Integrals.

ii.

∫ ∞

1

1

x2 + 3√x+ 1

dx

Note that for x ≥ 1, 1x2+ 3

√x+1

< 1x2 . Since

∫ ∞

1

1

x2dx converges,

∫ ∞

1

1

x2 + 3√x+ 1

dx con-

verges by the Comparison Theorem for Improper Integrals.

Page 257: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

254

Section 10.3: Exam 3

Exam 3 Math 1572 Spring 2019

45. Let R be the region in the plane bounded by the curves x = 1, y = 0, and y = 2√x3.

(10) a. Find the area of R.

∫ 1

0

2√x3 dx = 4

5

√x5

1

0

= 45

(10) b. Find the centroid of R.

x = 54

∫ 1

0

2x√x3 dx = 5

2

∫ 1

0

√x5 dx

= 52

(

27

√x7)

1

0

= 57

y = 54

∫ 1

0

12

(

2√x3)2

dx = 52

∫ 1

0

x3 dx

= 58x4

1

0

= 58

Centroid:(

57, 58

)

(10) c. Find the perimeter of R.

y = 2√x3 = 2x

32

y′ = 3x12 = 3

√x

(y′)2 + 1 =√9x+ 1

∫ 1

0

√9x+ 1dx = 2

27(9x+ 1)

32

1

0

= 227(10

√10− 1)

Perimeter: 227(10

√10− 1) + 2

(10) 46. Let R be the region in the plane bounded by the curves x = 2, y = 0, and y =√x. Find the surface area of the solid formed by revolving R about the x-axis.

y =√x

y′ = 12√x

2πx√

(y′)2 + 1 = 2πx√

14x

+ 1

= 2πx√

4x+14x

= π√4x+ 1

∫ 2

0

π√4x+ 1dx = π

6(4x+ 1)

32

2

0

= 13π3

(10) 47. Find the solution of the differential equation that satisfies the given conditions.

dy

dx= 2xy, y(0) = e3, y > 0

dy

dx= 2xy

dy

y= 2x dx

1ydy =

2xdx

ln y = x2 + C

y(0) = e3

C = 3

ln y = x2 + 3

y = ex2+3

Page 258: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

255

(10) 48. Recall that the weight density of water is 62.5 lb/ft3. An aquarium is in theshape of a rectangular prism. Its length is 5 ft, its width is 3 ft, and its height is 2 ft. Findthe hydrostatic force on

a. an end

limn→∞

n∑

i=1

62.5 · 2in· 2n· 3 = 187.5

∫ 2

0

xdx = 187.5(

12x2)

2

0

= 375

375 lb

b. a side

limn→∞

n∑

i=1

62.5 · 2in· 2n· 5 = 312.5

∫ 2

0

xdx = 312.5(

12x2)

2

0

= 625

156.25 lb

(10) 49. A tank contains 500 gallons of brine which contains .20 pounds of salt pergallon. Pure water flows into the tank at a rate of 10 gallons per minute. The solution iskept thoroughly mixed and drains from the tank at a rate of 10 gallons per minute. Expressthe amount of salt in the tank as a function of time.

Let Q = Q(t) be the amount of salt in the tank at time t.

dQ

dt= -

Q

500· 10 = -

Q

50

dQ

Q= -

dt

50

dQ

Q=

-dt

50

ln |Q| = - t50

+ C

lnQ = - t50

+ C

Since Q(0) = 100, C = ln 100.

lnQ = - t50

+ ln 100

Q = 100e- t50

50. Give a formula or rule for each of the following sequences.

(10) a. {14, 29, 316, 425, 536, 649, 764, . . .}

{

n

(n+ 1)2

}∞

n=1

(10) b. {2, 3, 6, 18, 108, 1944, . . .}

x1 = 2

x2 = 3

xn+2

= xn· x

n+1

Page 259: Contentsjktartir.people.ysu.edu/1572/exam.pdf · 2019-04-19 · 1 Chapter 1: Math 1572 Summer 2002 Section 1.1: Review Solutions to Review Problems 1. For each of the following, find

256

51. For each of the following, determine whether the sequence converges or diverges.

(10) a.

{

n!

(n+ 1)!

}∞

n=1

limn→∞

n!

(n+ 1)!= lim

n→∞

1

n+ 1= 0

Converges

(10) b.

{

n+ 1√n

}∞

n=1

limn→∞

n+ 1√n

= limn→∞

(√n + 1√

n

)

= ∞

Diverges

(10) 52. Find the sum of the following series.

∞∑

n=1

2

n2 + 2n=

∞∑

n=1

2

n(n+ 2)=

∞∑

n=1

(

1

n− 1

n + 2

)

For each n ∈ N, Sn= 1− 1

3+ 1

2− 1

4+ 1

3− 1

5+ 1

4− 1

6+ · · ·+ 1

n−2− 1

n+ 1

n−1− 1

n+1+ 1

n− 1

n+2

= 1 + 12− 1

n+1− 1

n+2. So lim

n→∞S

n= 3

2.

∞∑

n=1

2

n2 + 2n= 3

2

53. Consider the following sequence.Advice: Study it for a minute.

{

56, 56+ 1

12, 56+ 1

12+ 1

24, 56+ 1

12+ 1

24+ 1

48, 56+ 1

12+ 1

24+ 1

48+ 1

96, 56+ 1

12+ 1

24+ 1

48+ 1

96+ 1

192, . . .

}

(10) a. Explain why the sequence is increasing.

Note that for each n ∈ N, xn+1

= xn+ 1

6·2n .

(10) b. Explain why the sequence is bounded above by 1.

The first term is x1= 5

6. If 1

6is added to x

1, the sum is 1. However, x

2= x

1+ 1

12. If 1

12is

added to x2 , the sum is 1. However, x3 = x2 +124. For each n ∈ N, x

n+1 = xn+ 1

2(1 − x

n)

= 1− 16·2n−1 < 1.

(10) c. Use the previous two parts to conclude that the sequence converges. What is thelimit of the sequence?

By the previous two parts, the sequence is bounded and increasing. Recall that boundedmonotonic sequences are convergent. Also, by the argument above, lim

n→∞x

n= lim

n→∞

(

1− 16·2n−1

)

= 1− 0 = 1.