Top Banner

of 64

2012 Acoustics

Jun 04, 2018

Download

Documents

shajakhan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/13/2019 2012 Acoustics

    1/64

    AcousticsAcoustics

  • 8/13/2019 2012 Acoustics

    2/64

    IntroductionIntroduction

    Whatissound?

    Howdo

    we

    measure

    sound?

    Soundpowervs.soundpressure

    Soundquality

    AHRI880/885

    NC

    vs.

    RCInstallationeffects

    2

  • 8/13/2019 2012 Acoustics

    3/64

    TheSound

    RoomThe

    Sound

    Room

    Productsaretestedinaqualified

    reverberantchamber(perAHRI

    220)

    Reverberantchambersareusedfor

    quietproducts

    Anechoicchambers

    are

    used

    for

    noisyproducts

    Thereverberantfieldeliminatesall

    directionalityfromasoundsource

    Soundlevelswithinthereverberant

    fieldareequalatallpoints

    3

  • 8/13/2019 2012 Acoustics

    4/64

    TheComparison

    MethodThe

    Comparison

    Method

    Determinethesoundpower(Lw)bycomparisontoaknownreferencesoundsource(RSS)

    Measurethesoundpressure(Lp)oftheRSSinordertodeterminetheroomattenuation

    Lp=Lw roomattenuation

    Lw=Lp

    +room

    attenuation

    IfweknowthattheRSScreatesLw=80dBinthefirstoctaveband(63Hz),butwereadonlyLp=70dB,weknowthatwehave10dBofroomattenuationinthat

    octaveband

    Roomattentionisconstant

    Allsoundmetersmeasuresoundpressure(Lp)

    4

  • 8/13/2019 2012 Acoustics

    5/64

    TheDecibel

    (dB)The

    Decibel

    (dB)

    Becauseofthegreatdifferencesinenergy(or

    pressure)available,

    the

    log

    of

    the

    actual

    valueisused

    Referencepoweris1012watts

    Referencepressure

    is

    0.0002

    microbars

    dBismeasuredvs.frequency

    Aninfinitenumberoffrequencies,sotheyare

    averagedinto

    bands,

    typically

    called

    Octave

    Bands

    5

  • 8/13/2019 2012 Acoustics

    6/64

    OctaveBandsOctaveBands

    Octavebandsarecenteredabout

    increasinglywider

    frequency

    ranges,

    startingwith63cycles/second(Hz)

    Each

    band

    doubles

    in

    frequencyBandsaretraditionallynumbered,

    inourindustry,asshown

    Octave Band DesignationsCenter Frequency 63 125 250 500 1000 2000 4000 8000

    Band Designation 1 2 3 4 5 6 7 8

    6

  • 8/13/2019 2012 Acoustics

    7/64

    OctaveBandsOctaveBands

    Fanpoweredproductsusuallycreatetheirhighestsoundlevelsinoctaveband2(125Hz),butsometimesoctave

    band

    3(250

    Hz)

    Grilles,registersanddiffuserscreatetheirhighestsoundlevelsinoctavebands4(500Hz),5(1000Hz)or6(2000Hz)

    Octavebands46areknownasthespeechinterferencebands

    Itsindustryconventiontoreportsounddatafor

    octavebands

    27only

    Soundroomsizeanddesigncancauseproblemswithreadingsinoctavebands1and8

    7

  • 8/13/2019 2012 Acoustics

    8/64

    To add two decibel values:

    80 dB

    + 74 dB

    DecibelAddition

    ExampleDecibel

    Addition

    Example

    8

  • 8/13/2019 2012 Acoustics

    9/64

    154 dB (Incorrect)

    DecibelAddition

    ExampleDecibel

    Addition

    ExampleTo add two decibel values:

    80 dB

    + 74 dB

    9

  • 8/13/2019 2012 Acoustics

    10/64

    To add two decibel values:

    Difference in Values: 6 dBFrom Chart: Add 1.0 dB

    to higher Value

    80 dB+ 1 dB

    81 dB81 dB (Correct)(Correct)

    80 dB- 74 dB

    = 6 dB

    Difference In Decibels Between TwoValues Being Added (dB)

    Co

    rrec

    tion

    To

    Be

    Added

    To

    Higher

    Va

    lue

    (dB)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 2 4 6 8 10

    DecibelAddition

    ExampleDecibel

    Addition

    Example

    10

  • 8/13/2019 2012 Acoustics

    11/64

    GoodTo

    KnowGood

    To

    Know

    Anysoundsource10dBlowerthanbackground

    level

    will

    not

    be

    heardAdd3dB(or3NC)todoubleasoundsource

    TwoNC40terminalunitsoveranofficewould

    probablycreate

    an

    NC43

    sound

    level

    TwoNC20diffusersinaroomwouldcreateaworst

    casesoundlevelofNC23(iftheyareclosetogether)

    Donttry

    to

    add

    up

    dissimilar

    products

    in

    this

    manner

    11

  • 8/13/2019 2012 Acoustics

    12/64

    Sound

    Power

    ChangesSound

    Power

    Changes

    Equationfor

    sound

    power

    changes

    =10lognEquation

    for

    sound

    power

    changes

    =10logn

    1Fanon vs.2Fanson n=2 Add3dB

    1Fanon vs.4Fanson n=4 Add6dB

    1Fanon vs.10Fanson n=10 Add10dB

    1Fanon vs.100Fanson n=10

    0

    Add20dB

    50Fanson vs.100Fanson n=2 Add3dB

    12

  • 8/13/2019 2012 Acoustics

    13/64

    ProximityTo

    Sound

    SourcesProximity

    To

    Sound

    Sources

    Wouldyoureallyexpecttohear100fansrunningat

    thesame

    time?

    Properlyselecteddiffusersshouldntbeheardfrom

    morethan10feetaway

    Althoughthere

    may

    be

    multiple

    diffusers

    in

    aspace,

    itsunlikelythatmorethanoneortwoarewithin10

    feetofanoccupant

    Wewould

    only

    expect

    to

    be

    able

    to

    hear

    a10

    foot

    sectionofcontinuouslineardiffuserfromanysingle

    location

    13

  • 8/13/2019 2012 Acoustics

    14/64

    1dB notnoticeable

    3dB justperceptible

    5dB noticeable

    10dB twiceasloud

    20dB fourtimesasloud

    For

    High

    FrequenciesFor

    High

    Frequencies

    14

  • 8/13/2019 2012 Acoustics

    15/64

    3dB noticeable

    5dB twiceasloud

    10dB four

    times

    as

    loud

    For

    Low

    FrequenciesFor

    Low

    Frequencies

    15

  • 8/13/2019 2012 Acoustics

    16/64

    WhatWe

    HearWhat

    We

    Hear

    Ourearscanbefooledbyfrequency

    Bothtones

    sound

    equally

    loud

    65 dB65 dB

    63 HZ63 HZ 1000 HZ1000 HZ

    40 dB40 dB

    A Difference of 25 dB16

  • 8/13/2019 2012 Acoustics

    17/64

    Acoustic

    QualityAcoustic

    Quality

    Not

    too

    quiet Dont

    destroy

    acoustic

    privacy

    NottooloudAvoidhearingdamage

    Dontinterferewithspeech

    Nottoo

    annoying

    Norumble,nohiss

    Noidentifiablemachinerysounds

    Notime

    modulation

    Nottobefelt Nonoticeablewallvibration

    17

  • 8/13/2019 2012 Acoustics

    18/64

    10

    20

    30

    40

    50

    60

    70

    80

    63 125 250 500 1K 2K 4K 8K

    MID - FREQUENCY, HZ

    OCTAVEBAN

    D

    LEVEL

    _dB

    RE0

    .0002MICR

    OBAR

    APPROXIMATETHRESHOLDOF HUMANHEARING

    NC-70

    NC-20

    NC-60

    NC-50

    NC-30

    NC-40

    NC

    CurvesNC

    Curves

    18

  • 8/13/2019 2012 Acoustics

    19/64

    Typical

    NC

    LevelsTypical

    NC

    Levels

    ConferenceRooms< NC30

    Privateoffices< NC35

    Openoffices=NC40

    Hallways,utilityrooms,restrooms< NC45

    NCshouldmatchpurposeofroom

    DifficulttoachievelessthanNC30

    SelectdiffusersforNC2025

    19

  • 8/13/2019 2012 Acoustics

    20/64

    SoundPower

    Vs.

    Sound

    PressureSound

    Power

    Vs.

    Sound

    Pressure

    Soundpower(Lw)cannotbemeasureddirectly

    Soundpressure(Lp)ismeasuredwithaveryfast

    pressuretransducer(i.e.amicrophone)

    Calculatesound

    power

    (Lw)

    by

    correcting

    sound

    pressure(Lp)readingsinareverberantchambertoa

    knownpowersource

    ReferenceSound

    Source

    (RSS)

    20

  • 8/13/2019 2012 Acoustics

    21/64

    ReferenceSound

    SourceReference

    Sound

    Source

    Correctiondevicefora

    reverbroom

    is

    the

    RSS

    (per

    AHRI250)

    Calibratedinananechoic

    chamberto

    simulate

    afree

    fieldcondition

    Usedinareverberantfield,

    sothere

    is

    aknown

    error

    calledtheEnvironmental

    Effect21

  • 8/13/2019 2012 Acoustics

    22/64

    InaReverb

    RoomIn

    aReverb

    Room

    Soundpower(Lw)iscalculatedfrommeasured

    soundpressure

    (Lp)

    and

    corrected

    for

    background

    Productsoundshouldbe10dBabovebackground

    RSSis

    used

    to

    calibrate the

    room

    Dataisrecordedperoctaveband(or1/3octave

    bandifpuretonesareanticipated),foreachoperatingcondition

    22

  • 8/13/2019 2012 Acoustics

    23/64

    Catalog

    DataCatalog

    Data

    Soundpressuredataiscollectedbya

    frequencyanalyzer

    that

    samples

    microphones

    viaamultiplexer

    Dataiscollectedandsoundpowerrecorded

    Spreadsheetsareusedtocheckthelinearity

    ofdatasets

    Catalogdata

    is

    prepared

    from

    actual

    sound

    powerdatasheetsusingacceptedregression

    techniques23

  • 8/13/2019 2012 Acoustics

    24/64

    Diffuser

    TestingDiffuser

    Testing

    Currentteststandardfor

    diffusers

    ASHRAE702006

    Nosignificantchangesinmany

    years

    24

  • 8/13/2019 2012 Acoustics

    25/64

    Terminal

    Unit

    TestingTerminal

    Unit

    Testing

    Currentteststandardfor

    terminal

    unitsASHRAE1302008

    ASHRAE130iscurrentlyunder

    review

    SPC130

    Itwillbeupdatedtoinclude

    more

    products

    including

    exhaustboxes

    25

  • 8/13/2019 2012 Acoustics

    26/64

    Sound

    TestsSound

    Tests

    Dischargesound,VAVterminals

    Unitmounted

    outside

    room

    Dischargingintoreverbroom

    Radiatedsound,VAVterminals

    Unitmounted

    inside

    room

    Dischargingoutsidereverbroom

    Allductworklaggedtoprevent

    breakoutDiffusersupply/returnsound

    Unitmountedflushtoinsidethe

    reverbroomwall26

  • 8/13/2019 2012 Acoustics

    27/64

    Performance

    Rating

    Performance

    Rating

    CurrentratingstandardforterminalsunitAHRI8802011(effective

    Jan1,2012)

    Increasesdischargesound

    levelsdue

    to

    end

    reflection

    Thisaffectsallpublisheddataandselectionsoftware

    Theboxeswillstillsound

    thesame,

    but

    now

    the

    acousticalconsultantswillbehappier

    27

  • 8/13/2019 2012 Acoustics

    28/64

    Sound

    Path

    Determination

    Sound

    Path

    Determination

    Currentstandardforestimatingsoundlevelsinrooms

    AHRI8852008

    Providessoundpathdata

    fromASHRAE

    research

    Attenuationfactorsforductlining,ceilingtiles,roomvolume,elbows,flexduct,

    etc

    28

  • 8/13/2019 2012 Acoustics

    29/64

    Industry

    Standardization

    Industry

    Standardization

    AHRI8852008containsAppendixERecommendsstandard

    attenuationstobeusedbyallmanufacturersforcatalogdata

    FirstpresentedinARI88598

    Makescomparingcatalog

    NClevels

    much

    less

    risky

    29

  • 8/13/2019 2012 Acoustics

    30/64

    AHRI

    885AHRI

    885

    2008

    Catalog

    Assumptions2008

    Catalog

    AssumptionsRadiatedSound

    OctaveBandOctaveBand

    22 33 44 55 66 77

    EnvironmentalEffect 2 1 0 0 0 0

    Ceiling/Space

    Effect 16 18 20 26 31 36

    TotaldBAttenuation 18 19 20 26 31 36

    mineral fiber tile5/8 in thick

    20 lb/ ft3

    density

    5 ft, 1 in fiberglass lining8 in flex duct to diffuser

    2500 ft3

    room volume5 ft from source

    The following dB adjustments are used for the calculation of NC above 300 CFM

    DischargeSound OctaveBandOctaveBand

    22 33 44 55 66 77

    EnvironmentalEffect 2 1 0 0 0 0

    DuctLining 3 6 12 25 29 18

    EndReflection 9 5 2 0 0 0

    FlexDuct 6 10 18 20 21 12

    SpaceEffect 5 6 7 8 9 10

    TotaldB

    Attenuation 25 28 30 53 59 40

    OctaveBandOctaveBand

    22 33 44 55 66 77

    300700CFM 2 1 1 2 5 1

    Over700

    CFM 4 3 2

    2

    7

    1 30

  • 8/13/2019 2012 Acoustics

    31/64

    Certified

    Performance

    DataCertifiedPerformanceData

    AHRIProgram

    Directory

    of

    Certified

    ProductPerformance

    www.ahrinet.org

    Randomsamplessubjected

    toannual

    third

    party

    lab

    testing

    Verifiesthatperformanceiswithinestablishedtest

    tolerancesFailuresresultinpenalties

    Voluntaryprogram

    31

  • 8/13/2019 2012 Acoustics

    32/64

    AHRI

    SourceAHRISource

    PathPath

    Receiver

    ConceptReceiverConcept

    DB(SNDPOWER) DBPATHLOSS = DB(SNDPRESSURE)

    Source Path Receiver

    AHRI 880Air Terminals

    AHRI 885Attn Factors

    NC or RCSound Pressure Level

    32

  • 8/13/2019 2012 Acoustics

    33/64

    NCSpecifyingNCSpecifying

    SpecifyingandunqualifiedNCvalueisan

    open specificationSpecifyinganNCwithspecificpath

    attenuationelementscouldresultin

    acceptablesound

    quality

    Itisfarpreferabletosetmaximumallowable

    soundpower

    levels

    than

    to

    specify

    NC

    33

  • 8/13/2019 2012 Acoustics

    34/64

    ReverbRoom

    InstallationsReverb

    Room

    Installations

    Testsareunderidealconditions

    Boxeshave

    only

    the

    unit

    exposed

    to

    the

    room

    Diffusershavewonderful inletconditions

    Actualconditions

    will

    always

    be

    louder

    thanreverbroomtestsindicate

    CoveredbyAHRI8852008

    34

  • 8/13/2019 2012 Acoustics

    35/64

    SingleNumber

    RatingsSingle

    Number

    Ratings

    Anumberofsinglenumberratingschemes

    havebeen

    developed

    to

    deal

    with

    aspectrum

    ofsound

    Theseinclude:

    NC,NRandRC

    dBA(Ascale,BscaleandCscale)

    Sones,Bels

    STC,NRC

    35

  • 8/13/2019 2012 Acoustics

    36/64

    The

    dBA

    ScaleThedBAScale

    Usedforoutdoornoiseevaluation

    Also

    used

    for

    hearing

    conservation

    measurementsBasisofmostnonterminalsoundratings

    36

  • 8/13/2019 2012 Acoustics

    37/64

    ExampleExample

    10

    20

    30

    40

    50

    60

    70

    80

    63 125 250 500 1K 2K 4K 8KMID - Frequency, HZ

    Oc

    tave

    Band

    Leve

    l_dB

    RE

    0.0

    002Micro

    ba

    r

    Approximatethresholdof humanhearing

    NC-70

    NC-20

    NC-60

    NC-50

    NC-30

    NC-40

    Sound Power

    Sound Power less 10 db

    in each band

    NC rating given is NC-30

    since this is highest point

    tangent to an NC curve

    37

  • 8/13/2019 2012 Acoustics

    38/64

    ExampleExample

    10

    20

    30

    40

    50

    60

    70

    80

    90

    63 125 250 500 1K 2K 4K 8K

    MID - FREQUENCY, HZ

    Octave Band Level

    dB RE 0.0002 Microbar

    NC-70

    NC-20

    NC-60

    NC-50

    NC-30

    NC-40

    Approximate threshold

    of human hearing

    NC rating given is NC-45

    since this is highest point

    tangent to an NC curve

    38

  • 8/13/2019 2012 Acoustics

    39/64

    Both noise spectrums would be

    rated NC-35, However, they would

    subjectively be very di fferent!

    10

    20

    30

    40

    50

    60

    70

    80

    90

    63 125

    250

    500

    1K 2K 4K 8K

    Mid - Frequency, HZ

    Oc

    tave

    Ban

    dLeve

    l_dB

    RE0

    .0002Mic

    ro

    bar

    NC-30

    NC-70

    NC-20

    NC-60

    NC-50

    NC-40

    Typical grille noise

    at a distance of 10FT

    (high-frequency)

    Typical fan noise from

    adjacent mechanical

    room (low-frequency)

    Approximate threshold

    of human hearing

    ExampleExample

    39

  • 8/13/2019 2012 Acoustics

    40/64

    NCvs.RCNCvs.RC

    NCratesspeechinterference

    andputs

    limits

    on

    loudness

    NCgivesnoprotectionforlowfrequency

    fannoiseproblems

    NCstopsat63Hzoctaveband

    RCincludesthe31.5Hzand16Hzoctaveband

    RCratesspeechinterferenceanddefines

    keyelementsofacousticalquality

    40

    C i iR C i i

  • 8/13/2019 2012 Acoustics

    41/64

    RoomCriteriaRoomCriteria

    (RC)Curves(RC)

    Curves

    RC

    50

    45

    40

    35

    30

    25

    C

    ADAPTED FROM 2009 ASHRAE FUNDAMENTALS HANDBOOK - ATLANTA, GA

    Region AHigh probability that noise

    induced vibration levels inlight wall and ceiling structures

    will be noticeable. Rattling

    of lightweight light fixtures,

    doors and windows should

    be anticipated.

    Region BModerate probability that

    noise-induced vibration will be

    noticeable In lightweight light

    fixtures, doors and windows.

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1631

    .5 63 125

    250

    500

    1K 2K 4K

    Octave Band Center Frequency, HZ

    A

    B

    Threshold

    of audibilityOc

    tave

    Ban

    dSoun

    dPress.

    Leve

    l,d

    B

    41

  • 8/13/2019 2012 Acoustics

    42/64

    TwoPartsofRCTwoPartsofRC

    Example RC40N

    Thenumber

    is

    the

    speech

    interference

    level

    Thelettertellsyouspeechquality

    (N)

    =

    neutral

    spectrum (R)=toomuchrumble

    (H)=toomuchhiss

    (V)=too

    much

    wall

    vibration

    42

  • 8/13/2019 2012 Acoustics

    43/64

    RCNumberCalculationRCNumberCalculation

    Averageoflevelofthenoiseinthe

    octavebands

    most

    important

    to

    speech

    500HzOctaveband=46dB

    1000HzOctave

    band

    =40

    dB

    2000HzOctaveband=34dB

    RC=(46+40+34)/3=40dB

    43

  • 8/13/2019 2012 Acoustics

    44/64

    RCLetterDeterminationRCLetterDetermination

    PlotroomsoundpressureonRCchart

    Determinerumble

    roof

    5dBgreaterthenlowfrequency

    Determinehissroof

    3dB

    greater

    then

    high

    frequency

    Rroomsoundpressurecrossesrumbleroof

    H

    roomsound

    pressure

    crosses

    hiss

    roof

    Vroomsoundpressuregoesintovibrationzone

    Nroomsoundpressuredoesnotcross 44

    R blRumbly

  • 8/13/2019 2012 Acoustics

    45/64

    Measured data is outside the

    reference region by >5 dB,

    below the 500 Hz octave band,therefore the noise is l ikely

    to be interpreted as rumbly

    PSIL=(38+35+29) / 3 = 34

    RC-34(R)

    RumblyRumbly

    Spectrum(R)Spectrum

    (R)

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1631

    .5 63 125

    250

    500

    1K 2K 4K

    Octave Band Center Frequency, HZ

    Oc

    tave

    Ban

    dSoun

    dPress.

    Leve

    l,dB

    45

    Rumbly & InducedRumbly & Induced

  • 8/13/2019 2012 Acoustics

    46/64

    A

    B

    RC-33(RV)10

    20

    30

    40

    50

    60

    70

    80

    90

    1631

    .5 63 125

    250

    500

    1K 2K 4K

    Octave Band Center Frequency, HZ

    Octa

    ve

    Ban

    dSoun

    d

    Press.

    Leve

    l,dBEven though the PSIL

    Is only 33 dB, the

    noise spectrum

    falls within regions

    A & B indicating a

    high probability of

    noise-induced

    vibration in lights,

    ceilings, air dif fusers

    and return air gr illes

    Rumbly&InducedRumbly&Induced

    Vibration(RV)Vibration

    (RV)

    PSIL= (38+32+29) / 3 = 33

    46

    NeutralNeutral

  • 8/13/2019 2012 Acoustics

    47/64

    Octave Band Center Frequency, HZ

    Oc

    tave

    Ban

    dSoun

    dP

    ress.

    Leve

    l,dB

    NeutralNeutral

    Spectrum(N)Spectrum

    (N)

    C

    Measured data must

    not lie outside the

    reference region by>5 dB, below the 500 Hz

    octave band

    Measured data must

    not lie outside the

    reference region by

    >3 dB, above the 1000 Hzoctave band

    RC-34(N)10

    20

    30

    40

    50

    60

    70

    80

    90

    1631

    .5 63 125

    250

    500

    1K 2K 4K

    PSIL=(38+35+29) / 3 = 34

    47

    HissyHissy

  • 8/13/2019 2012 Acoustics

    48/64

    C

    Measured data is

    outside the referenceregion by >3 dB, above

    the 1000 Hz octave band,

    therefore the noise

    is likely to be

    interpreted as hissy

    RC-35(H)10

    20

    30

    40

    50

    60

    70

    80

    90

    1631.5 63 12

    525

    050

    01K 2K 4K

    PSIL = (35+36+34) / 3 = 35

    HissyHissy

    Spectrum(H)Spectrum

    (H)

    Octave Band Center Frequency, HZ

    Oc

    tav

    eBan

    dSoun

    dP

    ress.

    Leve

    l,dB

    48

  • 8/13/2019 2012 Acoustics

    49/64

    WhoUsesRC?WhoUsesRC?

    NCremainsthebestwaytomakeproduct

    selectionsRCispreferredasananalysistool

    Acousticalconsultantswilltypicallyreport

    whetherornotequipmentmeetsNCspecbutwilldescribetheresultingsoundspectrumin

    terms

    of

    RCYoushouldcontinuetoseecatalog

    applicationdataintermsofNC49

  • 8/13/2019 2012 Acoustics

    50/64

    TerminalUnitInstallationsTerminalUnitInstallations

    Soundcharacteristics

    Optimalinstallation

    Attenuators

    Liners

    50

  • 8/13/2019 2012 Acoustics

    51/64

    SoundCharacteristicsSoundCharacteristics

    Radiatedsoundisprimaryissuewithfanpowered

    terminalsDischargesoundisprimaryissuewithnonfan

    terminals

    Fanpowered

    sound

    is

    typically

    set

    in

    2nd

    (125

    Hz)

    and3rd(250Hz)octavebands

    Longsoundwaves

    Harderto

    attenuate

    Dischargesoundiseasilyattenuatedwithlined

    ductworkandflexduct51

  • 8/13/2019 2012 Acoustics

    52/64

    IdealTerminalUnitInstallationIdealTerminalUnitInstallation

    VAV

    UNIT

    Lined Sheet Metal Plenum(Max velocity 1,000 FPM)

    Lined Flexible Ducts

    To Diffusers

    Flexible Connectors

    For Fan-powered Units

    D

    > 3 D

    Ceiling

    Maximize Height

    Above Ceiling

    4' Min.

    52

    Max velocity 2,000 FPM

  • 8/13/2019 2012 Acoustics

    53/64

    AttenuatorsAttenuators

    Singleduct

    Equivalentto

    lined

    ductwork

    Dualduct

    Providesamixingareaforunit,butnotmuch

    soundattenuation

    Fanpowered

    Lined

    elbow

    or

    boot may

    provide

    2dB

    attenuationbyremovinglineofsighttomotor

    Carefullyengineeredattenuatorscanprovide

    additional

    sound

    reductions53

  • 8/13/2019 2012 Acoustics

    54/64

    LinersLiners

    Differentlinersinsingleductsdonotaffectdischarge

    sound

    much Unitistooshortfortheairtointeractwithliner

    1"linerdoesnotsignificantly

    decrease

    sound

    compared

    to

    "Foilfacedlinersadd68dB

    Fiberfreeadds46dB

    Doublewall

    is

    variable

    Kettledrumeffectincreasessound,butitisdirectional

    54

    l

  • 8/13/2019 2012 Acoustics

    55/64

    FlexDuctFlexDuct

    Dontforgetaboutflexduct

    5'of

    flex

    can

    reduce

    mid

    frequencies

    by20dBormore

    Flexisbetterthanlinedductorattenuators

    inreducing

    low

    frequencies

    Youcanhavetoomuchofagoodthing

    55

  • 8/13/2019 2012 Acoustics

    56/64

    Diffuser

    Tests

    Diffuser

    Tests

    ASHRAE

    ConditionsASHRAE

    Conditions

    10 equivalent Diameters, min

    Pressure

    Measured Air Flow

    Discharge VelocitySound 56

  • 8/13/2019 2012 Acoustics

    57/64

    Inlets:

    3

    Equivalent

    Diameters

    Inlets:

    3

    Equivalent

    Diameters

    IdealIdeal~1NCaddtocatalogdata

    Pressure

    Measured Air Flow

    3 equivalent Diameters

    Discharge VelocitySound

    Flex Duct, 1 radius bend

    57

    I l t L 90 t DiffI l t L 90 t Diff

  • 8/13/2019 2012 Acoustics

    58/64

    Inlets:Long90atDiffuserInlets:Long90atDiffuser

    ~3NCaddtocatalogdata

    Pressure

    Measured Air Flow

    Discharge Velocity

    Sound

    Flex Duct

    58

    I l t H d 90 t DiffI l t H d 90 t Diff

  • 8/13/2019 2012 Acoustics

    59/64

    Inlets:Hard90atDiffuserInlets:Hard90atDiffuser

    ~5NCaddtocatalogdata

    Pressure

    Measured Air Flow

    Discharge Velocity

    Sound

    Flex Duct

    59

  • 8/13/2019 2012 Acoustics

    60/64

    Inlet

    Inlet

    KinkedKinked~79NCaddtocatalogdata

    Pressure

    Measured Air Flow

    Discharge VelocitySound

    2 equivalent Diameters

    Flex Duct

    60

    Summary of ResultsSummary of Results

  • 8/13/2019 2012 Acoustics

    61/64

    SummaryofResultsSummaryofResults

    Minimumaddforflexduct=1NC

    Worstcase

    add,

    Kinked =

    79NC

    Airdistributionpatterncanbegreatlyeffected

    Plaque/Perforatedshowsmosteffect

    MultiCone/Louveredshowsleasteffect

    Resultswerenotthesameforalldiffusertypes

    Dontforget

    that

    catalog

    NCs

    are

    based

    on

    typicaloffices(10dBacrossallbands)

    61

  • 8/13/2019 2012 Acoustics

    62/64

    Some

    Diffuser

    SolutionsSome

    Diffuser

    SolutionsLocatebalancingdampersatbranchtakeoff

    Keepflexible

    duct

    bends

    as

    gentle

    as

    possible

    Flexductisagreatattenuatorofupstreamnoise

    sources

    Keepduct

    velocities

    as

    low

    as

    possible

    Butoversizingcanresultinhigherthermalloss

    62

  • 8/13/2019 2012 Acoustics

    63/64

    Additional

    ResourcesAdditional

    ResourcesASHRAEFundamentals

    Chapter8,

    2009

    Edition

    ASHRAEHVACApplications

    Chapter48,2011Edition

    CognizantTechnicalCommittee

    TC2.6

    63

  • 8/13/2019 2012 Acoustics

    64/64

    SummarySummaryNCremainsthepreferredsoundspecification

    RCis

    often

    used

    after

    the

    fact

    Maxsoundpowerlevelsaresafest

    Liningmaterialsaffectsoundlevels

    Carefulselection,designandinstallationare

    requiredtoavoidproblems

    64