Top Banner
433

2 Magnetic properties of rare earth elements, alloys and ...

Mar 08, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 2 Magnetic properties of rare earth elements, alloys and ...
Page 2: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

Landolt-Börnstein

New Series III/32D

2 Magnetic properties of rare earth elements,

alloys and compounds

2.1 Rare earth elements

2.1.1 Introduction

Since our previous review work in Landoldt-Börnstein, Group III, Crystal and Solid State Physics,

Vol. 19d1, p. 1 (1991) [91D], a numerous amount of experimental and theoretical work on the magnetic

properties of rare earth elements, alloys and compounds have been reported. Although the investigation of

the magnetic structures of the rare earth has been an active area of research for nearly 30 years, the field

has recently attracted new interest, due largely to the development of high-resolution X-ray and neutron

magnetic diffraction techniques. Erbium, for example, has the most complex phase diagram of any of the

heavy rare earths (Fig. 335 in [91D]). The gradual way in which the picture of its magnetic structure has

been refined in successive studies (Fig. 255) is typical of the steady progress that has been made in our

understanding of all of the rare earth metals (see also as an example, Fig. 146 for Dy, Fig. 209 for Ho or

Fig. 256 for Er and Ref. [94J] where new updated neutron diffraction studies of the magnetic phase

diagrams of some heavy rare earth elements, are displayed). In spite of the new data in this chapter, for a

main survey of this type of results the reader is referred to [91D]. Compared with [91D], the present

survey includes the comprehensive review of high temperature magnetic susceptibility of the light

lanthanides (see Figs. 1, 3 for Ce, Fig. 26 for Sm or Fig. 35 for Eu and Gd). However, most of the recent

investigations are dealing with the magnetic properties of rare earth elements in their artificial form like

ultrathin films or multilayer superstructures [93J]. Many papers are also dedicated to the surface magnetic

behaviour mostly of Gd, Dy, Tb and Er deposited on the surface of nonmagnetic metals (Fig. 95 for Gd,

Fig. 144 for Tb, Fig. 174 for Dy, Figs. 284 and 291 for Er) [91W, 91B2]. It is well known that the

magnetic order can be modified at the surface of a ferromagnetic material (see Fig. 71). The loss of the

transitional symmetry perpendicular to the surface plane and the reduced atomic coordination can result

in magnetic interactions which differ from those in the bulk. It is to be expected that the magnetic

ordering will be weakened at the surface by the reduced atomic coordination.

Contrary to these expectations the enhanced surface ordering temperatures and the surface

magnetic reconstruction (SMR) (i. e., a different orientation of the spins at the surface than in the

bulk) (see Fig. 72) are among the most intriguing phenomena found in surface magnetism [93T1]. As

an example, in Fig. A the results obtained from the spin-resolved photoemission experiment

performed on ultrathin Gd films grown on W(110) are shown [93V]. The results indicate that the in-

plane ordering temperature of the surface is by 80 K higher than that of the inner layers. These data

show also a complex and unexpected temperature dependence of the magnetization. At high

temperatures the polarization of 4f states at the surface differs from that of the underlaying layers.

Extensive studies have failed to demonstrate the existence of such phenomenon in 3d transition

metals. Evidence for an enhanced surface ordering temperature TS over the bulk Curie temperature TB

was found by Rau et al. [86R] on polycrystalline Gd surfaces as is shown in Fig. 47. A similar

observation has been reported for epitaxial Tb films (Fig. 142 and Ref. [89R]. In a nearest–neighbor

Ising model with bulk coupling constant J, there exists a critical value of the surface coupling

Page 3: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements

Landolt-Börnstein

New Series III/32D

constant Js, above which the surface orders at temperature (TS) higher than the bulk Curie temperature

(TB). In this case the surface critical behaviour at TS is known as a "surface transition". For TB < T <TS the surface behaves as a two-dimensional system, with the magnetic order decaying almost

exponentially within the bulk (see Figs. 52 and 70). There also exist a few experimental cases for

which TS < TB. Farle et al. [87F] reported that the Curie temperature depends on the film thickness; TC

of a Gd monolayer on W(110) is 20 K below TC for bulk sample.

It is worthwhile to point out that, despite of these findings, the mechanism responsible for the

enhancement of the surface Curie temperature in these systems is still not at all understood in terms of

fundamental atomic properties.

The synthesis of artificially layered materials has attracted much attention in the last decade. The

discovery of techniques to produce multilayers of rare earth elements that alternate with the non-magnetic

hexagonal structure elements Y or Lu (see Fig. B) has opened up broad new opportunities to study the

magnetic coupling in rare earth systems. Y and Lu have similar physical and electronic properties to the

magnetic heavy rare earth and, because of the relatively small mismatch between the basal plane lattice

parameters (e.g. 1.6 % for Dy and Y), good epitaxial growth is achieved. Artificial single crystal

superlattices of Gd–Y, Dy–Y, Er–Y, and Ho–Y, have been produced and extensively studied (Figs. 80,

168, 283 or 238). These and similar systems offer a near ideal opportunity to investigate the magnetic

exchange couplings and interaction strengths in a system consisting of magnetically concentrated layers

(e.g. Dy) interleaved, in a controlled fashion, with magnetically "dead" layers (e.g. Y, Lu). It should be

noted that such a system is unique and can never be simulated by bulk dilute alloys because of the

attendant reduction in the average exchange interaction with the decreased density of magnetic ions, and

the probability of some nearest neighbours even in very dilute samples.

Magnetic long-range coupling in layered metallic structures has become a key issue in thin-film

magnetism since the observation of oscillatory exchange coupling across non-ferromagnetic spacer layers

[86S, 86G]. Although this phenomenon was first discovered in rare earth superlattices most studies today

deal with transition metal systems because of their technological relevance to magnetic storage devices.

The present theoretical understanding of transition metal multilayers has been developed on the basic of

detailed observations revealing, e.g. short-period oscillations not extend beyond several atomic planes

[91U] as well as 90o coupling [91R].

In metallic RE systems, due to the localised nature of the 4f electrons, the exchange coupling is well

described by the Heisenberg Hamiltonian H = – JSiSj , where J denotes the effective coupling strength

between the localised 4f-spin moments Si and Sj. The exchange coupling in rare earth metals is indirect,

relatively long range, mediated through the 6s and 5d conduction electrons it is oscillatory and usually

described in a Ruderman-Kittel-Kasuya-Yosida picture. Hence, magnetic superlattices containing

magnetic rare earth elements, e.g. Gd or Dy, alternating with a nonmagnetic analogue such as Y, Lu, W,

would seem to be promising systems for investigating the modulation effects derived from a long-range

interlayer exchange coupling. The Y, Lu or other nonmagnetic metal block (Zr, Mo) does not simply act

as an inert spacer between the blocks of magnetic material. Instead, it is found that there is a phase shift,

proportional to the length of the Y, Lu or W block, introduced between neighbouring magnetically active

(Gd, Dy or Tb) blocks.

Neutron and X-ray studies of the rare earth films and miltilayers have revealed a rich complex

magnetic phases which could not have been predicted from the behaviour of the pure bulk magnetic

systems [91M]. This is caused due to the lattice strain and clamping originating at layer interfaces as is

shown in Fig. C. This epitaxial strains and clamping imposed at the film-substrate interfaces alters the

detailed temperature dependence of the magnetic structures most notably by the introduction of

multiphase coexistence. Moreover, while the crystal symmetries of the film remain unchanged from the

bulk, the lattice and magnetic correlation lengths are reduced, consistent with a high degree of disorder.

This disorder may play a significant role in the resulting magnetic order. Indeed, in the low temperature

Er/Y superstructure the magnetic correlation lengths are comparable to the unit-cell size of magnetic

structures and two new magnetic wave vectors falling between 5/21 and 1/4 were observed (see Fig. 284

and Ref. [97H]). It has been found that the driving energy for the ferromagnetic transition in Er

mulitilayers varies linearly with strain [91B], implying that strain effects are more important than even

the artificial modulation of multilayers. The complexity of these interfaces and their dependence on

growth conditions, continue to challenge systematic studies.

Page 4: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

Landolt-Börnstein

New Series III/32D

Temperature [K]T Temperature [K]T

Pola

rizat

ion

[%]

P

Pola

rizat

ion

[%]

P

80 80

60 60

40 40

20 20

0 050 50100 100150 150200 200250 250300 300

Eb = 8.7 eV7.8 eV

surfacesubsurface

a b

Fig. A. Spin polarization of the surface (black dots) and

subsurface (open dots) 4f emission as reflections of the

surface magnetization. The subsurface in-plane magnet-

ization decreases abruptly near 280 K. Between 210 K

and 290 K the in-plane ferromagnetic order decays

rapidly below the surface one [93V].

Dy co

ncen

tratio

n

Atomic plane index

1.2

1.0

0.8

0.6

0.4

0.2

0 10 20 30 40 50 60

σ = 0.1N = 28NA = 14

Dybilayer

B

A

L

Y

Dy

repeat timesN

y [0002]

Nb [110]

sapphire[1120]

substrate

≈ 500 Å

≈ 1500 Å

NB (atomic planes)dB(Å /plane)

B(radians /plane)ωb pB B, (scatt. amp.)

a b

Fig. B. (a) Schematic drawing of the rare earth

multilayer structure. The expanded view of a Y/Dy

bilayer lists the physical parameters characterizing the

individual A(Dy) and B(Y) layers. Y will grow

epitaxially on (110)Nb in 4:3 atomic registration

sequence. The resulting interface strains are relieved

through a thick Y layer applied over the Nb before

commencing the growth of the alternate Dy and Y

layers. (b) Composition profile of the multilayer

obtained from analysis of the neutron scattering data.

The data confirms that interdiffusion is limited to two

atomic planes on either side of the interface [89R].

Page 5: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements

Landolt-Börnstein

New Series III/32D

strain

strain

Er

Lu

Er

Y

Acknowledgement

We would like to thank L. Folcik and A. Hackemer for their helpful technical assistance.

Fig. C. Schematic drawing of the strain in the Er

films near the film-substrate interfaces [97H].

Page 6: 2 Magnetic properties of rare earth elements, alloys and ...

References

86G Grünburg, P., Schreiber, R., Pang, Y., Brodsky, M.B., Sowers, H.: Phys. Rev. Lett. 57 (1986)

2442

86R Rau, C., Eichner, S.: Phys. Rev. B 34 (1986) 6347

86S Salamon, M.B., Sinha, S., Rhyne, J.J., Cunningham, J.E., Erwin, R.W., Borchers, J., Flynn,

C.P.: Phys. Rev. Lett. 56 (1986) 259

87F Farle, M., Baberschke, K.: Phys. Rev. Lett. 58 (1987) 511

89R Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., Flynn, C.P.: Physica B 159

(1989) 111

91B Borchers, J.A., Salamon, M.B., Erwin, R.W., Rhyne, J.J., Du, R.R., Flynn, C.P.: Phys. Rev. B

43 (1991) 3123

91B2 Bucher, J.P., Douglass, D.C., Bloomfield, L.A.: Phys. Rev. Lett. 66 (1991) 3052

91D Drulis, H., Drulis, M., in: Landoldt- Börnstein, NS (Wijn, H.P.J., ed.), Berlin, Heidelberg, New

York : Springer, Vol.III/19d1 (1991), p.1

91M Majkrzak, C.F., Kwo, J., Hong, M., Yafet, Y., Gibbs, D., Chien, C.L., Bohr, J.: Adv. Phys. 40

(1991) 99

91R Rührig, M., Schäfer, R., Hubert, A., Mosler, R., Wolf, J.A., Demokritov, S., Gr nberg, P.:

Phys. Status Solidi (a) 125 (1991) 635

91U Unguris, J., Celotta, R.J., Pierce, D.T.: Phys. Rev. Lett. 67 (1991) 140

91W Ruqian Wu, Freeman, A.J.: J. Magn. Magn. Mater. 99 (1991) 81

93J Jehan, D.A., McMorrow, D.F., Cowley, R.A., Ward, R.C.C., Wells, M.R., Hagmann, N.,

Clausen, K.N.: Phys. Rev. B 48 (1993) 5594

93T1 Tang, H., Weller, D., Walker, T.G., Scott, J.C., Chappert, C., Hopster, H., Pang, A.W., Dessau,

D.S., Pappas, D.P.: Phys. Rev. Lett. 71 (1993) 444

93V Vescovo, E., Carbone, C., Rader, O.: Phys. Rev. B 48 (1993) 7731

94J Jehan, D.A., McMorrow, D.F., Simpson, J.A., Cowley, R.A., Swaddling, P.P., Clausen, K.N.:

Phys. Rev. B 50 (1994) 3085

97H Helgsen, G., Tanaka, Y., Hill, J.P., Wochner, P., Gibbs, D., Flynn, C.P., Salamon, M.B. Phys.

Rev. B 56 (1997) 2635

Page 7: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 1

2.1.2 Survey

Survey of magnetic, electrical, spectroscopic, thermal and mechanical properties of rare earth metals.

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Cerium (Ce) LBIII/19d1, pages 48-54

Ce

fcc bcc

−50 2.58

(750K)

3.21

(1850K)

high temperature susceptibility m(T), Fig. 3 87K1

dhcp

poly

2.4 (H) at 4.2, 20, 30 K, Fig. 6

molecular field, CEF, exchange interaction

87L

Ce

Ce 600

magnetic susceptibility vs. T, Fig. 2

no-crystal field effects 04B = 0, 0

6B = 0, conduction electron susceptibility

χP = 0.75⋅10−6

cm3g

–1

χ(T) and crystal electric field (CEF) parameters, Fig. 1

χP = 0.75⋅10−6

cm3g

–1

04B = 3.64 K, 0

6B = 0.06 K

CEF level scheme: 7 = 0

8 = 230 meV, 8 = 490 meV

6 = 545 meV, 7 = 355 meV

88O

Ce

-bulk

(d=100Å)

or amorphous

(d=5Å)

0.2(100Å)

1(15Å)

(H) at 2 K, Fig. 4

thin multilayers, Ce/Ta

dCe = 5 Å, 15 Å, 100 Å

(T) at 5 T || sample plane, Fig. 5

96A

Page 8: 2 Magnetic properties of rare earth elements, alloys and ...

2

2.1

Rare e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Praseodymium (Pr) LBIII/19d1, pages 55-72

hcp bcc 0 3.62

(750K)

4.47

(1850K)

high temperature susceptibility, Fig. 3 87K1

dhcp

poly

2.4 (H) at 4.2 K, 20 K, 30 K

molecular field, CEF, Fig. 6

exchange interaction

87L

Neodymium (Nd) LBIII/19d1, pages 73-86

hcp bcc 0 3.71

(750K)

4.81

(1850K)

high temperature susceptibility, Fig. 3 87K1

hcp 19.9 quadrupole-q magnetic structure below 4.5 K, Fig. 8

q1 = 0.106, q2 = 0.116

q3 = 0.181, q4 = 0.184

89F

dhcp 1.96

(H||a)

2.09

(H||b)

1.41

(H||c)

wavevectors vs. applied field at 1.8 K, Fig. 10

magnetic satellite vs. T at H = 0, Fig. 11,

magnetic phase diagram H || a and b axis, Fig. 15

TN vs. H2, Fig. 16

thermal expansion vs. T, H || a Fig. 17

H || b, Fig. 18

magnetostriction vs. applied field

H || a, Fig. 19

H || b, Fig. 20

91Z

Page 9: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 3

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

dhcp multi-q modulated magnetic structure,

cubic and hexagonal sites, Fig. 7

basal plane component and magnetic transition temperatures,

Fig. 12

magnetic satellites, temperature evolution for (100) point,

Fig. 13

94L

magnetic phase diagram under pressure, Fig. 14

magnetic neutron diffraction

96W2

double q magnetic X-ray diffraction, Fig. 21 96W

superlattice

epitaxial

582nm

[Nd(3.2nm)/

Y(2nm)]120

dhcp

bulk

cubic site

ordering 8K

helimagnetic

27

32

ZFC magnetization vs. T, Fig. 22

FC magnetization vs. T, Fig. 23

magnetic moment of hexagonal site vs. Nd concentration,

Fig. 24

magnetic moment vs. T, hexagonal and cubic sites, Fig. 25

97E

bulk

dhcp

19.9 2-q structure, between 19.1 K and 8.2 K

4-q structure below 6 K, Fig. 9

97G

Samarium (Sm) LBIII/19d1, pages 87-90

hcp bct magnetic susceptibility,

high temperature range, Fig. 26

87K1

Page 10: 2 Magnetic properties of rare earth elements, alloys and ...

4

2.1

Rare e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

dhcp

s.c.

poly

spin-

reorientation

transition

specific heat, temperature dependence 2 K…32 K, Fig. 34

anomalies at: 9.6 K, 13.7 K, 20.4 K

excess entropy:

(4.0 ± 0.5) J mol–1

K–1

for 9 K…10 K

(1.14 ± 0.1) J mol–1

K–1

for 13.7 K peak

(0.114 ± 0.02) J mol–1

K–1

for 20.4 K peak

89S

dhcp neutron scattering

intermultiplet transition in Sm3, Fig. 29

form factor in Sm3+

, Fig. 30, Fig. 31, Fig. 33

spin-orbit transition in Sm metal, Fig. 32 6H5/2

6H7/2 135 meV

6F1/2 760 meV

6F3/2 780 meV

6F5/2 850 meV

6F7/2 930 meV

93N

bct fcc 4…5.5 magnetic moment, ultra-high-pressure Fig. 27

energy calculation of the Bain path (energy vs. c/a ratio),

Fig. 28

93S1

Europium (Eu) LBIII/19d1, pages 91-97

Eu/Se

superlattice

AF spin flop state

transition,

Hcr at 3750G, 2150G,

1000G

Mössbauer spectra vs. applied pressure at 44 K, Fig. 36

isomer shift, Fig. 37

hyperfine field, Fig. 38, Fig. 39

valence change of 0.5 electron intermediate-valence state

87F1

hcp-bcc

transition

high temperature susceptibility, 750 K…1850 K, Fig. 35 87K1

Page 11: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 5

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Eu/Se

superlattice

AF spin

flop state

transition,

Hcr at 3750G,

2150G, 1000G

magnetic properties of Eu/Se,

magnetization vs. applied field at 1.9 K, Fig. 40

magnetic anisotropy Ku , TN vs. d (Se-Eu distance),

Hcr ∝ d–0.8

Ku ∝ d–0.5

J ∝ d–1.1

magnetization vs. T, Fig. 41

magnetic phase diagram, Fig. 42

98D

Gadolinium (Gd) LBIII/19d1, pages 98-108

Fig. 56 291.85 spin dynamics

critical exponents

PAC spectra, Fig. 57

86Ch

317 7.55 7.98 magnetization in the pulsed field, Fig. 45

magnetization vs. T at different fields, Fig. 46

effective field constant, = (5.0 ± 0.41)⋅103g cm

–3

magnetocaloric effect, Fig. 64

short range order parameter, Fig. 58

86P

310 surface ferromagnetic order

spontanous magnetization, Fig. 47

86R

Gd(0001)/W(110)

monolayer

80Å (27 layers)

292.5 (bulk)

288(2) (80Å)

281(1) ( A=1.6)

271(1) ( A=0.8)

electron-spin-resonance study, Fig. 111, Fig. 112

g = 1.97, H⁄ T = 5 Oe K–1

EPR intensity, Fig. 113

87F

Page 12: 2 Magnetic properties of rare earth elements, alloys and ...

6

2.1

Rare e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

heat capacity, 0 < T < 16 K, Fig. 62

Cp(T) = (4.48 T + 1.37 T1.5

+ 0.404 T3) mJK

–1mol

–1

= (4.48 ± 0.07) mJK–2

mol–1

, D = (169 ± 1) K

87H

[GdNGd/YN ]M

superlattice

NGd=10

NY=6-24

M=76;225

magnetic properties

magnetization vs. magnetic field, T = 12 K, Fig. 80

magnetization - temperature dependence, 0 < T < 300 K,

Fig. 81

remanence and saturation field oscillatory dependence,

Fig. 83

oscillatory period: 7 atomic layers

overall oscillation range: 20 atomic layers

87K

thin films

over glass

TC vs. annealing temperature, Fig. 69

273 K < TC < 293 K

88N

Gd(001)/W(110)

monolayer

80Å (≈27 layers)

EPR magnetic resonance near TC

field vs. T, Fig. 114

anisotropy coefficient N⊥ = 0.692(1) for monolayer

89F

s.c. 317(39) magnetic susceptibility, Fig. 49

ganis = 2.52⋅10–4

, giso = 5.28⋅10–3

89G

hcp

s.c.

muon spin rotation, 0 < T < 300 K, Fig. 61 90H

Gd(0001)/W(110) ac susceptibility, Fig. 97

Hopkinsen effect, TH = (289 ± 1) K

90S

Page 13: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 7

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Gd(0001)/W(110)

films, d=30Å

photoemission, Fig. 106, surface state 223d5 rx −91L

Gd 7.0 Compton profile, Fig. 55

spin polarization

(0.53 ± 0.08) µB /at

91S

hcp

Gd(0001)

surface

antiferromagnetic coupling surface layer against FM bulk,

energy Gd(0001) slab vs. distance to adjacent underlayer,

Fig. 70

dFM= 5.55 au; dAFM= 5.77 au

91W

Gd(0001)/Gd

hcp

AF/FM magnetic configuration for a 6-layer Gd(0001) slab, Fig. 71

localized 2d z state

91W1

Gd(0001)/W(110)

films, d=20Å

surface-state binding energy, Fig. 108 92D

Gd(0001)/W(110) surface magnetism, Fig. 101

photoemission spectra, Fig. 103

92M

Gd/Nb films

dGd=11-103Å

magnetooptic Kerr effect

2 K < T < 295 K, µ0H < 0.3 T

remanent magnetization, Fig. 84

in-plane magnetization Mr, coercive field Hc , Fig. 85

domain temperature vs. film thickness

TC /TC( ) ∝ d–

, 1.6

93P

Page 14: 2 Magnetic properties of rare earth elements, alloys and ...

8

2.1

Rare e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Gd(0001)/W(110)

films, d=80Å

4f photoemission at 50 K, Fig. 59, Fig. 60 4f6–

7FJ transition

Gd-4f photoemission spectra, Fig. 105

h = 200 eV

93S2

Gd(0001)/W(110)

films, hcp

magnetic reconstruction of Gd(0001) surface, Fig. 72

photoemission from 4f core vs. T, Fig. 107

surface ordering TCS =(353 ± 2) K

bulk ordering TCB = 293 K

93T1

Gd(0001)/W(110) 353(2) photoelectron spectroscopy, Fig. 102 93V

Gd(0001)/W(110) ac susceptibility, Fig. 98, Fig. 100 94A

Gd(0001)/W(110)

films, d=10-100nm

annealing effects on coercive field, Fig. 95

MOKE hysteresis loops, Fig. 109

94P

Gd(0001)/W(110)

d=80Å

core-level photoemission, Fig. 104

spin-orbit splitting SO(4d) = 4.8 eV

95A

Gd(0001)/W(110)

films, d=10-130nm

hcp

magnetic reorientation, Kerr effect, coercive field, HC(T),

H||aand effective anisotropy, Fig. 73, Fig. 96

remanent magnetization vs. T, Fig. 94

in-plane susceptibility vs. T, 120 K < T < 300 K,

d = 28…130 nm, Fig. 99

95B1

Page 15: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 9

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Gd/Y films

d=3-1000Å

magnetic measurements,

2 K < T < 300 K, 0.01 T ≤H ≤ 0.3 T,

magnetization vs. T at T > 100 K and H = 0.01 T, Fig. 74

saturation magnetization vs. T, Fig. 77

remanence vs. T, Fig. 78

4 K < T < 300 K, d = 4…1000 Å

magnetization vs. magnetic field, Fig. 79

coercive field HC(T), Fig. 82, TC ∝ d–1.6

95G

s.c. magnetic entropy, Fig. 67 96D

Gd/Mo

multilayers

3.3nm

7.63 interface pinning missing moment vs. dMo, Fig. 87

magnetization vs. field at 5.5 K < T < 250 K range, Fig. 88

magnetization at 5 K, Fig. 89

96H

Gd/W

mulitlayers

7.63 finite-size effects

saturation magnetization, Fig. 68

Ms = 2017 - 2112 × (1/dGd)

magnetization of Gd/W vs. H, Fig. 90

Curie temperature vs. layer thickness, Fig. 91

[TC( ) – TC(d)]/TC( ) = (d/d0)–

, = 1.5

96J

hcp 5.1

8.0

plastic deformation

magnetization vs. H, Fig. 50

magnetization vs. T, 50 K < T < 350 K, Fig. 51

96M

Gd/W

multilayers

dW=18Å

8Å<dGd<85Å

6.1 average moment per Gd, vs. layer thickness, Fig. 92

total moment per Gd layer, Fig. 93

97L

Page 16: 2 Magnetic properties of rare earth elements, alloys and ...

10

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

film, d=100Å 490 EPR spectra, Fig. 115

signal intensity, Fig. 116

linewidth, Fig. 117

g value vs. T, Fig. 118

exchange FM interaction inside layer J = 0.07⋅10–3

eV

97T

s.c. 7.63 magnetization vs. H and T, H || [0001], Fig. 43

H || [1010], Fig. 44

ac magnetic susceptibility

H || [0001] and [1010], Fig. 52, Fig. 53, Fig. 54, Fig. 64

98D

291 heat capacity in magnetic field, Fig. 63

magnetocaloric effect, s.c., Fig. 65

magnetic entropy vs. T, Fig. 66

TC ≈ 6 K/T

98D

ultrathin

films

155 spontaneous magnetization, Fig. 48

suppression TC vs. thickness d, Fig. 75

TC ∝ d–1

magnetic hysteresis loop, Fig. 76

98G

Terbium (Tb) LBIII/19d1, pages 109-128

TCb=

220K

TNb=

228K

top most surface layer

electron spin polarization vs. T, Fig. 142

surface Curie temperature TCs = 248 K

88R

(100) platelet neutron diffraction topography, Fig. 120

helimagnetic-ferromagnetic phase coexistence

89B

Page 17: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 1

1

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

s.c. magnetic phase diagram from elasticity modulus, Fig. 119 89K

s.c. magnetocaloric effect, magnetic phase diagram, H-T,

Fig. 126

Hw = 0.099 T, Tw = 228.5 K

89N

s.c. F HAF 236

1=210-222K

HAF P

2=223.3-230K

ac magnetic susceptibility '(T)

the wall energy Ew/2 B22, Fig. 128

thermal modulation wave || b axis, Fig. 137

91McK

hcp F spiral phase 220 232 9.9(1) pressure effect on critical fields, paramagnetic Curie

temperatures, efficient magnetic moment

(H), 0 < H < 14 kOe, H || a, Fig. 130;

magnetic phase diagram, 200 K < T < 235 K, Fig. 131

(T); || b as function of pressure, Fig. 132

-effect vs. magnetic field, H || a

150 K < T < 230 K, Fig. 133

volume magnetostriction, (2), Fig. 139

magnetostriction vs. T, H || b and H || a, Fig. 140, Fig. 141

d 1/dp = –1.17⋅10–9

K cm2dyn

–1

d 2/dp = –0.8⋅10–9

K cm2dyn

–1

magnetic anisotropy constant in the base plane, K6

(1/K6) ( K6/ p) = 0.61⋅10–11

cm2dyn

–1

91N1

hcp F spiral phase 220 232 9.0 9.34 X-ray scattering study, magnetic wavevector vs. T, Fig. 124

turn angle per layer: 17o < < 21.8

o for 220 K < T < 235 K

92G

Page 18: 2 Magnetic properties of rare earth elements, alloys and ...

12

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

hcp 225 231 neutron diffraction study, turn angle vs. T, Fig. 123

TN and TC vs. pressure, Fig. 129

dTN/dp = –0.82 K/kbar

dTC/dp = –1.28 K/kbar

Cd i/dp = 0.01/kbar

92K

221 229 time dependent effects

ac magnetic susceptibility, Fig. 134

' vs. H, Fig. 135

' vs. T, Fig. 136

93McK

s.c. 9.3 inelastic neutron scattering under pressure, magnon

dispersion at 90 K

magnon dispersion || c axis at 90 K, Fig. 121

interplaner exchange parameters, Fig. 122

energy gap = 1.44 meV at 4.3 kbar

= 2 meV at 15.2 kbar

94K

Tb(0001)/W(110)

film, 150Å thick

photoemission experiments

4f core-level photoemission spectra, at 110 K, Fig. 143

95A

Tb/Y

superlattices

Tb(26Å)/Y(44Å)×50

magnetization vs. T

215 K < T < T1, Fig. 144

95D

s.c 221

F HAF

magnetization vs. T, 50 K < T < 250 K, H || a, Fig. 125

magnetic entropy change, H || a, Fig. 127

96D

221

F HAF

230

HAF P

Magnetostriction vs. T, Fig. 138 97M

Page 19: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 1

3

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Dysprosium (Dy) LBIII/19d1, pages 129-149

Dy/M

bilayer

dDy=70-100Å

10.4(5)

X-ray analysis and magnetic measurements, Fig. 176

magnetization σ vs. H at 10 K, Fig. 179

M = M(0) (1 – BT3/2

e– /T

), : anisotropy gap,

150 K < < 210 K for Dy/Y

= constant = 20 K for Dy

87B

Dy/Y

superlattices

[Dy15/Y14]64

[Dy9/Y8]90

176

163

7.6

H state

neutron diffraction analysis, magnetic diffraction peaks

vs. T, 10 K < T < 160 K, Fig. 170

magnetic peaks at T = 10 K, Q = 1.96, 2.04 and 2.12 Å–1

,

field dependence of the helical state, neutron diffraction,

Fig. 171

field induced ferromagnetism, magnetization measurements

along the easy and hard directions, Fig. 178

zero field diffraction || c axis

interplanar space and turn angle vs. T, Fig. 188

turn angle Y = 52o = 0.29 wavevector = 0.31 Å

turn angle Dy(T) = 0.175 (31.5o) at 10 K

average turn angle for Dy/Y superlattice: 33.5°

87E

Dy/Y multilayers

dDy=16 planes

dY =10-22 planes

long-range helical spin-ordering

neutron diffraction studies along (000l), T dependence, Fig.

169

coherent Dy layer moment vs. T, 0 < T < 180 K, Fig. 177

87R

91.1(2)

92.1

180.6(1) calorimetric study, s.c., energy change at AF, F and HAF

transition temperatures, Fig. 161

energy peak = 7 Jmol–1

the latent heat (35 ± 2) Jmol–1

at 91.1 K

88Å

Page 20: 2 Magnetic properties of rare earth elements, alloys and ...

14

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

spiral

AF

10.6 LIII absorption edge magnetic scattering, Fig. 167

wavevector = 0.24c* at 176 K

= 0.15c* at 83 K

E = 7.798 keV

89I

Dy/Y magnetic multilayers

neutron scattering [Dy14/Y22]89, Fig. 168

89R1

Dy/Y

superlattice

neutron scattering studies, peak intensity, ferromagnetic and

helical components vs. magnetic field, Fig. 172

magnetic satellites for [Dy12/Y9]100 at 10 K, Fig. 173

net layer magnetic moment vs. T, 0 < T < 180 K, Fig. 181

magnetic coherence length as a function Y thickness,

Fig. 189

89R

s.c.

85 178

magnetocaloric effect and pressure influence

specific magnetization and critical field, H||a, Fig. 149, σ(H),

Fig. 150

volume magnetostriction for H||a, Fig. 158, Fig. 159

magnetoelastic energy change, magnetic anisotropy, elastic

energy and energy barrier.in HAFM FM transition,

Fig. 162

magnetocaloric effect H || a and b axis, Fig. 166

total entropy, 140 K < T < 200 K, Fig. 163, Fig. 164,

magnetic entropy vs. applied field || a axis, Fig. 165

Néel point TN, dTN/ dp = –6⋅10–10

K cm2dyn

–1

Curie point TC, dTC/dp = –13⋅10–10

K cm2dyn

–1, tricritical

point 165 K

91N

Page 21: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 1

5

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Dy/M

M=Ta,Lu,Y,Co

nanostruct.

multilayers

magnetic properties

magnetization vs. H, Fig. 180

–50 kOe < H < 50 kOe, thickness dependence

magnetization, vs. T, Fig. 182

intrinsic anisotropy Ku,

thickness dependence

Ku = 1.4⋅107erg cm

3 at 4.2 K

Ku = 2⋅106erg cm

3 at 300 K

91S

s.c. 90 180 c axis magnetic moment

ac susceptibility H || b and c axis, Fig. 155

magnetization vs. T, Fig. 157

91W2

Dy/Lu films 85(bulk)

100

(400Å)

125

(145Å)

175(40Å)

neutron diffraction

magnetic coherence length vs. number Lu interlayers,

Fig. 191

magnetization vs. T, Fig. 192

multipeak structure at 100 K

magnetic coherence of 1.5 bilayers

turn angle = 28o ± 1° per Dy plane

interlayer coherence lost at 80 Å of Lu

energy barrier between helical and ferromagnetic state is

proportional to

(1 – cos )2 / cos , 28° < < 35

TN for Dy/Lu

93B

hcp =43° per

layer at TN

=26.5° per

layer at TC

178

(bulk)

10.33 magnetic properties, Lu/Dy trilayers

magnetization vs. T, 0 < T < 200 K, Fig. 193

pDy vs. H, Fig. 194

TC = TN for 40 Å film

93B1

Page 22: 2 Magnetic properties of rare earth elements, alloys and ...

16

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Dy/Zr

[Dy(xÅ)/Zr(30Å)]n,

8<x<30Å

75 magnetic measurements

magnetization vs. T, 0 < T < 300 K, Fig. 197

hysteresis loops at 10 K, Fig. 198

volume anisotropy energy

Ku ≈ –5⋅109 erg cm

–3

surface anisotropy energy

Ks ≈ 200 erg cm–2

93L

Dy/Lu

epitaxial

50Å thick

HAF F 175 magnetic phase diagram for epitaxial Dy

magnetization, σ vs. H, Fig. 175

H-T vs. basal plane strain , Fig. 187

magnetic spiral, q = 0.1 Å−1

(10 planes)

93T

Dy/Sc

hcp

c-[Dy(25Å)/Sc(40Å)]60

c-[Dy(14Å)/Sc(21Å)]85

150

147

100

neutron diffraction experiments, Fig. 200

magnetization vs. T

for ZFC and FC for H || c, and H ⊥ c, Fig. 201

93T2

Dy/Lu 167 neutron diffraction studies

difraction scans at 150 and 170 K, Fig. 190

94R

Dy/Sc

superlattice

Dy(20Å)/Sc(xÅ)64

20<x<60Å

43

(40%Dy)

magnetoresistance studies, Fig. 199 94T2

Page 23: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 1

7

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Dy/Cu(111) films

Dy(20Å)/Cu(100Å)×30

Dy(40Å)/Cu(100)×20

magnetic relaxation measurements

magnetization vs. T and vs. H, Fig. 195,

anisotropy studies ZFC and FC

blocking temperatures:

TB = 2.5 K for Dy(20Å)

TB = 25 K for Dy(40Å)

94T3

Dy(0001)/W(110)

film, 150Å thick

photoemission experiments

4f core-level photoemission spectra, at 55 K, Fig. 174

95A

s.c. helical para

magnetic

phase

transition

neutron diffraction, ultrasonic studies,

intensity of (0,0,2– ) reflection vs. T, Fig. 148

ultrasonic velocity, v33 and attenuation coefficient, 33,

Fig. 160

95dP

Dy/Zr

multilayers

[Dy(xÅ)/Zr(30Å)]n

6<x<30Å

magnetization results, Fig. 196

0 < T < 300 K

95L

magnetization process, X-ray diffraction study, diffraction

pattern at 0, 3 kOe and 8 kOe and 95 K, Fig 147

FM phase volume fraction, Fig. 156

95S

magnetization vs. T, s.c. ,

H || a, Fig. 151

96D

fan 85 179 ac calorimetry,

specific heat measurements

phase diagram, 0 < H || a < 17 kOe, Fig. 145

96I

Page 24: 2 Magnetic properties of rare earth elements, alloys and ...

18

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

1 02

Dy/Y

superlattice

neutron diffraction measurements

magnetization vs. T, Fig. 186

0 < T < 300 K

96T-B

magnetic phase diagram H-T, Fig. 146

magnetization measurements vs. T, Fig. 152, Fig. 153 for

H || b

magnetization vs. applied field, H || b, Fig. 154

Ta-ha = 93 K, F (angular) AF (helical)

Tha-p = 180 K, AF P (paramagnetic)

97A

Dyn/Y15

5<n<25

magnetoelastic stress, B || a,

in applied field, 0 < µ0H < 12 T

magnetoelastic stress isotherms, Fig. 183

97dM

Dy/Y helimagnetic

spiral

magnetic measurements, neutron scattering

interplane turn angles

temperature dependence 0 < T < 175 K, Fig. 184

heli- and ferromagnetic phase ranges vs. T, Fig. 185

97T-B

Holmium (Ho) LBIII/19d1, pages 150-164

hcp conical spiral 20 131 10 magnetic X-ray scattering

turn angle ≈ 50° / layer at TN

turn angle ≈ 30° / layer at TC

modulation wavevector q/c*, Fig. 209

85G

magnetic X-ray scattering

layer commensurate structure, in 17 < T < 25 K, Fig. 208

magnetic wavevector

86B

Page 25: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 1

9

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

helical 133 elastic neutron diffraction

elastic constant c44 annd c66, temperature dependence,

Fig. 232 and Fig. 233

commensurate lock-in transition at 17.8 K

anomalies at TN = 133 K, 97.4 K, 24.5 K, 19.8 K and

TC = 17.8 K

88B1

hcp elastic neutron scattering; 18 < T < 30 K

magnetic structure for b = 5 (q = 1/5c*), Fig. 206

88C

dhcp

s.c.

flat spiral

conical spiral

at 19.46K

specific heat temperature dependence, Fig. 234

2 K…32 K, peak at 19.46 K;

latent heat (2.7 ± 0.3) J mol–1

excess entropy: (0.14 ± 0.02) J mol–1

K–1

peak at 17.3 K

excess entropy: (0.10 ± 0.02) J mol–1

K–1

89S

hcp incommen-

surate spiral

10.3 magnetic X-ray scattering

magnetic satellite evolution vs. T

17 < T < 25 K, Fig. 210

90B1

s.c. magnetic measurements, magnetic moment vs. T, H || b,

Fig. 227

90B2

helifan magnetic energy vs. magnetic field at 50.2 K and H || b,

Fig. 211

theoretical neutron-diffraction pattern at 50 K, Fig. 212

magnetic structure sequence:

helix helifan(3/2) fan ferro

as field increases

90J

Page 26: 2 Magnetic properties of rare earth elements, alloys and ...

20

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

hcp spiral conic

al at 16K

16 132 spin-slip structures

magnetization measurements

magnetic phase diagram H || a, Fig. 202,

4 < T < 140 K; µ0H up to 55 T

H-T diagram along the c axis, Fig. 205

magnetization vs. T, Fig. 224 and Fig. 225

anomalies at 20 K, 24 K

at 42 K for H || b and anomaly at 98 K for H || c

spin slip spacing of 11, 8, 5 and 2 layers

90W

text

hcp qm=(5/11)c* 132 dispersion relationship, neutron experiments, spin wave gap

in q = (5/11)c* 0.6 meV

spin wave dispersion at 19.5 K, Fig. 214 02B = 0.029 meV, 0

6B = –0.956⋅10–6

66B = 9.210⋅10

–6

91McM

conical 20 132 pab=9.5

pc=1.7

susceptibility measurements

temperature dependence of p

conical-to-ferromagnetic transition, Fig. 226

temperature dependence of p, para-to-helical

antiferromagnetic transition, Fig. 228

91S2

neutron diffraction studies

helifan (3/2) structure at 50 K, Fig. 213

92J

s.c. cone

q=1/6c*

133 neutron diffraction measurements

neutron scattering intensity at 25 K

H || b axis, H = 0.25 T, Fig. 221

92J1

Page 27: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 2

1

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

s.c. helical-to-

conical

structure

1.53(1)

H||c at

4.2K

neutron diffraction around 20 K,

magnetization vs. T,

5 < T < 45 K, Fig. 223

temperature evolution: intensity and width, interplane turn

angle around 20 K transition, Fig. 219

92P

Ho/Lu

Ho40/Lu15

Ho20/Lu15

cone phase

=1/6c*

40(5) neutron diffraction experiments

novel ferromagnrtic phase

turn angle vs. T, 0 < T < 120 K, Fig. 250

Lu layer turn angle: 40°/ layer

93S

hcp 131.2 10 neutron scattering

magnetic critical fluctuations

neutron-scattering scans at (0,0,2,– ) and (0,0, ), Fig. 215,

Fig. 216

turn angle per plane along c axis: φ ≈ 50°

94T3

s.c. spiral-to-

conical phase

X-ray magnetic scattering,

magnetic modulation wavevector

vs. T, 0 < T <140 K, Fig. 217

94H

helimagnetic neutron diffraction studies

spiral wavevector vs. T

124 K < T < 133 K in 3 T H || b axis, Fig. 218

lock-in = 5/18

94T

Page 28: 2 Magnetic properties of rare earth elements, alloys and ...

22

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Ho/Y

superlattice

(Ho40Y15)40

X-ray and neutron diffraction measurements

neutron scattering vs. T

10 < T < 130 K, Fig. 235

turn angle-temperature dependence

film and bulk Ho, Fig. 242

turn angle vs. lattice thickness, Fig. 241

94C

helix turn angle

wavevector kH , Fig. 243

95A1

neutron diffraction, ultrasonic studies

intensity of (0,0,2- ) reflection vs.T, Fig. 220

ultrasonic velocity v33 and attenuation coefficient 33,

Fig. 229

velocity v33 vs. T along c axis, Fig. 230

95dP

Ho/Zr

multilayers

Ho(30Å)/Zr(30Å)

magnetization in high magnetic field,

magnetization and magnetoresistance

vs. magnetic field at 4.2 K, Fig. 244 and at 50 K, Fig. 246

magnetoresistance oscillation vs. Zr layers thickness,

Fig. 245

95R

Ho/Lu

superlattice

magnetic phase diagram

H || ab, (Ho40/Lu15)50, (Ho20/Lu10)50, Fig. 240

low-temperature magnetic structure at 19.5 K, Fig. 207 95S2

Page 29: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 2

3

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Hon/Lum

superlattice

n=11-31

m=19-50

magnetic phase diagram

0 < µ0H < 1 T, 0 < T < 140 K, Fig. 238

Number TC [K] TN [K] H to F

of layers field [T]

11.5 40 118 0.8

12 34 120 1.0

17.5 27 127 1.6

21 27 - 1.7

31 26 127 2.0

95T1

Ho/Y

superlattice

c axis cone magnetic susceptibility,

magnetic phase diagram,

H || b, 0 < T < 140 K, 3000 Å-film, Fig. 237

Néel temperature change with Y thickness, Fig. 236

95T2

s.c. =(5/18)c* 132.9 ultrasonic measurements

elastic constant c33 and 33 of 5/18 lock-in plane, Fig. 231

95V

Ho/Lu

superlattice H→F→fan 20

40

magnetoelastic stress

magnetic phase diagrams, Fig. 253

96A1

[Ho6/Lu6]100

superlattice

magnetoelastic stress isotherms

0 < µ0H < 12 T, Fig. 239

96dM

Page 30: 2 Magnetic properties of rare earth elements, alloys and ...

24

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Ho/Sc

superlattice

(Hon/Scm.)

n=20-30

m=10-40

50(5)

127(2)

132(5)

125(3)

neutron diffraction technique

Ho30/Sc20; 4/23c*

Ho20/Sc20; 1/6c*

Ho20/Sc40; 2/11c*

neutron scattering at 4 K, Fig. 251

turn angle vs. T, Fig. 252

97B-J

magnetoresistance

H-T phase diagram, H || b

2 K < T < 140 K; H up to 5.5 T, Fig. 203

97G1

helicon critical lattice versus magnetic field

magnetic field dependence of c-lattice parameter,

0 < µ0H < 6 T, Fig. 222

97O

Ho/Lu

superlattice

(Hon/Lu15)× 50

n=8-85 planes

c/2 superation

magnetoelastic stress

temperature dependence, at 12 T, Fig. 247

magnetoelastic stress vs. Ho number planes at 10 K and 12 T,

Fig. 248

stress isotherms vs. applied field, H || b easy axis, Fig. 249

98dM

Erbium (Er) LBIII/19d1, pages 165-174

Monocrystal

10<d<70nm

magnetic susceptibility, Fig. 272 87C

[Er23/Y19]100 ||=33 TN =77

TN⊥=25

9.9 magnetometer measurements

magnetization vs. T, H || c

H = 5 kOe, Fig. 289

88B

Page 31: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 2

5

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

19.2 85 scanning microcalorimetry,

ferromagnetic first order transition, Fig. 276, Fig. 277

the latent heat, HL = (18.5 ± 1) J mol–1

three endothermic peaks within 21 K < T < 26 K

at 25.3 K: HL = (1.2 ± 0.3) J mol–1

at 21.6 K: HL = (0.5 ± 0.3) J mol–1

two peaks in 50 K < T < 55 K range

53.4 K: HL = (1.3 ± 0.3) J mol–1

)

50.8 K: HL = (0.7 ± 0.3) J mol–1

)

89Å

Er/Y

superlattice

[Er32/Y21]

78(1) neutron diffraction studies

magnetic peaks, Fig. 282

magnetoelastic energy 1.4 K/atom

89R

Er/Y

multilayers

84 8.5 turn angles and magnetic moment vs. T, Fig. 283

0 < T < 80 K

TN = 78 K for [Er32/Y21]

TN = 78.5 K for [Er23/Y19]

TN = 72.5(10) K for [Er13/Y26]

89R1

hcp 18 81 magnetic X-ray scattering

magnetic satellite intensity vs. T in 0 < T < 60 K, Fig. 260

90B1

Er/Y

superlattice

dEr=375-14.500Å

dY=175-2200Å

TN||=45

TN⊥=28

structural and magnetic properties

schematic drawing of Er/Y super lattice, Fig. 281

field dependence of magnetization for 9500 Å films, Fig. 279

critical field vs. film thickness at 10 K and 20 K, Fig. 278

magnetization vs. magnetic field 0 < H < 40 kOe, Fig. 287

critical field vs. T, Fig. 286

saturation moment at 10 K, 208 G cm3g

–1 for [Er23.5 / Y19]100

91B

Page 32: 2 Magnetic properties of rare earth elements, alloys and ...

26

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

Er/Lu

d=400-9500Å

21 magnetization vs. T, H || c; 0 < T < 100 K, Fig. 291

modulated spin state vs. T, Fig. 261

91B1

s.c. 8.2 spin-slip transition

magnetization vs. magnetic field, 0 < H < 30 kOe, Fig. 266

tricritical point at T = 68 K

spin-slip structure; = 5/21, 5/24, 5/27

91G

s.c. 84 magnetoelastic effects

c33 temperature dependence, 0 < T < 90 K, Fig. 292

sharp points at TN , TN = 52 K and TC = 18 K

c11 and 11 between 15 K < T < 60 K

lock-in structure, b = 7 evidence, Fig. 293

92E

hcp Cone lock-in

q=(1/4)c*

CAM

7.0 || c,

4.5 in

base

plane

magnetic structure

neutron scattering along c axis

wavevector vs. T, Fig. 262

lock-in cone structures vs. T, Fig. 264

magnetic moments in intermediate phase q = (1/4)c*

pxy = 4.3 µB; pz = 7.3 µB

92L

LSW

FS

helical

20 85 magnetic phase transition

magnetization vs. T, Fig. 265

transitions:

paramagnetic antiferromagnetic helical ferromagnetic

spiral(FS)

Q2 = 85 K, QB = 52 K, Q1 = 20 K

p|| = 7.8 µB, p⊥ = 4.4 µB at 6 K

wavevector = 5/21 at T < 18 K

92S

Page 33: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 2

7

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

19 heat capacity studies

zero-field (1.5 K…20 K) heat capacity, Fig. 275

zero-field (20 K…80 K) heat capacity, Fig. 274

electronic coefficient: = (8.7 ± 0.1) mJ mol–1

K–2

D= (176.9 ± 0.4) K

Five anomalies at: 25.1 K, 17.5 K, 42 K, 48.9 K, 51.4 K

C = αT–2

+ 0.585 T–3

– 0.120 T–4

+ T + T3 + dT

3exp(– /T)

at H = 0

H = 0 µ0H = 10 T

c = 18 mJK/ g·atom 37 mJK/g·atom

= 8.7 mJK/g·atom 100.5 mJK/g·atom

= 0.351 mJK/g·atom 351 mJK/g·atom

d = 8.9 mJK/g·atom 3.8 mJK/g·atom

(K) = 11.6 K 9.1 K

93P1

neutron diffraction studies

spin configuration at 4.5 kbar and at 11.5 kbar, Fig. 259

93K

neutron scattering

magnetization measurements

phase diagram (H-T), 0 < H < 50 kOe; 0 < T < 60 K, Fig. 256

stages of collapsing q = 2/7c* structure vs. magnetic field,

Fig. 258

magnetization vs. field; H || a axis, at 10 K; Fig. 267

phase diagram in a basal plane, Fig. 268

94J

s.c. X-ray diffraction; 4.2 K < T < 100 K

H-T phase diagram vs. crystallographic directions, Fig. 257

95B

Page 34: 2 Magnetic properties of rare earth elements, alloys and ...

28

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

s.c. 82(1) high pressure neutron diffraction at 11.5 kbar and 14 kbar

modulation wavevector Q = q(2 /c) vs. T, Fig. 263

magnetic moment distribution at 4.5 K at rn in the n'th basal

plane

px(rn) / µB = 4.41cos(rn · Q + /2)

py(rn) / µB = 0

pz(rn) / µB = 10.16cos(rn · Q + 0)+

3.33cos(rn· Q+ ) + 2.67cos(rn·5Q+0) + 1.83cos(rn · 7Q+ )

95K

X-ray diffraction study

first order magnetic transition, Fig. 273

95T

s.c. 18 TN||=89

TN⊥=53

magnetic transition identification

magnetization, ac susceptibility,

electrical resistance, thermal expansion studies

ac susceptibility vs. T, 0 < T < 100 K, Fig. 270, Fig. 269

TN|| = 52.5 K, TN⊥ = 87.9 K

spin-slip transition at: 26.6 K, 28.5 K, 29.7 K, 35.8 K, 43.0 K

and 51.0 K,

magnetization vs. T, H || c and b axis, Fig. 271

spin-slip transition at: 26.8 K, 29.1 K, 34.4 K, 41.7 K, 51.3 K

TC = 19.5 K, TN|| = 87.4 K

95W

Page 35: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 2

9

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

19 87

53

b axis magnetic phase diagram, Fig. 254

transition at: 22 K, 42 K, 48 K

53 K(TN⊥) and 87 K(TN||)

q Structure T [K]

5/21 F 18 (TC)

1/4 2(44) 18-25

6/23 2(444443) 25.5-28.5

5/19 2(44443) 29

4/15 2(4443) 32.5-35.5

3/11 2(443) 40

2/7 2(43) 49.5-52.5

96W2

epitaxial Er

s.c.

d=2000Å

magnetization vs. magnetic field, 0 < H < 30 kOe at 10 K,

Fig 288

critical field vs. T, Fig. 290

magnetization vs. T, at 200 G, Fig. 280

96C

Erm/Y15

10<m<30

magnetoelastic stress measurements

magnetoelastic isotherms,

in field 0< µ0H < 12 T, H || a, Fig. 285

conical fan structure transition, at µ0Hcr1 = 3 T

fan FN structure transition at µ0Hcr2 = 8 T

FN F structure transition at µ0Hcr3 = 12 T

97dM

films

d>>1µm

Er/Y

Er/Lu

86 X-ray scattering

magnetic wavevector vs. T, Fig. 284

two new magnetic phases with vectors 11/45 and 6/25

≈ 0.283 at TN = 86 K

≈ 0.292 at 52 K

97H

Page 36: 2 Magnetic properties of rare earth elements, alloys and ...

30

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

s.c. TN||

TN⊥

magnetic phase diagram, Fig. 254

magnetoresistance measurements, c axis 10 K < T < 100 K,

µ0H < 5.5 T

97W

Thulium (Tm) LBIII/19d1, pages 175-179

hcp 25 54 7 X-ray diffraction studies

LIII absorption edge, Fig. 305

E = 8648 eV

90B

56 magnetization s.c.

temperature dependence vs. magnetic field 0 < T < 80 K,

Fig. 296

4 - 3 seven-layers ferrimagnetism, ps = 1 µB

90D

seven layer

ferrimagnetic

antiphase at

5K

58.5 magnetic excitations, inelastic neutron studies

constant- scans at = (1,1, )

( = 0, 0.3, 0.8), Fig. 300

dispersion gap ( 8meV)

90F-B

Page 37: 2 Magnetic properties of rare earth elements, alloys and ...

2

.1 R

are e

arth

ele

men

ts 3

1

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

s.c. pora→AF→CAM→ferri

→ferro

33 58 1.025

(ferri)

7.06

(ferro)

magnetic transitions Tm s.c.

magnetization, ac susceptibility and calorimetric

measurements

isothermal magnetization at 5 K, H || a and H || b axis, Fig.

295

critical field for ferri ferro transition 33 kOe

ferrimagnetic saturation moment; ps = 1.025 µB/atom

ferromagnetic saturation moment, ps = 7.07 µB/atom

ac susceptibility vs. T, Fig. 298, 299

antiferromagnetic transition at 58 K

endothermic peak at 33.4 K with HL = (0.8 ± 0.2) J mol−1

,

Fig. 306

91Å

57.5 inelastic neutrons scattering

crystal-field levels, Fig. 297 02B = –0.096, 0

4B = 0, 06B = –0.92⋅10

–5, 6

6B = 8.86⋅10–5

meV

the inter planer exchange coupling coefficient:

J0 = 0.098, J1 = 0.057, J2 = –0.022, J3 = –0.025, J4 =–0.010,

J5 = –0.002 meV

spin wave and transverse phonon dispersion, Fig. 301

91McE

s.c. 56 magnetostriction measurements

thermal expansion, 0 < T < 80 K, Fig. 303

magnetostriction vs. magnetic field

0 < µ0H < 8 T, Fig. 302

three transitions at: 4.2 K for µ0H = 2.82 T, 3.35 T and

3.61 T above TN at 59.3 K one transition: µ0H = 5.33 T

92Z

Page 38: 2 Magnetic properties of rare earth elements, alloys and ...

32

2

.1 R

are e

arth

ele

men

ts

Structure Spin

ordering [K]

TC

[K]

TN

[K]

ps

[µB]

peff

[µB/R]

Remarks Ref.

s.c. 6.6 magnetoresistance and magnetization studies

magnetic phase diagram, B || c axis, Fig. 294

isothermal magnetization, 0 < µ0H < 7 T

and magnetoresistance, Fig. 304

moment in ferromagnetic state p = 0.12 µB

spin-wave energy gap 8.5 meV in ferrimagnetic state and

6.7 meV in ferromagnetic phase

98E

Page 39: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

Landolt-Börnstein

New Series III/32D

References

74W Wells, P., Lanchester, P.C., Jones, D.W., Jordan, R.G.: J. Phys. F 4 (1974) 1729

85G Gibbs, D., Moncton, D.E., D’Amico, K.L., Bohr, J., Grier, B.H.: Phys. Rev. Lett. 55 (1985)

234

85T Tsang,T-W., Gschneidner jr., K.A., Schmidt, F.A., Thome, D.K.: Phys. Rev. B 31 (1985) 235

86B Bohr, J., Gibbs, D., Moncton, D.E., D’Amico, K.L.: Physica A 140 (1986) 349

86Ch Chowdhury, A.R., Collins, G.S., Hohenemser, C.: Phys. Rev. B 33 (1986) 5070

86G Grünburg, P., Schreiber, R., Pang, Y., Brodsky, M.B., Sowers, H.: Phys. Rev. Lett. 57 (1986)

2442

86P Ponomarev, B.K.: J. Magn. Magn. Mater. 61 (1986) 129

86R Rau, C., Eichner, S.: Phys. Rev. B 34 (1986) 6347

86S Salamon, M.B., Sinha, S., Rhyne, J.J., Cunningham, J.E., Erwin, R.W., Borchers, J., Flynn,

C.P.: Phys. Rev. Lett. 56 (1986) 259

87B Borchers, J., Sinha, S., Salamon, M.B., Du, R., Flynn, C.P., Rhyne, J.J., Erwin, R.W.: J. Appl.

Phys. 61 (1987) 4049

87C Cowen, R.A., Stolzman, B., Averback, R.S., Hahn, H.: J. Appl. Phys. 61 (1987) 3317

87E Erwin, R.W., Rhyne, J.J., Salamon, M.B., Borchers, J., Sinha, S., Du, R., Cunningham, J. E.,

Flynn, C.P.: Phys. Rev. B 35 (1987) 6808

87F Farle, M., Baberschke, K.: Phys. Rev. Lett. 58 (1987) 511

87F1 Farrell, J.N., Taylor, R.D.: Phys. Rev. Lett. 58 (1987) 2478

87H Hill, R.W., Collocott, S.J., Gschneidner jr., K.A., Schmidt, F.A.: J. Phys. F 17 (1987) 1867

87K Kwo, J., Hong, F.J., DiSalvo, F.J., Waszczak, J.V., Majkrzak, C.F.: Phys. Rev. B 35 (1987)

7295

87K1 Konovalov, S.V., Singer, V.V., Radovskij, I.Z., Geld, P.V.: Solid State Phys. 29 (1987) 1768

87L Leyarovski, E., Marachkov, J., Gilewski, A., Mydlarz, T.: Phys. Rev. B 35 (1987) 8674

87R Rhyne, J.J., Erwin, R.W., Borchers, J., Sinha, S., Salamon, M.B., Du, R., Flynn, C.P.: J. Appl.

Phys. 61 (1987) 4043

88Å Åström, H.U., Benediktsson, G.: J. Phys. F 18 (1988) 2113

88B Borchers, J.A., Salamon, M.B., Du, R., Flynn, C.P., Rhyne, J.J., Erwin, R.W.: J. Appl. Phys.

63 (1988) 3458

88B1 Bates, S., Patterson, C., McIntyre, G.J., Palmer, S.B., Mayer, A., Cowley, R.A., Melville, R.: J.

Phys. C 21 (1988) 4125

88C Cowley, R.A., Bates, S.: J. Phys. C 21 (1988) 4113

88N Nakamura, O., Baba, K., Ishii, H., Takeda, T.: J. Appl. Phys. 64 (1988) 3614

88O Orlov, V.G., Kurchatov, I.V.: Solid State Commun. 67 (1988) 689

88R Rau, C., Jin, C., Robert, M.: J. Appl. Phys. 63 (1988) 3667

89Å Âström, H.U., Benediktsson, G.: J. Phys. Condens. Matter 1 (1989) 4381

89B Baruchel, J., Sandonis, J. Pearce, A.: Physica B 156-157 (1989) 765

89F Forgan, E.M., Gibbons, E.P., McEwen, K.A., Fort, D.: Phys. Rev. Lett. 62 (1989) 470

89F1 Farle, M., Berghaus, A., Baberschke, K.: Phys. Rev. B 39 (1989) 4838

89G Geldart, D.J., Hargraves, P., Fujiki, N.M., Dunlap, R.A.: Phys. Rev. Lett. 62 (1989) 2728

89I Isaacs, E.D., McWhan, D.B., Siddons, D.P., Hastings, J.B., Gibbs, D.: Phys. Rev. B 40 (1989)

9336

89K Kataev, G.I., Sattarov, M.R.,Tishin, A.M.: Phys. Status Solidi (a) 114 (1989) K79

89N Nikitin, S.A., Tishin, A.M., Bykhover, S.E.: Phys. Status Solidi (a) 114 (1989) K99

89R Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., Flynn, C.P.: Physica B 159

(1989) 111

89R1 Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., Flynn, C.P.: Phys. Scr. T 29

(1989) 31

89S Stewart, A.M., Collocott, S.J.: J. Phys.: Condens. Matter 1 (1989) 677

90B Bohr, J. Gibbs, D., Huang, K.: Phys. Rev. B 42 (1990) 4322

90B1 Bohr, J.: J. Magn. Magn. Mater. 83 (1990) 530

Page 40: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements

Landolt-Börnstein

New Series III/32D

90B2 Burhanov, G.S., Volkozub, A.V., Snigirev, O.V., Tishin, A.M., Chistykov, O.D.: Solid State

Phys. 32 (1990) 2483

90D Daou, J.N., Burger, J.P., Vajda, P., Chouteau, G., Tur, R.: J. Phys.: Condens. Matter 2 (1990)

7897

90F-B Fernandez-Baca, J.A., Niclow, R.M., Rhyne, J.J.: J. Appl. Phys. 67 (1990) 5283

90H Hartmann, O., Wäppling, R., Karlsson, E., Kalvius, G.M., Asch, L., Litterst, F.J., Aggarwal,

K., Münch, K.H., Gygax, F.N., Schenck, A.: Hyperfine Interactions 64 (1990) 369

90J Jensen, J., Mackintosh, A. R.: Phys. Rev. Lett. 64 (1990) 2699

90S Salas, F.H., Mirabal-Garcia, M.: Phys. Rev. B 41 (1990) 10859

90W Willis, F., Ali, N., Steinitz, M.O., Mojtaba Kahrizi, Tindall, D.A.: J. Appl. Phys. 67 (1990)

5277

91Å Åström, H.U., Noguest, J., Nicolaides, G.K., Rao, K.V., Benediktsson, G.: J. Phys.: Condens.

Matter 3 (1991) 7395

91B Borchers, J.A., Salamon, M.B., Erwin, R.W., Rhyne, J.J., Du, R.R., Flynn, C.P.: Phys. Rev. B

43 (1991) 3123

91B1 Beach, R.S., Borchers, J.A., Erwin, R.W., Rhyne, J.J., Matheny, A., Flynn, C.P., Salamon,

M.B.: J. Appl. Phys. 69 (1991) 4335

91B2 Bucher, J.P., Douglass, D.C., Bloomfield, L.A.: Phys. Rev. Lett. 66 (1991) 3052

91D Drulis, H., Drulis, M., in: Landoldt- Börnstein, NS (Wijn, H.P.J., ed.), Berlin, Heidelberg, New

York : Springer, Vol.III/19d1 (1991), p.1

91G Godovikov, S.K., Nikitin, S.A., Tishin, A.M.: Phys. Lett. A 158 (1991) 265

91M Majkrzak, C.F., Kwo, J., Hong, M., Yafet, Y., Gibbs, D., Chien, C.L., Bohr, J.: Adv. Phys. 40

(1991) 99

91L Dongqi Li, Hutchings, C.W., Dowben, P.A., Hwang, C., Rong-Tzong Wu, Onellion, M.,

Andrews, A.B., Erskine, J.L.: J. Magn. Magn. Mater. 99 (1991) 85

91McE McEwen, K.A., Steigenberger, U., Jensen, J.: Phys. Rev. B 43 (1991) 3298

91McK McKenna, T.J., Campbell, S.J., Chaplin, D.H., Wilson, G.V.H.: J. Phys.: Condens. Matter 3

(1991) 1855

91McM McMorrow, D.F., Patterson, C., Godfrin, H., Jehan, D.A.: Europhys. Lett. 15 (1991) 541

91N Nikitin, S.A., Tishin, A.M., Leontiev, P.I.: J. Magn. Magn. Mater. 92 (1991) 405

91N1 Nikitin, S.A., Tishin, A.M., Bezdushnyi, R.V., Spichkin, Yu.I., Red’ko, S.V.: J. Magn. Magn.

Mater. 92 (1991) 397

91R Rührig, M., Schäfer, R., Hubert, A., Mosler, R., Wolf, J.A., Demokritov, S., Gr nberg, P.:

Phys. Status Solidi (a) 125 (1991) 635

91S Nobuhiko Sakai, Yoshikazu Tanaka, Fumitake Itoh, Hiroshi Sakurai, Hiroshi Kawata, Toshiaki

Iwazumi: J. Phys. Soc. Jpn. 60 (1991) 1201

91S1 Shan, Z.S., Jacobsen, B., Liou, S.H., Sellmyer, D.J.: J. Appl. Phys. 69 (1991) 5289

91S2 Snigirev, O.V., Tishin, A.M., Volkozub, A.V.: J. Magn. Magn. Mater. 94 (1991) 342

91U Unguris, J., Celotta, R.J., Pierce, D.T.: Phys. Rev. Lett. 67 (1991) 140

91W Ruqian Wu, Freeman, A.J.: J. Magn. Magn. Mater. 99 (1991) 81

91W1 Ruqian Wu, Chun Li, Freeman, A.J., Fu, C.L.: Phys. Rev. B 44 (1991) 9400

91W2 Willis, F., Ali, N.: J. Appl. Phys. 69 (1991) 5694

91Z Zochowski, S.W., McEwen, K.A., Fawcett, E.: J. Phys.: Condens. Matter 3 (1991) 8079

92D Dongqi Li, Jiandi Zhang, Dowben, P.A., Onellion, M.: Phys. Rev. B 45 (1992) 7272

92E Eccleston, R.S., Palmer, S.B.: J. Phys.: Condens. Matter 4 (1992) 10037

92G Gehring, P.M., Rebelsky, L., Gibbs, D., Shirane, G.: Phys. Rev. B 45 (1992) 243

92J Jensen, J., Mackintosh, A.R.: J. Magn. Magn. Mater. 104-107 (1992) 1481

92J1 Jehan, D.A., McMorrow, D.F., Cowley, R.A., McIntyre, G.J.: Europhys. Lett. 17 (1992) 553

92K Kawano, S., Achiwa, N., Onodera, A., Nakai, Y.: Physica B 180-181 (1992) 46

92L Lin, H., Collins, M.F., Holden, T.M., Wei, W.: Phys. Rev. B 45 (1992) 12873

92M Mulhollan, G.A., Garrison, K., Erskine, J.L.: Phys. Rev. Lett. 69 (1992) 3240

92P Pearce, A., Baruchel, J., Kulda, J.: Phys. Status Solidi (b) 172 (1992) 443

92S Snigirev, O.V., Tishin, A.M., Volkozub, A.V.: J. Magn. Magn. Mater. 111 (1992) 149

92Z Zochowski, S.W., McEwen, K.A.: J. Magn. Magn. Mater. 104-107 (1992) 1515

Page 41: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

Landolt-Börnstein

New Series III/32D

93B Beach, R.S., Borchers, J.A., Matheny, A., Erwin, R.W., Salamon, M.B., Everitt, B., Pettit, K.,

Rhyne, J.J., Flynn, C.P.: Phys. Rev. Lett. 70 (1993) 3502

93B1 Beach, R.S., Matheny, A., Salamon, M.B., Flynn, C.P., Borchers, J.A., Erwin, R.W., Rhyne,

J.J.: J. Appl. Phys. 73 (1993) 6901

93J Jehan, D.A., McMorrow, D.F., Cowley, R.A., Ward, R.C.C., Wells, M.R., Hagmann, N.,

Clausen, K.N.: Phys. Rev. B 48 (1993) 5594

93K Kawano, S., Lebech, B., Achiwa, N.: J. Phys.: Condens. Matter 5 (1993) 1535

93L Luche, M.C., Baudry, A., Boyer, P.: J. Magn. Magn. Mater. 121 (1993) 148

93McK McKenna, T.J., Campbell, S.J., Chaplin, D.H., Wilson, G.V.H.: J. Magn. Magn. Mater. 124

(1993) 105

93N Needham, L.M., Williams, W.G., Taylor, A.D.: J. Phys.: Condens. Matter 5 (1993) 2591

93P Paschen, U., Sürgers, C., v. Löhneysen, H.: Z. Phys. B 90 (1993) 289

93P1 Pecharsky, V.K., Gschneidner jr., K.A., Fort, D.: Phys. Rev. B 47 (1993) 5063

93S Swaddling, P.P., McMorrow, D.F., Simpson, J.A., Wells, M.R., Ward, R.C.C., Clausen, K.N.:

J. Phys.:Condens. Matter 5 (1993) L481

93S1 Söderlind, P., Eriksson, O., Wills, J.M., Johansson, B.: Phys. Rev. B 48 (1993) 9212

93S2 Starke, K., Navas, E., Baumgarten, L., Kaindl, G.: Phys. Rev. B 48 (1993) 1329

93T Tsui, F., Flynn, C.P.: Phys. Rev. Lett. 71 (1993) 1462

93T1 Tang, H., Weller, D., Walker, T.G., Scott, J.C., Chappert, C., Hopster, H., Pang, A.W., Dessau,

D.S., Pappas, D.P.: Phys. Rev. Lett. 71 (1993) 444

93T2 Tsui, F., Flynn, C.P., Beach, R.S., Borchers, J.A., Erwin, R.W., Rhyne, J.J.: J. Appl. Phys. 73

(1993) 6904

93V Vescovo, E., Carbone, C., Rader, O.: Phys. Rev. B 48 (1993) 7731

94A Aspelmeier, A., Gerhardter, F., Baberschke, K.: J. Magn. Magn. Mater. 132 (1994) 22

94C Cowley, R.A., McMorrow, D.F., Simpson, A., Jehan, D., Swaddling, P., Ward, R.C.C., Wells,

M.R.: J. Appl. Phys. 76 (1994) 6274

94F Farle, M., Lewis, W.A.: J. Appl. Phys. 75 (1994) 5604

94H Helgesen, G., Hill, J.P., Thurston, T.R., Gibbs, D., Kwo, J., Hong, M.: Phys. Rev. B 50 (1994)

2990

94J Jehan, D.A., McMorrow, D.F., Simpson, J.A., Cowley, R.A., Swaddling, P.P., Clausen, K.N.:

Phys. Rev. B 50 (1994) 3085

94K Kawano, S., Fernandez-Baca, J.A., Nicklow, R.M.: J. Appl. Phys. 75 (1994) 6060

94L Lebech, B., Wolny, J., Moon, R.M.: J. Phys. Condens. Matter 6 (1994) 5201

94P Pang, A.W., Berger, A., Hopster, H.: Phys. Rev. B 50 (1994) 6457

94R Rhyne, J.J., Salamon, M.B., Flynn, C.P., Erwin, R.W., Borchers, J.A.: J. Magn. Magn. Mater.

129 (1994) 39

94T Tindall, D.A., Adams, C.P., Steinitz, M.O., Holden, T.M.: J. Appl. Phys. 75 (1994) 6318

94T1 Tsui, F., Uher, C., Flynn, C.P.: Phys. Rev. Lett. 72 (1994) 3084

94T2 Tejada, J., Zhang, X.X., Ferrater, C.: Z. Phys. B 94 (1994) 245

94T3 Thurston, T.R., Helgesen, G., Hill, J.P., Gibbs, D., Gaulin, B.D., Simpson, P.J.: Phys. Rev. B

49 (1994) 15730

95A Arenholz, E., Navas, E., Starke, K., Baumgarten, L., Kaindl, G.: Phys. Rev. B 51 (1995) 8211

95A1 Andrianov, A.V.: J. Magn. Magn. Mater. 140-144 (1995) 749

95B Bulatov, A.S., Dolzhenko, V.F., Korniets, A.V.: J. Magn. Magn. Mater. 147 (1995) 403

95B1 Berger, A., Pang, A.W., Hopster, H.: Phys. Rev. B 52 (1995) 1078

95D Dufour, C., Dumesnil, K., Vergnat, M., Mangin, Ph., Marchal, G., Hennion, M.: J. Magn.

Magn. Mater. 140-144 (1995) 771

95dP Du Plessis, P. de V., Venter, A.M., Brits, G.H.F.: J. Phys.: Condens.Matter 7 (1995) 9863

95G Gajdzik, M., Paschen, U., Sürgers, C., v. Löhneysen, H.: Z. Phys. B 98 (1995) 541

95K Kawano, S., Sørensen, S. Aa., Lebech, B., Achiwa, N.: J. Magn. Magn. Mater. 140-144 (1995)

763

95L Luche, M.C., Baudry, A., Boyer, P., Rouvière, J.L., Fermon, C., Miramond, C.: J. Magn.

Magn. Mater. 150 (1995) 175

Page 42: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements

Landolt-Börnstein

New Series III/32D

95R Raquet, B., Sdaq, A., Broto, J.M., Rakoto, H., Ousset, J.C., Askenazy, S., Baudry, A., Boyer,

P., Luche, M.C., Khmou, A.: Physica B 211 (1995) 335

95S Shinoda, Y., Tajima, K.: J. Phys. Soc. Jpn. 64 (1995) 1334

95S1 Swaddling, P.P., McMorrow, D.F., Cowley, R.A., Simpson, J.A., Wells, M.R., Ward, R.C.C.,

Clausen, K.N., Collins, M.F., Buyers, W.J.L.: J. Magn. Magn. Mater. 140-144 (1995) 783

95S2 Simpson, J.A., McMorrow, D.F., Cowley, R.A., Jehan, D.A.: J. Magn. Magn. Mater. 140-144

(1995) 751

95T Tajima, K., Shinoda, Y., Tadakuma, M.: J. Magn. Magn. Mater. 140-144 (1995) 765

95T1 Tomka, G.J., de Groot, P.A.J., Rainford, B.D., Wells, M.R., Ward, R.C.C., Arnaudas, J.I.: J.

Magn. Magn. Mater. 140-144 (1995) 785

95T2 Tomka, G.J., de Groot, P.A.J., Rainford, B.D., Wells, M.R., Ward, R.C.C., del Moral, A.: J.

Magn. Magn. Mater. 140-144 (1995) 777

95V Venter, A.M., du Plessis, P. de V.: J. Magn. Magn. Mater. 140-144 (1995) 757

95W Watson, B., Ali, N.: J. Phys.: Condens. Matter 7 (1995) 4713

96A Aoki, Y., Sato, H., Komaba, Y., Kobayashi, Y., Sugawara, H., Yokoyama, T., Hanyu, T.:

Phys. Rev. B 54 (1996) 12172

96A1 Arnaudas, J.I., del Moral, A., Ciria, M., Tomka, G.J., de la Fuente, C., de Groot, P.A.J., Ward,

R.C.C., Wells, M.R.: J. Magn. Magn. Mater. 156 (1996) 421

96C Conover, M.J., Kaldowsky, A., Flynn, C.P.: Phys. Rev. B 53 (1996) R2938

96D Dan’kov, S.Y., Spichkin, Yu.I., Tishin, A.M.: J. Magn. Magn. Mater. 152 (1996) 208

96dM del Moral, A., Arnaudas, J.I., Ciria, M., Wells, M.R., Ward, R.C.C.: J. Magn. Magn. Mater.

157-158 (1996) 539

96H Harkins, J.V., Donovan, P.: J. Magn. Magn. Mater. 156 (1996) 224

96I Izawa, T., Tajima, K., Yamamoto, Y., Fujii, M., Fujimaru, O., Shinoda, Y.: J. Phys. Soc. Jpn.

65 (1996) 2640

96J Jiang, J.S., Chien, C.L.: J. Appl. Phys. 79 (1996) 5615

96M Mulyukov, Kh.Ya., Korznikova, G.F., Nikitin, S.A.: J. Magn. Magn. Mater. 153 (1996) 241

96T-B Theis-Bröhl, K., Ritley, K.A., Flynn, C.P., Hamacher, K., Kaiser, H., Rhyne, J.J.: J. Appl.

Phys. 79 (1996) 4779

96W Watson, D., Forgan, E.M., Nuttall, W.J., Stirling, W.G., Fort, D.: Phys. Rev. B 53 (1996) 726

96W1 Watson, B., Ali, N.: J. Phys.: Condens. Matter 8 (1996) 1797

96W2 Watson, D., Forgan, E.M., Nuttall, W.J., Sokol, P.E., Shaikh, S.J., Zochowski, S.W., Fort, D.:

J. Phys.: Condens. Matter 8 (1996) 5049

97A Alkhafaji, M.T., Ali, N.: J. Alloys Compounds 250 (1997) 659

97B-J Bryn-Jacobsen, C., Cowley, R.A., McMorrow, D.F., Goff, J.P., Ward, R.C.C., Wells, M.R.:

Physica B 234-236 (1997) 495

97dM del Moral, A., Ciria, M., Arnaudas, J.I., Ward, R.C.C., Wells, M.R.: J. Appl. Phys. 81 (1997)

5311

97E Everitt, B.A., Salamon, M.B., Borchers, J.A., Erwin, R.W., Rhyne, J.J., Park, B.J., O’Donovan,

K.V., McMorrow, D.F., Flynn, C.P.: Phys. Rev. B 56 (1997) 5452

97G Goff, J.P., Bryn-Jacobsen, C., McMorrow, D.F., Ward, R.C.C., Wells, M.R.: Phys. Rev. B 55

(1997) 12537

97G1 Gebhardt, J.R., Baer, R.A., Ali, N.: J. Alloys Compounds 250 (1997) 655

97H Helgsen, G., Tanaka, Y., Hill, J.P., Wochner, P., Gibbs, D., Flynn, C.P., Salamon, M.B. Phys.

Rev. B 56 (1997) 2635

97L Li, Yi, Polaczyk, C., Kapoor, J., Riegel, D.: J. Magn. Magn. Mater. 165 (1997) 165

97M Mulyukov, K.Ya, Korznikova, G.F., Sharipov, I.Z.: Phys. Status Solidi (a) 161 (1997) 493

97O Ohsumi, H., Tajima, K., Wakabayashi, N., Shinoda, Y., Kamishima, K., Goto, T.: J. Phys. Soc.

Jpn. 66 (1997) 1896

97T Tishin, A.M., Koksharov, Yu.A., Bohr, J., Khomutov, G.B.: Phys. Rev. B 55 (1997) 11064

97T-B Theis-Bröhl, K., Ritley, K.A., Flynn, C.P., Van Nostrand, J.E., Cahill, D.G., Hamacher, K.,

Kaiser, H., Rhyne, J.J.: J. Magn. Magn. Mater. 166 (1997) 27

97W Watson, B., Ali, N.: J. Alloys Compounds 250 (1997) 662

Page 43: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 5

Landolt-Börnstein

New Series III/32D

98D Dan’kov, S.Yu., Tishin, A.M., Pecharsky, V.K., Gschneidner jr., K.A.: Phys. Rev. B 57 (1998)

3478

98dM de Moral, A., Ciria, M., Arnaudas, J.I., Wells, M.R., Ward, R.C.C., de la Fuente, C.: J. Phys.:

Condens. Matter 10 (1998) L139

98E Ellerby, M., McEwen, K.A., Jensen, J.: Phys. Rev. B 57 (1998) 8416

98G Gajdzik, M., Trappmann, T., Sürgers, C., v. Löhneysen, H.: Phys. Rev. B 57 (1998) 3525

98O Ono, T., Ishii, T., Tanuma, S., Yoshida, I.: Solid State Commun. 105 (1998) 93

Page 44: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3 Figures

2.1.3.1 Cerium

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

63

1−

−χ

0 50 100 150

8

7

6

5

4

3

2

αCe

1

3

4

5

2

meV545490

355230

0

Γ6

Γ81

Γ71

Γ8

Γ7

Fig. 1. Magnetic susceptibility of αCe. The dashedcurves 1 and 2 are experimental data. The solid curves were calculated at ζ = 900 K, = 600 K and χP = 0.75·10–6 cm3 g–1. The CEF parameters varied as

follows: (3): L40B = 4.53 K, L

60B = 0; (4): L40B = 3.64 K,

L60B = 0.06 K; (5): L

40B = 3.1 K, L60B = 0.11 K. The

inset shows the level scheme corresponding to the CEF parameters for curve (4). ζ: spin-orbit coupling parameter, χP: Pauli contribution [88O].

Temperature [K]T

T [K]

Inv.

susc

eptib

ility

[10

mol

cm]

m2

3−χ

−1

Inv.

susc

eptib

ility

[10

mol

cm]

m2

3−χ

−1

0

2

4

6

8

10

12

14

16

4

5

6

7

8

3

500 750 1000 1250 1500 1750 2000

Ce

Nd

Pr(+0.5)

99

97

95

931020

Tm

Ce

[10

mχ−5

cmm

ol]

31−

b

b

c

[10

mχ−5

cmm

ol]

31−

[10

mχ−5

cmm

ol]

31−

a T [K]

Tm Tm

c

184

180

176

197

193

189

185

1120 1220

Nd

Pr

181

980

Fig. 3. Temperature dependence of the susceptibility forCe, Pr and Nd for the high temperatures. The anomalies connected with the structure phase transitions and with the melting point (Tm) are visible. The solid lines arealso experimental data [87K1].

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]g

43−

χ−1

15

13

11

9

7

5300 400 500 600 700 800 900

1

2

γCe

Fig. 2. Inverse magnetic susceptibility of Ce. The solid curves were calculated for the following values of param-

eters: (1): ζ = 900 K, L40B = 0, L

60B = 0, Θ = 85 K, χP =

0.75 10–6 cm3 g–1; (2): ζ = 875 K, L40B = 0, L

60B = 0, =

50 K, χP = 1 10–6 cm3 g–1. ζ: spin-orbit coupling param-eter, χP: Pauli contribution [88O].

Page 45: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p CeBµ

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5 6

Ce

100Å

dCe = 15Å

Fig. 4. Magnetization curves obtained at 2 K for Ce thin layers with dCe = 5, 15 and 100 Å [96A].

Fig. 5. Temperature dependence of magnetic moment pCe and 1/pCe for Ce thin layers with dCe = 5, 15 and100 Å obtained at a field of 5 T applied parallel to the sample plane [96A].

Temperature [K]T

Mag

netic

mom

ent

[]

p CeBµ

Inv.

mag

netic

mom

ent 1

/[

]p Ce

B1

µ−

0.8

0.6

0.4

0.2

0

15

10

5

010 20 30 40 500

100Å

15Å

100ÅdCe = 5Å

dCe = 15ÅCe( )/Ta(15)dCe

Page 46: 2 Magnetic properties of rare earth elements, alloys and ...

References

87K1 Konovalov, S.V., Singer, V.V., Radovskij, I.Z., Geld, P.V.: Solid State Phys. 29 (1987) 1768

88O Orlov, V.G., Kurchatov, I.V.: Solid State Commun. 67 (1988) 689

96A Aoki, Y., Sato, H., Komaba, Y., Kobayashi, Y., Sugawara, H., Yokoyama, T., Hanyu, T.:

Phys. Rev. B 54 (1996) 12172

Page 47: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.2 Praseodymium

Magnetic field [T]µ0 H Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p atBµ

[B]

p atµM

agne

tic m

omen

t[

]p at

3.0

2.5

2.0

1.5

1.0

0.5

0 10 20 30 40 50

Pr

T = 4.2K

a

2.0

1.5

1.0

0.5

0 10 20 30

T = 20K30K

b

3.0

2.0

1.0

0 10 20 30 40[T]µ0 H

Fig. 6. Magnetization of polycrystalline Pr: (a) at 4.2 K,

(b) at 20 K and 30 K. Open circles: annealed sample;

solid circles: unannealed sample. Solid lines represent

calculated results for the molecular field approximation

considering Hamiltonian for the hexagonal and cubic

ions with effective exchange parameters Jcc = 0.14 meV,

Jhc Jch= 0.19 meV, Jhh = 0.17 meV. In the inset the

calculated magnetization for a single crystal with

magnetic field along the c axis [87L].

Page 48: 2 Magnetic properties of rare earth elements, alloys and ...

References

87L Leyarovski, E., Marachkov, J., Gilewski, A., Mydlarz, T.: Phys. Rev. B 35 (1987) 8674

Page 49: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.3 Neodymium

1 (8+1/3)×

7 1×

A sites B sites C sites

a a

a

a*

a*

a*

3 2

1

2

3

1

Nd

Nd

a b

Fig. 8. Single layer moment patterns of double-q

structure of dhcp Nd: (a) from q1 and q2; (b) from q3 and

q4 .The moments associated with q1 and q2 are on

"hexagonal" layer and those with q3 and q4 are on the

cubic layer, respectively of the dhcp lattice [89F].

Fig. 7. Projection of all atoms in the dhcp lattice on a

single hexagonal plane. Cubic A sites and hexagonal B

and C sites are shown. The hold parallelograms indicate

the 7x1 and 1x(8+1/3) commensurate magnetic unit cells,

respectively. Also shown are the real (ai, i = 1, 2, 3) and

the reciprocal lattice unit vectors (ai*, i = 1, 2, 3). If the

crystal structure dominates the formation of the incipient

magnetic order a commensurate modulated magnetic

structure would be described by vector that connects

hexagonal sites only. This is illustrated by the 7x1

magnetic unit cell. As the temperature is lowered the order

on the hexagonal sites induces a moment on the cubic

sites. The magnetic structure to be commensurate would

be as is illustrated in figure where the 1x(8+1/3) magnetic

unit cell corresponds to (qx, qy) = (3/25,0) [94L].

Page 50: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements

Nd

q2

q1

q2 q3

q1

q4

µ

µ

µ1

µ1

µ 2

µ 2

3

4

a

b

Fig. 9. Basal plane projections of modulation vectors, moment

amplitudes, and the corresponding diffraction pattern around a

nuclear Bragg point (*) in Nd. (a) for the 2-q structure and (b) for

the 4-q structure. Full circles result from the arrows shown, and

solid circles arise from domain averaging [97G].

q2q2

q1

q1

q1

q1

q2q2

q3

q3

q3

q3

q3

q1

q1

q4

Ndµ0H = 0 µ0H = 0.8 T

µ0H = 2.5 T

µ0H = 3.6 T µ0H = 4.7 T

µ0H = 3.0 T

Fig. 10. Schematic representation of the wave

vectors associated with the various magnetic

phases of Nd at T ≈ 1.8 K. The arrow indi-

cates the direction of the applied magnetic

field [91Z].

Nd

TN = 19.95 K T2 = 19.1 K

T5 = 6.3 KT3 = 8.2 K

Fig. 11. Schematic representation of the magnetic

satellite reflections observed around (100) at various

temperatures and zero applied magnetic field in Nd

metal. The solid and open circles denote the hexagonal

and cubic satellites, respectively [91Z].

Page 51: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

Wavevector / *q ay

Wavevector / *q ay

Neut

ron

inte

nsity

[cou

nts/

min

]

Neut

ron

inte

nsity

[cou

nts/

min

]

Nd70

50

30

T = 18.27 K T = 18.27 K

18.6218.62

1-1-

,,

,0),0)

qq

q0

xx

x((

50

30

30

30

40

40

40

50

50

40

18.82 18.82

19.10 19.10

19.33 K19.33

− 0.010

− 0.010

0

0

0.010

0.010

a

b

1500

1000

1000

1000

500

500

500

500

500

500

500

0

0

0

0

0

0

0

0200

19.70

19.90

20.05 K

18.0

18.5

19.0

19.5

20.0

Tem

pera

ture

[K]

T

30

1000

Fig. 13. Temperature evolution of the magnetic satellites

near the (100) reciprocal lattice point measured on

heating in Nd. The data show the transition from the

single-q state near TN to the two-q state appearing below

TN ≈ 9.1 K [94L].

Page 52: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements W

avev

ecto

r/

*q

a1y

Wav

evec

tor

/*

qa

1y

Wavevector / *q a1x

0.010

0.010

0.008

0.008

0.006

0.006

0.004

0.004

0.002

0.002

0

0

T5

T5

T5

T5

T4

T4

T3

T3

T2

T2

heating

cooling

Nd

a

b

3/28

3/28

3/26

3/26

3/25

3/25

1/8

1/8

1/7

1/7

Tem

pera

ture

[K]

T

Pressure [kbar]p

25

20

15

10

5

0 2 4 6 8 10 12 14 16

Pcubic site FNd

hex. site 1- AFq

hex. site 2- AFq

hex. and cubic siteAF, 3- and 4-q q

hex. site2- AFq cubic site F,

hex. site2- AFq

cubic site F,hex. site 1- AFq

Fig. 12. Basal plane components of the modulation

vector describing the magnetic structure in pure Nd

metal. The q1y component is shown as function of the

q1x component in Nd metal. The temperature is an

implicit parameter for both axes and T2 corresponds to

(q1x, q1y) = (1/7, 0). The numbers against the dashed

lines indicate the commensurate values of q1x. The tran-

sition temperatures TN and T2 - T5 correspond approxi-

mately to 19.3, 17.9, 10.5, 7.7, and 6.3 K on heating and

to 19.1, 17.9, 8.7, 6.8, and 5.2 K on cooling. (a) and (b)

correspond to heating and cooling, respectively. The

stars correspond to (qx, qy) calculated for the higher-

order commensurate structures [94L].

Fig. 14. Magnetic phase diagram of Nd under pressure.

Where hexagonal or cubic sites are not mentioned they

are disordered [96W2].

Page 53: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 5

Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

HM

agne

tic fi

eld

[T]

µ 0H

12

12

10

10

8

8

6

6

4

4

2

2

0

02 4 6 8 10 12 14 16 18 200

Nd H aII

H bII

P

P

multi - domain double - q

multi - domain double - q

single - q

single - q

quadruple - q

quadruple - q

single - domain double - q

single - domain double - q

a

b

Squared magnetic field ( ) [ T ]µ02 2H

Néel

tem

pera

ture

[K]

T N

0 40 80 120 140

20

19

18

17

16

15

14

Nd

H aII

H bII

Fig. 15. (a) Magnetic phase diagram of

Nd, measured with the magnetic field

along the a axis, (b) with the magnetic

field along the b axis. Data are taken

from thermal expansion (solid circles)

and magnetostriction (open circles) ex-

periments, respectively [91Z].

Fig. 16. TN vs. H2 for magnetic fields along the a and b

axes of Nd [91Z].

Page 54: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.1 Rare earth elements

Temperature [K]T

Ther

mal

exp

ansio

n/

[10

]∆

l l−5

80

60

40

20

0

−2

− 44 6 8 10

Nd H aII µ0 H = 3.5 T

2.5 T

1.43 T

0.23 T

0

T3

T3

T5 T4 T3

T3

T6 T5 T4

Fig. 17. Thermal expansion of Nd, measured along

the a axis, at H = 0.0, 0.23, 1.43, 2.5, and 3.5 T. Note

the change of scale for H > 0 [91Z].

Temperature [K]T

Ther

mal

exp

ansio

n/

[10

]∆

l l−5

80

60

40

20

0

−2

− 44 6 8 10

Nd H bII

2.5 T

1.43 T

0.23 T

0

T3

T3

T5T6 T3

T3

T3T6 T5 T4

T3

0.66 T

µ0 H = 3.5 T

T4

Fig. 18. Thermal expansion of Nd, measured along

the b axis, at H = 0, 0.23, 0.66, 1.43, 2.5, and 3.5 T.

Note the change of scale for H > 0.23 T [91Z].

NdH aII

Magnetic field [T]µ0 H

Mag

neto

stric

tion

/[1

0]

∆l l

−4

32

24

16

8

0 1 2 3 4 5

1 3

21’

1’

1’

1’

1’

1’

1

1

1 2

3

2

2

22

3

3

3 2

T = 8.5 K

7.5

6.5

6.0

5.0

4.2

1.1 K

1

1

1

3

3

5.5

21

Fig. 19. Magnetostriction of Nd, measured in

increasing field along the a axis, for various

temperatures. Average values of the magnetic fields

indicated by arrows are

(1) 1.15 T; (2) 2.2 T; (3) 3.2 T; (4) 4.4 T [91Z].

NdH bII

Magnetic field [T]µ0 H

Mag

neto

stric

tion

/[1

0]

∆l l

−4

32

24

16

8

0 1 2 3 4 5

1

3

2’

1’

1’

1’

1’ 1

1

1

1

2

3

2

2

2’

3

3

3

3

2’

T = 9.2 K

7.6

6.5

6.0

5.0

4.2

1.0 K

1

3

2’4

4

4

4

4

2.5

1

2

3

1’

1

Fig. 20. Magnetostriction of Nd, measured in

increasing field along the b axis, for various

temperatures. Average values of the magnetic fields

indicated by arrows are

(1) 1.15 T; (2) 2.2 T; (3) 3.2 T; (4) 4.4 T [91Z].

Page 55: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 7 In

tens

ity (r

elat

ive)

Photon energy [keV]E

102

10

1

10−1

10−2

6.19 6.20 6.21 6.22 6.23

Nd

Fig. 21. High resolution magnetic X-ray diffraction

of antiferromagnetic ordering in the neodymium

metal, near the LII and LIII absorption edges. The

vertical line indicates the positions of the absorption

edges in zero magnetic field [96W].

Temperature [K]TM

agne

tic m

omen

t[

]p Nd

0.04

0.03

0.02

0.01

0 10 20 30 40 50

Nd H = 500 Oe

200 Oe100 Oe

Fig. 22. Zero-field cooled magnetization of the 582 nm

Nd film with the field along the (100) easy axis. The

anomaly near 27 K is associated with the Néel point,

which is significantly higher than in bulk Nd; the peak

near 8 K arises from cubic-site ordering [97E].

Temperature [K]T

Mag

netic

mom

ent

[]

p NdBµ

0.24

0.20

0.16

0.12

0.08

0.04

0

− 0.040 10 20 30 40 50 60 70 80

FC

ZFC

Nd

TN = 32 K

H = 500 Oe200 Oe100 Oe

Fig. 23. Field-cooled and zero-field cooled data on a

[Nd (3.2 nm)/Y (2 nm)]120 superlattice. The Néel tem-

perature extrapolated to a zero-field has 32 K, much

above the bulk value of 19.9 K [97E].

Mag

netic

mom

ent

[]

p Nd,h

exBµ

Nd concentration

2.5

2.0

1.5

1.0

0.5

00.4 0.5 0.6 0.7 0.8 0.9

Nd/Y helical orderbulk-like order

Fig. 25. Magnetic moment per hexagonal site

associated with helimagnetic order and the moment per

atom associated with bulk-like order of hexagonal sites

vs. the Nd concentration in the Nd/Y superlattices. The

Nd atoms are in the dhcp structure in all samples [97E].

Page 56: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.1 Rare earth elements

Temperature [K]T

Mag

netic

mom

ent

[]

p NdBµ

Mag

netic

mom

ent

[]

p NdBµ

0.8

0.6

0.4

0.2

0

2.0

1.6

1.2

0.8

0.4

0 10 20 30 40 50

[Nd (3.9 nm) / Y (3.9 nm)]109[Nd (8.7 nm) / Y (2.4 nm)]80

[Nd (4.2 nm) / Y (12 nm)]90[Nd (3.2 nm) / Y (2 nm)]120Nd Y alloy0.62 0.38

Fig. 24. Temperature dependence of the magnetic

moment per Nd atom (hexagonal and cubic sites) that

orders in the helimagnetic structure for several Nd/Y

superlattices and the alloy sample. The temperatures at

which this component vanishes agree semiquantita-

tively with the Néel temperatures from the magnet-

ization data [97E].

Page 57: 2 Magnetic properties of rare earth elements, alloys and ...

References

89F Forgan, E.M., Gibbons, E.P., McEwen, K.A., Fort, D.: Phys. Rev. Lett. 62 (1989) 470

91Z Zochowski, S.W., McEwen, K.A., Fawcett, E.: J. Phys.: Condens. Matter 3 (1991) 8079

94L Lebech, B., Wolny, J., Moon, R.M.: J. Phys. Condens. Matter 6 (1994) 5201

96W Watson, D., Forgan, E.M., Nuttall, W.J., Stirling, W.G., Fort, D.: Phys. Rev. B 53 (1996) 726

96W2 Watson, D., Forgan, E.M., Nuttall, W.J., Sokol, P.E., Shaikh, S.J., Zochowski, S.W., Fort, D.:

J. Phys.: Condens. Matter 8 (1996) 5049

97E Everitt, B.A., Salamon, M.B., Borchers, J.A., Erwin, R.W., Rhyne, J.J., Park, B.J., O’Donovan,

K.V., McMorrow, D.F., Flynn, C.P.: Phys. Rev. B 56 (1997) 5452

97G Goff, J.P., Bryn-Jacobsen, C., McMorrow, D.F., Ward, R.C.C., Wells, M.R.: Phys. Rev. B 55

(1997) 12537

Page 58: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.4 Samarium

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m4

31

−−

χ

19

18

17

16

15

14

13

12450 650 850 1050 1250 1450 1650

Sm Tm

Mag

netic

mom

ent

[]

p SmBµ

Volume [Å ]V 3

6

5

4

3

2

1

0 5 10 15 20 25

Sm

Fig. 27. Calculated spin moment for the itinerant ferro-

magnetic state of Sm as a function of volume. At suffi-

ciently low volumes (Mbar) the moment disappears

and Sm metal is a 4f delocalized paramagnet [93S1].

Ener

gy[e

V]E

Ratio /c a

0.5

0.4

0.3

0.2

0.1

0

0.8 1.0 1.2 1.4 1.6 1.8 2.0− 0.1

paramagneticspin polarizedlocalized

Sm

bcc fcc exp

Fig. 28. Total energy (at T = 0) of the bct structure as

a function of the c/a ratio for both delocalized and

trivalent Sm at a volume compression V/V0 = 0.37.

The thin solid and bold lines refer to a treatment of the

4f electrons as itinerant-paramagnetic and itinerant-

ferromagnetic, respectively. The dotted line represents

the localized phase [93S1].

Fig. 26. Magnetic susceptibility vs. temperature of Sm

metal at higher temperatures. The anomalies reflect the

structural phase transitions and the melting point Tm.

The data collected from several papers cited in [87K1].

Page 59: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements

Sm6

11/2F

69/2F

63/2F

61/2F

67/2F

65/2F

615/2H

613/2H

611/2H

69/2H

67/2H

65/2H

E = 1297 meV

1124

979

873850811781

625

449

252

125

0

Fig. 29. Multiplet levels for Sm3+ ion calculated for

Sm metal [93N].

Sm

Momentum transfer /4 [Å ]π −1κFo

rm fa

ctor

1

10−1

10−2

10−3

10− 4

0 0.2 0.4 0.6 0.8 1.0 1.2

65/2H -

65/2H

65/2H -

67/2H

E = 132 meV

65/2H -

69/2H 253 meV6

5/2H -6

11/2H 449 meV

65/2H -

613/2H

625 meV

Fig. 30. Form factor predictions for spin-orbit

transition in Sm3+ as a function of neutron momentum

transfer κ [93N].

Sm

Momentum transfer /4 [Å ]π −1κ

Form

fact

or

10−1

10−2

10−3

10− 4

0 0.2 0.4 0.6 0.8 1.0 1.2

65/2H -

65/2F

65/2H -

67/2F

65/2H -

63/2

F E = 811 meV

65/2H -

611/2

F

873 meV

781 meV

65/2H -

61/2

F

979 meV

65/2H -

69/2F

1124 meV

1297meV

Fig. 31. Form factor predictions for H → F intermulti-

plet transition in Sm3+ as a function of κ [93N].

Energy transfer [meV]E

Sm

Scat

terin

g fu

nctio

n(

,)

SK

ω

20

15

10

5

0

−550 90 130 170 210 250

θ = 5°12°16°

Fig. 32. 6H5/2 → 6H7/2 spin-orbit transition in Sm metal

observed at angles of 5°, 12°, 16° with an incident

energy of 6/8 meV in neutron scattering experiment

[93N].

Page 60: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

*

**

*

Sm

Inte

nsity

(rel

ativ

e)

Wavevector [Å ]Q −1

2500

2000

1500

1000

500

0

− 5000 5 10 15 20 25

Ei = 618 meV729.9 meV

theoretical predictions

Fig. 33. Plot of the experimental and theoretical form

factor for the 6H5/2 → 6H7/2 transition in Sm metal.

None of the other (see Fig. 30) spin-orbit transition

were observed [93N].

Temperature [K]THe

atca

paci

ty[J

mol

K]

C p−

−1

1

Sm20

16

12

8

4

0 8 16 24 32

Fig. 34. Specific heat Cp, of the two samarium samples

(SmIV-99.89 at%; SmV-99.98 at% purity) in the tem-

perature range: 0…32 K. The effect of increasing

impurity contents reduce the amplitudes of the

transition [89S].

Page 61: 2 Magnetic properties of rare earth elements, alloys and ...

References

87K1 Konovalov, S.V., Singer, V.V., Radovskij, I.Z., Geld, P.V.: Solid State Phys. 29 (1987) 1768

89S Stewart, A.M., Collocott, S.J.: J. Phys.: Condens. Matter 1 (1989) 677

93N Needham, L.M., Williams, W.G., Taylor, A.D.: J. Phys.: Condens. Matter 5 (1993) 2591

93S1 Söderlind, P., Eriksson, O., Wills, J.M., Johansson, B.: Phys. Rev. B 48 (1993) 9212

Page 62: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.5 Europium

Temperature [K]T

T [K]

Inv.

susc

eptib

ility

[10

mol

cm]

m3−

χ−1

Inv.

susc

eptib

ility

[10

mol

cm]

m3−

χ−1

500 750 1000 1250 1500 1750 2000

Tmb b

c

[10

m4−

χcm

mol

]3

1−

[10

m4−

χcm

mol

]3

1−

a

T [K]

Tm

c

71

69

67

1530 1570 1610

Gd

Eu97

95

93

1100 1140

14

12

10

8

6

4

2

20

15

10

5

0

Gd

Eu

Fig. 35. Magnetic susceptibilities as a function of the

temperature for Eu and Gd in the high temperature

range beyond the melting temperatures (Tm.). In the

insets the details near transition temperatures are

shown. The anomaly at T = 15.35 K for Gd reflects the

hcp → bcc transition [87K1].

Velocity [mm s ]v −1

Eu 9.8 GPa

6.2 GPa

p = 0

−30 −20 −10 0 10 20 30

Rela

tive

trans

miss

ion

Fig. 36. Mössbauer spectra of 151Eu metal at 44 K

and 0, 6.2, and 9.8 GPa applied pressure. The

single-line SmF3 source is at 44 K. The centroid of

the pattern moves in accordance with changes in

the f-shell occupation [87F1].

Pressure [GPa]p

Isom

er sh

ift

[mm

s]

−1δ

Eu

−2

− 4

− 6

− 80 4 8 12 16

T = 44 K

Fig. 37. Mössbauer isomer shift of 151Eu in metal vs. 151SmF3 as a function of pressure at 44 K. Source and

absorber are at the same temperature [87F1].

Pressure [GPa]p

Eu

0 4 8 12 16

T = 44 K

Hype

rfine

fiel

d[T

]B hf

25

20

15

10

5

Fig. 38. Pressure dependence of the magnetic

hyperfine field at the nucleus of 151Eu in Eu metal at

44 K [87F1].

Page 63: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements

Eu

0

T = 44 K

Hype

rfine

fiel

d[T

]B hf

25

20

15

10

5

Isomer shift [mm s ]−1δ− 8 − 6 − 4 − 2

p = 0

2.2

4.4

6.2

8.3

9.8

12.1

13.9 GPa

Fig. 39. Comparison of the isomer shift and

magnetic hyperfine field for Eu metal at 44 K and

high pressure. Pressures are marked along the curve.

The extrapolated isomer shift of about – 3 mm s–1

for zero hyperfine field corresponds to a valence

change of about 0.5 electron. It is shown that in Eu

metal at high pressure and below the Néel

temperature, the intermediate valence and magnetic

ordering phenomena coexist [87F1].

Temperature [K]T

Mag

netic

fiel

d[k

Oe]

H

0 2 4 6 8

2

2

2

1

1

1

0

0

0

3

3

3

4

4

5

AF

AF

AF

P

P

P

spin flop

spin flop

spin flop

[Eu 1nm/Se 0.5 nm]

[Eu 1nm/Se 1 nm]

[Eu 1nm/Se 3 nm]

Mag

netiz

atio

n[1

0G

]M

−2

Magnetic field [kOe]H0 1 2 3 4 5

8

6

4

2

0

8

6

4

2

0

12

10

8

6

4

2

0

[Eu 1nm/Se 0.5 nm]

[Eu 1nm/Se 1 nm]

[Eu 1nm/Se 3 nm]

H film plane

T

H film plane

T

H film plane

T

H II film plane

H II film plane

Fig. 40. Magnetization process of Eu/Se superlattice

at 1.9 K [98O].

Fig. 42. Magnetic phase diagrams of Eu/Se super-

lattice [98O].

Page 64: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3 M

agne

tizat

ion

[10

G ]

M−3

Mag

netiz

atio

n[1

0G

]M

−3

Mag

netiz

atio

n[1

0G

]M

−3

Temperature [K]T

Temperature [K]T

Temperature [K]T

Eu /Se10

8

6

4

2

0

15

10

5

0

20

15

10

5

03025201510

50

0

0

010

10

1020

20

2030

30

30

H = 300 Oe

H = 250 Oe

H = 300 Oe

H = 500 Oe

H = 500 Oe

H = 500 Oe

H = 700 Oe

H = 750 Oe

H = 700 Oe

H = 1000 Oe

H = 1000 Oe

H = 1000 Oe

5

4

3

2

1

0

6

4

2

0

8

6

4

2

0

10

5

0

4

3

2

1

0

6

4

2

0

4

2

0

4

2

0

a b

c

Fig. 41. (a)Temperature dependence of the magnetiza-

tion of [Eu 1nm/Se 0.5 nm]; (b) the [Eu 1 nm/Se 1 nm]

and (c) the [Eu 1 nm/Se 3 nm] of the Eu thin film

samples on the Se substrate in the magnetic field H ⊥film plane [98O].

Page 65: 2 Magnetic properties of rare earth elements, alloys and ...

References

87F1 Farrell, J.N., Taylor, R.D.: Phys. Rev. Lett. 58 (1987) 2478

87K1 Konovalov, S.V., Singer, V.V., Radovskij, I.Z., Geld, P.V.: Solid State Phys. 29 (1987) 1768

98O Ono, T., Ishii, T., Tanuma, S., Yoshida, I.: Solid State Commun. 105 (1998) 93

Page 66: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.6 Gadolinium

Mag

netiz

atio

n

[G cm

g]

31−

σ

Mag

netiz

atio

n

[G cm

g]

31−

σ

Temperature [K]TMagnetic field [kOe]H

Gd H II [0001] H II [0001]Gd300 300

250 250

200 200

150 150

100 100

50 50

0 00 10 20 30 40 50 60

T = 4.5 K48.796.9

137.4

176.7

216.8237.0247.2267.6277.8288.1298.4

318.9324.0 K

0 50 100 150 200 250 300 350

H = 4 kOe8

1218243656 kOe

a b

Fig. 43. (a) Magnetization of a Gd single crystal as a function of field at selected temperatures, and (b) mag-

netization of Gd vs. temperature at selected dc fields, with the field parallel to the [0001] direction [98D].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Mag

netiz

atio

n

[G cm

g]

31−

σ

Temperature [K]TMagnetic field [kOe]H

300 300

250 250

200 200

150 150

100 100

50 50

0 00 10 20 30 40 50 60

T = 4.5 K48.797.0

137.3

176.6

216.7236.9247.1267.6277.4288.0298.4

318.8324.0 K

0 50 100 150 200 250 300 350

H = 4 kOe8

1218243656 kOe

a b

Gd GdII [1010]H II [1010]H

Fig. 44. (a) Magnetization of a Gd single crystal as a function of field at selected temperatures, and (b) mag-

netization of Gd vs. temperature at selected dc fields with the field parallel to the [10 0] direction [98D].

Page 67: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements M

agne

tizat

ion

[G

cmg

]3

1−σ

Magnetic field [kOe]H

300

200

100

T0 = 78.5 K111.5128.0149.5169.0190.5230.0

273.0283.0296.5314.5335.0360.5 K

Gd

0 100 200 300 400

248.5

Fig. 45. Magnetization adiabates for Gd single crystalin the 0.01s pulsed field up to 360 kOe at differentvalues of the initial temperature of the sample in K. At360.5 K that is almost 70 K above the Curie point. Inthe field of 360 kOe the Gd magnetization exceeds itsspontaneous magnetization at 273 K, i.e., by 20 Kbelow the Curie temperature [86P].

Mag

netiz

atio

n

[G cm

g]

31−

σ

300

200

100

0 100 200 300Temperature [K]T

12

3

4

Fig. 46. Temperature dependencies of magnetization ofGd at different values of the external field H = 0 (half-filled circles); H = 17 kOe (open circles); 200 kOe (open triangles up); 360 kOe (open triangles down), 17 kOe (solid circles). The solid lines are calculated in the effective field approximation with (1) H = 0; (2) H = 17 kOe; (3) 200 kOe; (4) 360 kOe; solid triangles: σeff (with a short-range order contribu-tion at temperatures higher than TC) [86P].

Temperature [K]T

Spin

pol

ariza

tion

P 0

P 0

Spin

pol

ariza

tion

PBu

lk m

agne

tizat

ion

mb

Gd

H = 0

H = 0

H = 48 kA m−1

TCb

0.6

0.4

0.2

0

0

0

− 0.2

− 0.2 − 0.05

− 0.4

− 0.4 − 0.10

175 225 275 325

a

b

c

Fig. 47. (a) Temperature dependence of the bulk spontaneous magnetization mb (T, H = 0) for Gd normalized to the bulk saturation magnetization. (b)temperature dependence of the electron-spin polari-zation (ESP) at the topmost layer of atomically clean surfaces of Gd for H = 48 kA m–1. (c) Temperature dependence of the spontaneous electron-spin polari-zation P0(T) using TCb = 315 K for the extrapolation. The results shown demonstrate that, for Gd, the topmost surface layer is magnetically ordered while the bulk is disordered. The Gd surface long-range ferromagnetic order exists far above the bulk Curie temperature TCb= 292.5 K [86R].

Page 68: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

Reduced temperature 1- /T TC

Spon

tane

ous m

agne

tizat

ion

Ms

Gd

10 − 4 10−3 10−2 10−1 1

dGd = 26 Å

11 Å

2.9 Å

β TC [K]

0.450.500.55

0.250.250.30

0.200.220.28

279280281

248249250

155156157

Temperature [K]T

Inv.

susc

eptib

ility

χ−1

(rela

tive)

Gd

3

2

1

0293 294 295 296 297 298

2

1

Fig. 49. Inverse magnetic susceptibility χ–1, as a function of temperature for a single crystal of Gd measured along the c axis (plot 1) and in the basal plane (plot 2) [89G].

Gd2

1

Magnetic field [kAm ]H −1

Mag

netiz

atio

n

[A m

kg]

21−

σ

300

250

200

150

100

50

0 200 400 600 800 1000 1200 1400

Fig. 50. Magnetization curves for Gd plots deformed on Bridgman anvil-type unit under a pressure of 4 GPa atroom temperature (1) and annealed (2) in a vacuum of1.3·10–2 Pa at different temperatures for 30 min measured at 77 K [96M].

Fig. 48. Log-log plot of the spontaneous magnetization Ms (B = 10 mT) vs. re-duced temperature (1 – T/TC) for Gd thin film samples prepared at Ts = 473 K. The dashed lines illustrate a behavior Ms (dGd).Sample thickness is dGd = 26, 11, and 2.9 Å (from top to bottom data set). Data are shifted vertically for clarity [98G].

Page 69: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements

Gd

2

1

Mag

netiz

atio

n

[A m

kg]

21−

σ

300

250

200

150

100

50

0

Temperature [K]T50 100 150 200 250 300 350

Fig. 51. Temperature dependence of the magnetizationσ(T) for Gd as-deformed (1) and annealed (2) states. For details see Fig. 50 [96M].

Temperature [K]TSu

scep

tibili

ty(re

lativ

e)ac

χ

Gd II [0001]H

1.2

1.0

0.8

0.6

0.4

0.2

0 50 100 150 200 250 300 350

Tsr

T’sr Tsr

T’sr

TC

µ = 00 dcH0.1 T0.51.02.55.0

Fig. 52. AC magnetic susceptibility of a Gd single crystal in bias dc fields with the ac and dc fields parallel to the [0001] direction [98D]. µ0Hac = 0.25 mT, ν = 250 Hz.

Temperature [K]T

Susc

eptib

ility

(rela

tive)

acχ

Gd1.2

1.0

0.8

0.6

0.4

0.2

0 50 100 150 200 250 300 350

Tsr TCII [1010]HII [0001]H

Fig. 53. AC magnetic susceptibility of Gd single crystals with the ac field parallel to the [0001] and [10 0] directions. Tsr and TC are the spin-reorientation and Curie temperatures, respectively [98D]. µ0Hdc = 0, µ0Hac = 0.5 mT, ν = 250 Hz.

Temperature [K]T

Susc

eptib

ility

(rela

tive)

acχ

Gd II [0001]H

1.2

1.0

0.8

0.6

0.4

0.2

0 50 100 150 200 250 300 350

Tsr TC

µ = 00 dcH0.1T0.51.02.55.0

Fig. 54. AC magnetic susceptibility of a Gd single crystal in bias dc fields with the ac and dc fields parallel to the [10 0] direction [98D]. µ0Hac = 2.5 Oe, ν = 250 Hz.

Page 70: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 5

8

6

4

2

0−12 − 8 − 4 0 4 8 12

IIn

tens

itym

ag[1

0co

unts

]4

Linear momentum [a.u.]pz

Gd

Fig. 55. Magnetic-electron Compton profile offerromagnetic Gd at 106 K measured with circularly polarized synchrotron-radiation X-rays of 45.2 keV. The solid line is the relativistic Hartree-Fock impulse Compton profile of atomic 4f electrons and corre-sponds to 7 µB/at. The remaining area corresponds to 0.53(8) µB/at is only slightly smaller than the expected conduction-electron magnetic moment 0.63 µB/at [91S].

Temperature [K]T

Rela

xatio

n tim

e[

s]

R1/1/

ww

µτ

Hype

rfine

fiel

d[O

e]

H hf1/

1/β

β

Gd

20

10

0

1.0

0.5

0291 292 293

Fig. 56. Determination of TC via Gd 111In PAC data. The data are presented as linearized plots of the hyperfine field below TC (left scale), and the nuclear relaxation rate above TC (right scale). w is the critical exponent. The open circles and triangles represent the hyperfine field and nuclear relaxation rate for single-crystal natural Gd samples, and determine TC to be 291.85 K by two independent methods. The solid squares representnuclear relaxation rates obtained for a piece ofpolycrystalline 160Gd used in the Mössbauer experiments and determine TC to be 292.2(1) K [86Ch].

Corre

latio

n fu

nctio

nG 2

Corre

latio

n fu

nctio

nG 2

Time [ns]t Time [ns]t

GdT = 287.15 K T = 295.15 K

1.0 1.0

0.5 0.5

0 0

− 0.5 − 0.5

− 1.0 − 1.00 090 90180 180270 270360 360450 450

a b

Fig. 57. Typical perturbed angular correlation (PAC) spectra below (a) and above (b) the Curie temperature. Below TC the spectra may be fitted by a combined

magnetic-quadruple interaction; above TC the spectra are described by a pure quadruple interaction [86Ch].

Page 71: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.1 Rare earth elements

Temperature [K]T

Orde

r par

amet

er

=/

eff

σξ

Gd0.3

0.2

0.1

0

TC

300 310 320290 330

Inte

nsity

[10

coun

ts]

3

Inte

nsity

[10

coun

ts]

3

Binding energy [eV]E Binding energy [eV]E

Gd15 15

10 10

5 5

0 011 1110 109 98 87 7

h = 48 eVT = 200 Kν

a b

Fig. 59. Gd-4f PE spectra taken with circularly polarized 48-eV photons for (a) parallel (∆MJ = + 1) and (b) anti-parallel (∆MJ = − 1) orientation between photon spin and sample magnetization. The (0001) surface layer compo-nent (uppermost solid subspectra) is ferromagnetically aligned to the bulk of Gd (lower solid subspectra). The dashed components, which are identical in spectra (a)

and (b), represent the sum of the paramagnetic bulk (dotted lines) and surface signals (dashed lines) due to unpolarized light and the finite sample temperature. The solid curves through the peaks displaced vertically represent the best-fit results for hypothetical antiferro-magnetic alignment of surface layer and bulk [93S2].

Fig. 58. Short-range order parameter in Gd above Curie temperature. σ0 = 268.4 G cm3 g–1 is the spontaneous magnetization of Gd at 0 K [86P].

Page 72: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 7 I

Inte

nsity

[%

]

Binding energy [eV]E

Gd80

60

40

20

0

9 8 9 8

Jf Jf= =6 65 54 42 20 0

Gd

Temperature [K]T

Freq

uenc

y

[MHz

30

20

10

0 100 200 300

c beam

T

c II beam

Fig. 61. Temperature dependence of the muon spinrotation frequency in a single crystal sphere of Gdmetal below TC [90H].

Heat

capa

city

/[m

Jmol

K]

CT

p−

−1

2

Squared temperature [K ]T 2 2

Gd

12

14

12

10

8

6

40 4 8 12 16

Fig. 62. Heat capacity of electrotransported Gd: curve 1, circles: from the results of [74W]; 2: from the results of [85T]. [87H].

Fig. 60. Calculated relative intensities of the 4 f6 −7FJ final state photoemis-sion multiplet components for (a) || (∆MJ = + 1) and (b) ⊥ (∆MJ = − 1) orientation between photon spin and sample magnetization. For compari-son, the experimental spectra normalized to 100 % circular polari-zation, are also given [93S2].

Page 73: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.1 Rare earth elements

Temperature [K]T

Heat

capa

city

[Jm

olK

]C p

−−

11

[Jm

olK

]C p

−−

11

Gd60

50

40

30

20

10

0 50 100 150 200 250 300 350

Tsrµ = 00 H2 T5 T

7.5 T10 T

Tsr

42

41

40

39

38

37

36

35200 210 220 230 240

T [K]250

Temperature [K]T

Tem

pera

ture

shift

[K]

∆T

Gd60

50

40

30

20

10

0100 200 300

12

3

5

6

7

8

9

1011

121314

4

Fig. 63. Heat capacity of single-crystal Gd with the magnetic field applied parallel to the [0001] direction. The inset clarifies the details near the spin reorientation transition Tsr. The error bars are shown for the zero-field heat capacity in the inset. The arrows point to the anomaly at Tsr [98D].

Fig. 64. Temperature dependencies of the magnetocaloric effect in Gd at fields up to 360 kOe with account taken of the short-range order above TC. The thick line is the calculation in the constant field H = 360 kOe. The thin lines are the calculations at constant magnetization values σ in G cm3 g–1: (1) 40; (2) 60; (3) 80; (4) 100; (5) 120; (6)140; (7) 160; (8) 180; (9) 200; (10) 220; (11) 230; (12)240; (13) 250; (14) 260 [86P].

Page 74: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 9

Temperature [K]T

Gd II [0001]H

50 100 150 200 250 300 350

µ = 0-2 T0H0-50-7.50-10 T

Tem

pera

ture

shift

[K]

∆T ad

20

15

10

5

25

0

Temperature [K]T

Gd

150 200 250 300 350

µ = 0-2 T0H

0-5 T

4

2

0

6

8

10

12

H II [1010]

Entro

py ch

ange

[J kg

K]

−∆S m

11

−−

Fig. 65. Magnetocaloric effect in single crystal Gd with the magnetic field applied parallel to the [0001] direction. The error bars on the left-hand side of the figure indicate the uncertainty in the direct measure-ments (± 7 %) [98D]. Open symbols: calculated from Cp data, solid symbols: experimental, dotted lines: range due to errors in Cp.

Fig. 66. Magnetic entropy change in single crystal Gd with the magnetic field applied parallel to the [10 0]direction as determined from heat-capacity (open symbols) and magnet-ization (solid symbols) measure-ments. Dotted lines: range due to errors in Cp [98D].

Page 75: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.1 Rare earth elements

Temperature [K]T

Entro

py ch

ange

[J m

olK

]∆

S m1

1−

GdH cII

0.8

0.6

0.4

0.2

0100 200 300 400

H = 12 kOe

9 kOe

3 kOe

Fig. 67. Temperature dependence of the magnetic en-tropy change for Gd monocrystal (H||c): H = 12 kOe, 9 kOe and 3 kOe [96D].

Satu

ratio

n m

agne

tizat

ion

[G]

Ms

Inv. layer thickness 1/ [Å ]dGd1−

Gd

2100

1900

1700

15000 0.05 0.10 0.15

bulk

Fig. 68. Saturation magnetization of Gd (Ms) as a function of inverse Gd layer thickness (1/dGd) for a series of annealed multilayers. The dotted line representthe bulk Gd magnetization [96J].

Annealing temperature [°C]Ta

Curie

tem

pera

ture

[K]

T C

Gd

300

290

280

270

0 200 400 600

Fig. 69. Curie temperature TC of thin films of Gdgrown on a glass substrate vs. annealing temperatureTa. Open circles show TC values determined from the Arrott plot, closed circles from Graham's plot andcrosses from resistance data. Arrows indicate valuesfor the as-deposited sample [88N].

Tota

l ene

rgy

[Ry]

E

Layer distance [relative]ds-sl

Gd− 0.780

− 0.785

− 0.790

− 0.795

− 0.8005.30 5.50 5.70 5.90 6.10

d (bulk) = 5.43

F

AF

Fig. 70. Theoretical total energy of the Gd(0001) slab vs. the distance between the surface and adjacent underlayer. Solid circles stand for the FM state, and open circles are for the AFM states. Arrows show the equilibriumpositions obtained by total energy minimization [91W].

Page 76: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 11

GdF AF

S

S - 1

S - 1

C

C

S

Fig. 71. Schematic ferromagnetic and antiferro-magnetic configurations for a six-layer Gd(0001) slab [91W1].

Gd

dII d T

a

b

Fig. 72. Possible domain configurations for both in-plane and perpendicular surface magnetism ofGd(001) films. Panel (a) shows a magnetic state with canted spins on the surface, and panel (b)shows a combination of perpendicular and in-plane domains [93T1].

Temperature [K]T

Mag

netic

susc

eptib

ility

χ

Gd

in - plane

out - of - plane

200 250 300

Fig. 73. Comparison between the temperature dependence in-plane and out-of-plane suscept-ibility for a 130 nm thick Gd film [95B1].

Page 77: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.1 Rare earth elements

Temperature [K]T

Temperature [K]T

Mag

netiz

atio

nM

Mag

netiz

atio

nM

Gd/Y

dGd = 1000 Å

dGd = 50 Å

dGd = 35 Å

dGd = 5 Å

250 275 300

100 150 200

µ = 0.01 T0H

Fig. 74. Magnetization M for Gd/Y films measured in a small field of µ0H = 0.01 T as a function oftemperature. The Curie temperature is determinedby extrapolating the M(0.01 T) vs. temperaturecurve to M = 0 [95G].

Fig. 76. Hysteresis loops, i.e. magnetization M vs. applied magnetic field µ0H, obtained by themagneto-optical Kerr effect (MOKE) measure-ments on Gd films (Ts = 473 K) with dGd = 1.5, 2.3, and 2.9 Å at T = 5 K…7 K [98G].

Mag

netiz

atio

nM

Tem

pera

ture

supp

ress

ion

[K]

∆T C

Film thickness [Å]dGd

6 10⋅ 2

102

10

11 10 102

Gd/Y

110 130 150 170T [K]

dGd = 2.9 Å

∝d −1

∝d −1.6

2 24 46 68 8

4

8

8

6

6

4

4

2

2

Fig. 75. Suppression ∆TC of the Curie temperature as a function of Gd/Y film thickness dGd. Solidcircles: experimental data (Ts = 473 K); dashedline: generalized mean-field theory for Heisenberg ferromagnets. Solid lines illustrate dGd

–1.6 and dGd–1

dependence. The inset shows the determination ofTC by extrapolating the magnetization M(T)measured in a small external field µ0H = 10 mT to M(TC) = 0 for dGd = 2.9 Å (dashed line). For this sample the extrapolation is nearly identical to a power-law fit with = 0.23 [98G].

Mag

netiz

atio

nM

Magnetic field [mT]µ0 H

Gd

0 20 40 60− 60 − 40 −20

dGd = 1.5 Å

dGd = 2.3 Å

dGd = 2.9 Å

Page 78: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 13

Gd/Y

Temperature [K]T

∝T

∝T 3.2

bulk

1.0

1.2

0.8

0.6

0.4

0.2

0 100 200 300 400

Satu

ratio

n m

agne

tizat

ion

()/

(O)

MT

Ms

s

dGd = 1000 [ Å]5011.6

8.754

Fig. 77. Temperature dependence of saturation mag-netization Ms for various Gd/Y film thicknesses (substrate temperature Ts = 300 °C for all samples) [95G].

Gd/Y

Temperature [K]T

T

1.0

1.2

0.8

0.6

0.4

0.2

0 100 200 300 400Sa

tura

tion

mag

netiz

atio

n(

)/(O

)M

TM

rr

dGd = 1000 [ Å]5011.6

8.75

Fig. 78. Temperature dependence of remanence Mr

for various (Gd/Y) film thickness (substrate temperature Ts = 300 °C for all samples) [95G].

Magnetic field [mT]µ0 H Magnetic field [mT]µ0 H

Mag

netiz

atio

nM

Mag

netiz

atio

nM

Gd/Y

− 40 − 20 0 20 40

dGd = 4 Å dGd = 30 Å

2 Ms

2 Ms

2 Mr2 Hc

−100 −50 0 50 100

Fig. 79. Hysteresis loops of magnetization M vs. applied magnetic field obtained by the magnetooptic Kerr effect (MOKE) measurements on thin Gd films on an Y buffer layer with dGd = 30 Å and 4 Å covered with a 100 Å Y

protective top layer at T ≈ 50 K. Saturation magnetiza-tion Ms, remanence Mr, and coercivity Hc are indicated [95G].

Page 79: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.1 Rare earth elements M

agne

tizat

ion

[G

cmg

]3

1−σ

Mag

netiz

atio

n

[G cm

g]

31−

σTemperature [K]T Temperature [K]T

[Gd /Y ]10 10 225

300 300

200 200

100 100

0 00 0100 100200 200300 300

1 1

2

2

3

3

4

4

1 1

2 2

3 3

4 4

H = 10.6 kOe H = 12.8 kOe2.61.40.2

N = 4, N = 10Gd Y432

a b

Fig. 81. (a) Temperature dependence of the magnetic moment ot the (10Gd/10Y)225 superlattice in a series of applied fields. (b) The temperature dependence of the

magnetic moment of the (4/2), (4/3), (4/4), and (4/10) superlattices in an applied field of 12.8 kOe [87K].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Magnetic field [kOe]H

300

200

100

0 4 8 12 16

T = 12 K

σ

σ

(0)

r

[Gd /Y ]10 24 76

[Gd /Y ]10 10 225

Fig. 80. The in-plane magnetization curves at 12 K for the synthetic superlattices consisting (10Gd/24Y)76 and(10Gd/10Y)225 [87K].

Temperature [K]T

Coer

cive

field

µ[m

T]0

cH

Gd/Y40

30

20

10

0 100 200 300

dGd = 70Å

Ts = 100°C

300 °C

500 °C

Fig. 82. Coercive field Hc(T) for Gd/Y films preparedwith different substrate temperatures Ts and a constantfilm thickness dGd = 70 Å [95G].

Page 80: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 15 M

agne

tizat

ion

/ (

0)rσ

σ

Number of layers NY

Layer thickness [Å]dY

Mag

netic

fiel

d[k

Oe]

H sJ

rGd

-Y(

) [m

eV]

0 10 20 305 15 25

0

0.10

0

− 0.10

− 0.20

5

10

0

0.5

1.0

0 20 40 60 80

NGd = 4 NGd = 10 ±1

a

b

c

Fig. 83. The oscillatory dependence of (a) remanent magnetization σr/σ(0) and (b) saturation field Hs, on NY (number of Yttrium atomic layers) in two series ofsuperlattices (Gd - Y) with NGd = 4, and NGd = 10 ± 1.The dashed lines are guide to the eyes. (c) The calculated functional dependence of JGd-Y on NY

[87K].

Temperature [K]T

Rem

anen

t mag

netiz

atio

n(re

lativ

e)M

r

Gd/Nb1.25

1.00

1.00

1.00

0.75

0.75

0.75

0.50

0.50

0.50

0.25

0.25

0.25

0

0

00 100 200 300

dGd = 24Å

dGd = 50Å

dGd = 1000Å

18

45

500

15

35

300

29

200

24

150100

,

Fig. 84. Temperature dependence of the in-planeremanent magnetization Mr of Gd/Nb films with thickness between 15 and 1000 Å. The curves are normalized to the same value at T = 0 K [93P].

Page 81: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.1 Rare earth elements

Gd/Nb

−150 150 −20 20

M M

M s

Mr

µ0 cH

µ [mT]0Hµ [mT]0H

a b

Fig. 85. Hysteresis curves of two Gd/Nb films with (a)dGd = 15 Å at T = 51 K and (b) dGd=1000 Å at T = 55 K. In-plane components of the remanent magnetization Mr,

coercive field Hc and saturation magnetization Ms are indicated in (a) [93P].

Gd

M

Leasy axis

easy axis

θ

c axis

Fig. 86. Model of the domain pattern used toexplain the temperature dependence of theremanence and coercivity shown in Fig. 84 and85 [93P].

Magnetic field [kOe]H

Mag

netic

mom

ent

[Gcm

]M

3

T = 5.5 K

250 K

− 40 0 40

0.004

0

− 0.004

Gd/Mo

Mag

netic

mom

ent

-[G

cm]

MM

EO

3

Layer thickness [nm]dMo

Gd/Mo

0.00200

0.00175

0.00150

0.75 1.00 1.250.00125

0.00225

Fig. 87. The difference between the expected saturation moment, ME, and the maximum observed moment, M0, at 5.5 K, plotted as a function of Mo layer thickness of Gd/ Mo multilayers [96H].

Fig. 88. Magnetization of a Gd/Mo multilayer (dGd =3.6 nm, dMo = 1.0 nm) at 5.5, 10, 20, 50, 80, 150, 200 and 250 K [96H].

Page 82: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 17

Magnetic field [kOe]H

Mag

netic

mom

ent

[Gcm

]M

3

Gd/Mo0.007

0.006

0.005

0.004

0.003

0.0020 20 40 60

Fig. 89. Magnetization of three Gd/Mo multilayersmeasured at 5 K. Mo layer thicknesses are ( pen cir-cles) 0.73 nm; (solid circles) 0.84 nm; (open triangles)1.35 nm [97H].

Magnetic field [kOe]HM

agne

tizat

ion

[G]

M

[G]

M

Gd/W2000

1000

0

−1000

−20000 20 4010 30 50

II

T

2000

1000

00 10 20 30 40 50

H [kOe]

d = 8.7 Å13 Å1740 Å

Å

Fig. 90. Gd magnetization curves at 1.7 K for annealedGd32 Å/W26 Å with the field applied parallel and perpen-dicular to the sample plane. Inset: magnetization of Gd for multilayers with 8.7, 13, 17, and 40 Å Gd layers [96J].

Curie

tem

pera

ture

[K]

T C

Layer thickness [Å]dGd

Gd/W300

200

100

0 10 20 30 40 50 60

6

4

2

0 100 200 300T [K]

ac[c

gs u

nit]

χ

TA = 600 °C

as-deposited

Fig. 91. Curie temperature as a function of the Gd layer thickness for a series of Gd/W multilayers with dW = 26 Å annealed at 600 °C. The solid curve is a fit to the finite-size scaling law. Inset: Temperature dependence of the ac susceptibility (in cgs units) of the as-deposited and annealed Gd40 Å/W26 Å samples [96J].

Layer thickness [Å]dGd

Gd/W

Mag

netic

mom

ent

[]

p GdBµ

5

6

7

8

9

0 20 40 60 80 100

0.001

0

− 0.001

− 0.002− 40 −20 0 20 40

H [kOe]

M[G

cm]3

Fig. 92. Average magnetic moment per Gd atom in Gd/W multilayers as a function of the Gd layerthickness. Inset: Magnetic hysteresis loop at 5 K for the Gd19 Å/W18 Å multilayer [97L].

Page 83: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.1 Rare earth elements

Layer thickness [Å]dGd

Gd/W

0 20 40 60 80 100

4

3

2

1

Mag

netic

mom

ent

[10

G cm

]Gd

43

−σ

Fig. 93. Total magnetic moment per Gd layer at 5 K as a function of Gd layer thickness [97L].

Temperature [K]T

Rem

anen

t mag

netiz

atio

nM

r

Gd/W

150 200 250 300

dGd = 25 nm

35

40

55

65

80

110

130 nm

Fig. 94. Remanent magnetization as a function oftemperature for Gd on W(110) films of different thickness [95B1].

Temperature [K]T

Coer

cive

field

[Oe]

H cCo

erciv

e fie

ld[O

e]H c

Gd/W dGd = 20 nm

dGd = 40 nm

dGd = 100 nm

100

100

100

80

80

80

60

60

60

40

40

40

20

20

20

0

0

0200 220 240 260 280 300

Coer

cive

field

[Oe]

H c

Fig. 95. Coercive field as a function of temperature forthree different films on W(110) (thickness as indi-cated), after annealing to various temperatures (open circles: Tan = 570 K; solid circles: Tan = 670 K; solidtriangles: Tan = 770 K; open triangles: Tan = 870 K) [94P].

Page 84: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 19

Temperature [K]T

Coer

cive

field

[Oe]

H c

Gd/W

Aniso

tropy

cons

tant

[10

erg

cm]

K eff

53−

2

1

0175 200 225 250 275 300

80

60

40

20

0

Fig. 96. Comparison between the coercive field Hc(T)for 130 nm thick Gd on W(110) surface and theeffective anisotropy Keff(T)4 for bulk Gd [95B1].

Temperature [K]T

Susc

eptib

ility

acχ

Gd/WdGd = 130 nm

110

95

80

65

55

40

35

25 nm

100 150 200 250 300 350

Fig. 99. In-plane susceptibility as a function oftemperature for Gd/W(110) films of various thicknessregistered by the magneto-optical response of thesurface to a small in-plane ac field. In addition to thepeak caused by the ferromagnetic-paramagnetic phasetransition, the magnetization reorientation peak ispresent [95B1].

Temperature [K]T

Susc

eptib

ility

[rela

tive]

acχ

Gd/W

289 293.5 298

01.2

1.0

0.8

0.6

0.4

0.2

0

p = 3.2 10 Torr⋅ −8

p = 2.25 10 Torr⋅ −11

contaminatedsample

TH TC

cleansample

6

5

4

3

2

1

dGd = 80 nm

a

b

Fig. 97. (a) AC magnetic susceptibility of a clean Gd(0001) film 80 nm thick on to W(110) surfaces as a function of temperature TC and TH refer to the Curie and Hopkinson temperatures, respectively. (b) ac magnetic susceptibility of the same sample as in (a),after contamination. The abruptness of the drop in χwithin 4 K above Hopkinson maximum indicates the presence of a first-order (SEMO) transition, i.e., the coexistence of an ordered surface with a disorderedbulk [90S].

Page 85: 2 Magnetic properties of rare earth elements, alloys and ...

20 2.1 Rare earth elements

Temperature [K]T

Susc

eptib

ility

[SI u

nits

]acχ

Gd/W1000

1000

500

500

0

0

T = 530 K

710 K

Auger spectra

Gd(238 eV)

Gd(138 eV)

Gd(138 eV)

W(163 eV)

11 ML

22 ML

5000 Å

230 240 250 260 270 280 290 300

Temperature [K]T

Susc

eptib

ility

[SI u

nits

]acχ

Gd/W1200

1000

800

600

400

200

0

− 20080 120 160 200 240 280 320

7

9

11 14

15

55100

ML = 517

25

Fig. 98. Upper panel: χac(T) and Auger spectra of 11 ML Gd/W(110) first annealed at 530 K, then at 710 K. The occurrence of a W Auger signal after annealing to 710 K is ac-companied by a drastically reduced χpeak closer to TC (bulk). Lower panel: simulated χac for the mass equivalent of 11 monolayers (ML) [94A].

Fig. 100. χac peaks of different Gd(0001)/W(110) film thickness grown at Ts = 320 K carefully annealed without changing the layer-by-layer ML (monolayer) [94A].

Page 86: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 21 Po

lariz

atio

n[%

]P

Inte

nsity

(rel

ativ

e)

Binding energy [eV]E

Gd/W (110)

h = 44 eVνT = 100K

60

50

40

30

20

10

0

2.0

1.5

1.0

0.5

012 11 10 9 8 7 6

surfacebulk

Fig. 101. 4f core level normal emission intensity andpolarization data taken from Gd/W(110). The total intensityshown is separated into the bulk and surface contributions. Theshaded bar at the top of the figure delineates the range of thetotal 4f polarization as calculated from the fit line shapes [92M].

Inte

nsity

Binding energy [eV]E

Gd(0001)/W (110)h = 54 eVν

surface

subsurface

Gd 4f states

10 9 8 7

Fig. 102. Photoemission spectrum (circles) ofthe Gd 4f emission. The continuous line throughthe data points is the result of the curve fitting based on the decomposition into surface (lightshadowed) and subsurface (dark shadowed) contributions [93V].

Binding energy [eV]E Binding energy [eV]E

Inte

nsity

(rel

ativ

e)

Inte

nsity

(rel

ativ

e)

Gd(0001)

h = 44 eVνGd/W (110)

U 16AU 5U

1.4

1.2

1.2

1.0

1.0

0.8

0.8

0.6

0.6

0.40.4

0.20.2

0 04 43 32 21 10 0−1 −1

∆ 2↑

∆ 2↑

∆ 2↓

∆ 2↓

∆ ≈Eex 0.8 eV

h = 44 eVνGd/W (110)

T = 100K

majority spinminority spin

∆Eex

a b

Fig. 103. (a) Angle-resolved valence-band photo-emission spectra from the surfaces of Gd(0001) and Gd⁄W(110) multilayer acquired at the U16A and U5U

beam lines, respectively. (b) Spin-resolved intensities obtained from the U5U data of (a) [92M].

Page 87: 2 Magnetic properties of rare earth elements, alloys and ...

22 2.1 Rare earth elements

Binding energy [eV]E Binding energy [eV]E

Inte

nsity

h = 438 eVνGd/W

↑↑↓

T = 50K

150 150145 145140 140135 135155 155

4d3/2

4d5/2

6

4

2

0

− 2

− 4

a bAs

ymm

etry

[%]

Fig. 104. (a) Gd 4d core-level photoemission (PE) spec-tra (hν = 438 eV) obtained from a remanently mag-netize Gd(0001)/W(110) film (thickness 80 Å: T = 50 K). Open (solid) circles are for nearly parallel

(antiparallel) orientation of photon spin and sample magnetization. The MCD (magnetic circular dichroism) asymmetry derived from the raw data is plotted in (b)[95A].

Binding energy [eV]E Binding energy [eV]E

Inte

nsity

Gd/W

↑↑↓

T = 50K

a b

Asym

met

ry [%

]

h = 200 eVν

12 1211 1110 109 98 87 76 65 54 4

10

0

−10

−20

4f - F6 7j

M

z

yn

15°

Fig. 105. (a) Gd-4f photoemission spectra (hν = 200 eV) of a remanently magnetized Gd(0001)/W(110) film (thickness ≅ 80 Å: T ≅ 50 K). The open (solid) circles are for parallel (antiparallel) orientation of photon spin

and sample magnetization. (b) Asymmetry (I↑↑ – I↑↓)/ (I↑↑ + I↑↓) calculated from the raw experimental spectra in (a). The inset gives schematically the experimental geometry [93S2].

Page 88: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 23 In

tens

ity

Binding energy [eV]E

Film

thick

ness

[Å]

d Gd

Gd/Wh = 33 eVν

i = 70°θ

10 8 6 4 2 0

30

20

10

6

4

2

0

Temperature [K]T Temperature [K]T

Pola

rizat

ion

[%]

P

Pola

rizat

ion

[%]

P

100 100

75 75

50 50

25 25

−25 −25

0 0

Gd/W

0 050 50100 100150 150200 200250 250300 300350 350400 400

TCb

TCs

TCs

in - planein - plane

a b

perpendicular (×2)TCb

Fig. 107. Spin resolved photoemission polarization from the Gd 4f core levels vs. temperature taken with hν = 149 eV. The data in panel (a) were taken from a 400 Å film of Gd grown on W(110) at 300 K and annealed to 825 K for 3.5 min, while the panel (b) data are from a film grown at 673 K. TCs and TCb indicate the surface

and bulk magnetic ordering temperatures, respectively. An extrapolation to zero temperature is shown using a T

3/2 fit with prefactors of 1.6⋅10–4 and 1.8⋅10–4 deg–3/2 for (a) and (b), respectively. For comparison, the bulk Gd prefactor is 0.98⋅10–4 deg–3/2 [93T1].

Fig. 106. Photoemission spectra of Gd overlayers on W(110). The photoelectrons were collected normal to the surface and the light is p-polarized, so that the relative signal from the surface state increased relative to the other bands. For the very thin Gd films, there are two prominent features: the 4f levels at a binding energy of 8.6 eV and the 5d bands near the Fermi energy. For photoemission in the normal direction (k|| = 0) the Gd 5d bands become resolved into at least two distinct features with increasing coverage [91L].

Page 89: 2 Magnetic properties of rare earth elements, alloys and ...

24 2.1 Rare earth elements

Wavevector [Å ]kII1−

Bind

ing

ener

gy[e

V]E

Gd/W

MΓ0

1.0

2.00 0.2 0.4 0.6 0.8 1.0

Fig. 108. The experimental band structure from Γ toΜ of the surface Brillouin zone from spectra taken at a photon energy of 33 eV at various emission angles. The results are shown for the two temperatures of295 K (solid circles) and 235 K (open circles). The results are for a 20-Å film of Gd on W(110) [92D].

Gd/W

Magnetic field [Oe]H

Kerr

signa

l

−150 −100 −50 0 50 100 150

T = 202 K

228

243

260

287 K

Fig. 109. Temperature-dependent hysteresis loops measured on a 100-nm Gd film on W(110) afterannealing to 770 K. The hysteresis loops exhibit anonvanishing slope outside the magnetization reversal region around Hc. This effect indicates that the easy axis of magnetization for Gd(0001) films is not in the surface plane [94 P].

Kerr

signa

l [m

rad]

Temperature [K]T

0.10

0.08

0.06

0.04

0.02

0

− 0.02270 275 280 285 290 295265

1

2 3

80 Å Gd/W (110)

Fig. 110. Remanent magnetization of 80 Å Gd(0001) on W(110) for different annealing steps: (1) as-deposited 310 K, (2) 620 K, (3) 820 K. The as-deposited films have a reduced Curie temperature TC = 273 K, which gradually shifts up to the bulk TC of Gd upon annealing [94F].

Page 90: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 25

Magnetic field [kOe]H

15

10

5

0 10 20 30 40

1.5

1.0

0.5

0

Evaporation time [min]t

Auge

r am

plitu

de (r

elat

ive)

Auge

r am

plitu

de ra

tio

1.6 2.0

1.0

A = 0.8Θ

A = 0.8Θ

Gd(138/140eV)/W(163/165eV)

Gd(138/140 eV)

2 3 4

T = 340 K

bulk

80 Å

ESR

signa

la b

Fig. 111. The Auger amplitude of Gd and the Auger amplitude ratio Gd/W as functions of evaporation time. An adsorbate coverage of ΘA = 1 corresponds to a hcp Gd (0001) close-packed monolayer on W(110). The sub-strate temperature during evaporation wasTs = 450 °C.

(b) ESR absorption spectra for a 18-µm (bulk), 80-Å, and ΘA = 0.8 Gd adsorbate layer, far in the paramagnetic regime. The microwave frequency is 9.30 GHz and H0

lies in the surface plane [87F].

Temperature [K]T

T [K]

Gd/W

Reso

nanc

e lin

ewid

th[O

e]∆

H

∆H

[Oe]

×20

×40

140

120

100

80

60

40

20

0260 300 340 380

1000

800

600

400

200

0

bulk

5 Oe/K

TCb

TCb

Inte

nsity

(rel

ativ

e)ES

R

Inte

nsity

(rel

ativ

e)

140

120

100

80

60

40

20

0240 260 280 300 320 340 360

600

500

400

300

200

100

Fig. 112. ESR intensity and line-width as functions of temperature for 80 Å (solid circles), ΘA = 1.6 (open squares), and ΘA = 0.8 (open triangles) of Gd/W (110). The gain factors for ΘA = 0.8 and ΘA = 1.6 are 40 and 20 with respect to the 80 Å data. For comparison the corresponding data of a bulk foil (solid circles) are shown in the inset. TCb = 292.5 K. The inflection points of the ESR intensity curves are a strong evidence for a ferromagnetic ordering of the monolayer. ΘA is an adsorbate coverage parameter [87F].

Page 91: 2 Magnetic properties of rare earth elements, alloys and ...

26 2.1 Rare earth elements

Reduced temperature t

Gd/W1

10−1

10−2

10−3

8

8

8

6

6

6

4

4

4

2

2

2

4 10⋅ −2 10−2 10−1 16 8 2 4 6 8 2 4 6 8

Inte

nsity

(rel

ativ

e)ES

R

ΘA = 1.6

ΘA = 0.8dGd = 80 Åγ = 1.25

γ = 1.25bulk

γ = 1.74

γ = 1.9

Fig. 113. Log-log plot of the ESR intensity [αχ(0)]of Gd on W(110) for T > TC. Straight lines are best fits by a power law χ(0) α t

–γ, where t = (T – TC)/TC

with γ ≈ 1.8 for a monolayer and γ ≅ 1.25 for an 80 Å film. This agrees well with the theoretical γ of 2D (γ = 1.8) and 3D (γ = 1.25) Ising system, respec-tively. ΘA is the adsorbate coverage [87F].

Temperature [K]T

Gd/W

Reso

nanc

e fie

ld[k

Oe]

H II

3.5

3.0

2.5

2.0

1.5

1.0

0220 240 260 280 300 320 340 360

0.8 ML1.6 ML2.8 MLdGd = 80 Å

z

c axisy

Mx

Hhf

HII

π/2

φeq

Fig. 114. Magnetic resonance fields at 9 GHz for epitaxial layers Gd (0001)/W(110) as a function of temperature forvarious thicknesses of magnetic monolayer (ML). The dc magnetic field H|| is applied in the film plane (inset). Inuniaxial symmetry the orientation of M is given by φeq. Forall layer thicknesses a shift to lower magnetic fields withdecreasing temperature is observed. This shift to lowerresonance fields indicates that the effective magnetizationMeff inverses in the plane when the temperature is loweredthrough TC.The magnetization lies completely in the filmplane (φeq = 0) opposite to the behaviour of bulk Gd [89F1].

Magnetic field [kOe]H

Inte

nsity

Gd film T = 697 K

475 K

338 K

2 3 4 5 6

Fig. 115. EPR spectra of Gd-containing Langmuir-Blodgett (LB) film during heating. The plane of the film is perpendicular to the external magnetic field [97T].

Temperature [K]T

Inte

nsity

(rel

ativ

e)

Gd film50

40

30

20

10

0300 400 500 600 700

Fig. 116. Temperature dependencies of the EPRsignal intensity in Gd-containing LB film during heating. Solid line is guide for the eye [97T].

Page 92: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 27

Temperature [K]T350 400 500 600 700

Reso

nanc

e lin

ewid

th[O

e]∆

H

450 550 650

Gd film700

600

500

400

300

200

100

Fig. 117. Linewidth of the EPR line as a function oftemperature in Gd-containing LB film. Open andclosed squares denote temperature increasing anddecreasing processes, correspondingly [97T].

Temperature [K]T

Gd film2.10

2.08

2.06

2.04

2.02350 450 550 650 750

g- f

acto

r

Fig. 118. g value of the EPR line in Gd-containing LB film as a function of temperature during cooling [97T].

Page 93: 2 Magnetic properties of rare earth elements, alloys and ...

References

74W Wells, P., Lanchester, P.C., Jones, D.W., Jordan, R.G.: J. Phys. F 4 (1974) 1729

85T Tsang,T-W., Gschneidner jr., K.A., Schmidt, F.A., Thome, D.K.: Phys. Rev. B 31 (1985) 235

86Ch Chowdhury, A.R., Collins, G.S., Hohenemser, C.: Phys. Rev. B 33 (1986) 5070

86P Ponomarev, B.K.: J. Magn. Magn. Mater. 61 (1986) 129

86R Rau, C., Eichner, S.: Phys. Rev. B 34 (1986) 6347

87F Farle, M., Baberschke, K.: Phys. Rev. Lett. 58 (1987) 511

87H Hill, R.W., Collocott, S.J., Gschneidner jr., K.A., Schmidt, F.A.: J. Phys. F 17 (1987) 1867

87K Kwo, J., Hong, F.J., DiSalvo, F.J., Waszczak, J.V., Majkrzak, C.F.: Phys. Rev. B 35 (1987)

7295

88N Nakamura, O., Baba, K., Ishii, H., Takeda, T.: J. Appl. Phys. 64 (1988) 3614

89F1 Farle, M., Berghaus, A., Baberschke, K.: Phys. Rev. B 39 (1989) 4838

89G Geldart, D.J., Hargraves, P., Fujiki, N.M., Dunlap, R.A.: Phys. Rev. Lett. 62 (1989) 2728

90H Hartmann, O., Wäppling, R., Karlsson, E., Kalvius, G.M., Asch, L., Litterst, F.J., Aggarwal,

K., Münch, K.H., Gygax, F.N., Schenck, A.: Hyperfine Interactions 64 (1990) 369

90S Salas, F.H., Mirabal-Garcia, M.: Phys. Rev. B 41 (1990) 10859

91L Dongqi Li, Hutchings, C.W., Dowben, P.A., Hwang, C., Rong-Tzong Wu, Onellion, M.,

Andrews, A.B., Erskine, J.L.: J. Magn. Magn. Mater. 99 (1991) 85

91S Nobuhiko Sakai, Yoshikazu Tanaka, Fumitake Itoh, Hiroshi Sakurai, Hiroshi Kawata, Toshiaki

Iwazumi: J. Phys. Soc. Jpn. 60 (1991) 1201

91W Ruqian Wu, Freeman, A.J.: J. Magn. Magn. Mater. 99 (1991) 81

91W1 Ruqian Wu, Chun Li, Freeman, A.J., Fu, C.L.: Phys. Rev. B 44 (1991) 9400

92D Dongqi Li, Jiandi Zhang, Dowben, P.A., Onellion, M.: Phys. Rev. B 45 (1992) 7272

92M Mulhollan, G.A., Garrison, K., Erskine, J.L.: Phys. Rev. Lett. 69 (1992) 3240

93P Paschen, U., Sürgers, C., v. Löhneysen, H.: Z. Phys. B 90 (1993) 289

93S2 Starke, K., Navas, E., Baumgarten, L., Kaindl, G.: Phys. Rev. B 48 (1993) 1329

93T1 Tang, H., Weller, D., Walker, T.G., Scott, J.C., Chappert, C., Hopster, H., Pang, A.W., Dessau,

D.S., Pappas, D.P.: Phys. Rev. Lett. 71 (1993) 444

93V Vescovo, E., Carbone, C., Rader, O.: Phys. Rev. B 48 (1993) 7731

94A Aspelmeier, A., Gerhardter, F., Baberschke, K.: J. Magn. Magn. Mater. 132 (1994) 22

94F Farle, M., Lewis, W.A.: J. Appl. Phys. 75 (1994) 5604

94P Pang, A.W., Berger, A., Hopster, H.: Phys. Rev. B 50 (1994) 6457

95A Arenholz, E., Navas, E., Starke, K., Baumgarten, L., Kaindl, G.: Phys. Rev. B 51 (1995) 8211

95B1 Berger, A., Pang, A.W., Hopster, H.: Phys. Rev. B 52 (1995) 1078

95G Gajdzik, M., Paschen, U., Sürgers, C., v. Löhneysen, H.: Z. Phys. B 98 (1995) 541

96D Dan’kov, S.Y., Spichkin, Yu.I., Tishin, A.M.: J. Magn. Magn. Mater. 152 (1996) 208

96H Harkins, J.V., Donovan, P.: J. Magn. Magn. Mater. 156 (1996) 224

96J Jiang, J.S., Chien, C.L.: J. Appl. Phys. 79 (1996) 5615

96M Mulyukov, Kh.Ya., Korznikova, G.F., Nikitin, S.A.: J. Magn. Magn. Mater. 153 (1996) 241

97H Helgsen, G., Tanaka, Y., Hill, J.P., Wochner, P., Gibbs, D., Flynn, C.P., Salamon, M.B. Phys.

Rev. B 56 (1997) 2635

97L Li, Yi, Polaczyk, C., Kapoor, J., Riegel, D.: J. Magn. Magn. Mater. 165 (1997) 165

97T Tishin, A.M., Koksharov, Yu.A., Bohr, J., Khomutov, G.B.: Phys. Rev. B 55 (1997) 11064

98D Dan’kov, S.Yu., Tishin, A.M., Pecharsky, V.K., Gschneidner jr., K.A.: Phys. Rev. B 57 (1998)

3478

98G Gajdzik, M., Trappmann, T., Sürgers, C., v. Löhneysen, H.: Phys. Rev. B 57 (1998) 3525

Page 94: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.7 Terbium

Temperature [K]T

T [K]

Criti

cal f

ield

[Oe]

H cr

[Oe]

H cr

1200

900

600

300

0216 220 224 228 232 236

Tb

F

Pfan?

AF

80

60

40

0222 226 230

Fig. 119. Magnetic phase diagram of Tb single crystal determined from the elasticity modulus measured by means of the flexural oscillation method at frequencies of 1 kHz to 2 kHz in a spinoidal magnetic field up to 2.5 kOe. The inset shows the anomaly in the temperature dependence of the critical field of helical antiferro-magnetic structure destruction [89K].

Page 95: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements

Magnetic field [kOe]H

Inte

nsity

Tb

0.5 1.0

F H F H F F H F H F

Fig. 120. Evolution as a function of the appliedmagnetic field of the magnetic satellite integratedintensity from a rectangular platelet shaped crystal ofTb. In the inset a schematic drawing of the interfacesobserved, as well as the assumed magnetizationrotation near the tips of the needle shaped ferro-magnetic regions are illustrated. The helimagneticphase region occupies the whole sample at zero field,whereas the ferromagnetic phase does it for an appliedfield higher than 0.15 T [89B].

Temperature [K]T

Turn

ang

leω

Tb35°

30°

25°

20°

15°

0200 210 220 230 240190

p = 19.3 kbar10.3 kbar

ambient pressure

Fig. 123. Temperature dependence of turn angles ofthe helical structure of Tb under pressure 10.3 kbar and19.3 kbar, on the warming process [92K].

Ener

gy[m

eV]

E

Tb

Relative wavevector ξ

10

8

6

4

2

0 0.2 0.4 0.6 0.8 1.0

T = 90 Kambient pressurep = 4.3 kbar15.2 kbar

5 - plane fits

Fig. 121. Magnon dispersion relations for ferromagnetic Tb along the c axis at 90 K at ambient pressure and under 4.3 and 15.2 kbar. The solid and dotted lines shown in this figure represent the result of a least-squares fit [94K].

Tb

0 0.2 0.4 0.6 0.8 1.

T = 90 Kambient pressurep = 4.3 kbar15.2 kbar

6

5

4

3

2

1

Wavevector [r.l.u.]q

Exch

ange

inte

gral

() [

meV

]j q

Fig. 122. The Fourier transformed exchange j(q) = J [J(q) – J(0)] in the c direction deduced for ferromagnetic Tb from the magnon measurements at 90 K under (a) ambient pressure, (b) 4.3 kbar, and (c) 15.2 kbar. The values of q are expressed in reciprocal lattice units (r.l.u.) [94K].

Page 96: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

Temperature [K]T

Tb

Wav

evec

tor

[r.l.u

.]mτ

0.13

0.12

0.11

0.10

0.09220 224 228 232 236

Fig. 124. Temperature dependence of the magneticmodulation wavevector τm of Tb. The open circleindicates the change in τm after quenching the sample from well into the paramagnetic state. Here 1 r.l.u. =1.1036 Å–1. Over the entire temperature range themodulation warevector τm lies between 0.0947 and0.1213 r.l.u. corresponding to the variation in the turnangle from 17.0° to 21.8° [92G].

Temperature [K]T

Tb

Mag

netiz

atio

n

[G cm

g]

31−

σ

400

300

200

100

050 100 150 200 250 300

10 kOe3.05 kOe

H aII

H = 1.58 kOe

Fig. 125. Temperature dependence of the magnet-ization of Tb monocrystal in the case of fixed magnetic fields (H||a): H = 1.58, 3.05, and 10 kOe [96D].

Temperature [K]T Temperature [K]T

Tem

pera

ture

shift

[K]

∆T

Tb

field

µ[T

]0

crHCr

itica

l

0.2

0.1

0

220 230a

54

32

1

3

2

1

0.02

0.01

0220 230

P

HAFF

b

Fig. 126. (a) Dependence of the magnetocaloric effect (MCE) in Tb single crystals on temperature in a field || b; µ0H = 0.02 (1), 0.025 (2), 0.03 (3), 0.035 (4), 0.04 T (5).(b) Magnetic phase diagram of Tb single crystals

determined from MCE results. P: paramagnetic phase; HAF: helical antiferromagnetic structure; F: ferro-magnetic phase [89N].

Page 97: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements

Temperature [K]T

Entro

py ch

ange

[J m

olK

]∆

S m1

1−

Tb0.8

0.6

0.4

0.2

0200 220 240 260

H = 12 kOe

9 kOe

3 kOe

H aII

Fig. 127. Temperature dependence of the magnetic entropy change for Tb monocrystal (H||a): H = 12, 9 and3 kOe [96D].

Tem

pera

ture

[K]

TPressure [kbar]p

Tb

TN

TC

275

250

225

200

0 105 15 20

Fig. 129. Pressure dependence of transition Néel tem-perature, TN and TC (transition of the helix-planar ferro-magnetic) for Tb studied by neutron diffraction [92K].

Tb

Wal

l ene

rgy

/2E

Bw

2

1.0

0.8

0.6

0.4

0.2

0 020° 20°40° 40°60° 60°a

Spin

num

ber n

w

10

8

6

4

2

bTurn angle θ0 Turn angle θ 0

Fig. 128. (a) Minimum value of the domain wall energy Ew/2B2σ2 for Tb metal plotted as a function of turn angle θ0. Open symbols indicate previous results.

(b) A plot of nw for the minimum energy of an AF domain wall as a function of θ0 (nw is the number of spins in the wall) [91McK].

Page 98: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 5 M

agne

tizat

ion

[G

cmg

]3

1−σ

Magnetic field [kOe]H

Tb

H aII

300

250

200

150

100

50

0 2 4 6 8 10 12 14

1

2

3

4

Fig. 130. Curves of the Tb single crystal magnet-ization at H||a and various pressures: (1) T = 80 K, p = 106 dyn cm–2;(2) T = 80 K, p = 8⋅109 dyn cm–2;(3) T = 228 K, p = 106 dyn cm–2;(4) T = 228 K, p = 9.5⋅109 dyn cm–2 [91N1].

Temperature [K]T

Tb

Criti

cal f

ield

[Oe]

H cr

400

300

200

100

0205 210 215 220 225 230

2

1

Fig. 131. Magnetic phase diagram of a Tb single crystal under pressure: (1) p = 106 dyn cm–2 and (2) 1010 dyn cm–2 [91N1].

Mag

netiz

atio

n

[G cm

g]

31−

σ

TbH bII

1

2

3

4

Temperature [K]T

200

150

100

50

0200 210 220 230 240190

Fig. 132. Dependence of specific magnetization of aTb single crystal for H||b (easy axis) on temperature at different values of magnetic field and pressure: (1) H = 13 kOe, p = 106 dyn cm–2;(2) H = 100 Oe , p = 1010 dyn cm–2;(3) H = 100 Oe, p = 106 dyn cm–2;(4) H = 100 Oe, p = 1010dyn cm–2 [91N1].

Magnetic field [kOe]H

Tb

Mag

netiz

atio

n sh

ift/

[10

G cm

gdy

n]

∂∂ p

−−

−9

51

H aII

14

12

10

8

6

4

2

0

2 4 6 8 10 12 14

225

235

150 K180

T = 230 K

250

Fig. 133. Dependence of the Tb ∆σ = (σ – σ0) effect on the magnetic field H||a: σ is the specific magnetization at temperature T and pressure p; σ0 is the magnetization at 0 K [91N1].

Page 99: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.1 Rare earth elements

Temperature [K]T Temperature [K]T

Tb

Susc

eptib

ility

(

rela

tive)

χ‘

Susc

eptib

ility

(

rela

tive)

χ‘

16

12

8

4

075 75100 100125 125150 150175 175200 200225 225250 250

3 Am−1

Hac1= 200 Am−

50

40

30

20

10

0

Hac1= 2150 Am−

54 Am−1

1075Am−1

a b

Fig. 134. Warming and cooling ac susceptibility runs (≈ 0.2 K min–1 ) for (a) single crystal Tb, Hac = 3 A m–1

and 200 A m–1, ν = 1 kHz), and (b) for polycrystalline Tb primary field Hac = 54 A m–1 (full line), 1075 A m–1

(broken line) and 2150 A m–1 (full line); ν = 100 Hz). Besides the transitions at TN = 229 K from paramag-netism to helical spin antiferromagnetism a broad peak in susceptibility at 150 K is observed [93McK].

Tb

Susc

eptib

ility

(

rela

tive)

χ‘

Susc

eptib

ility

(

rela

tive)

χ‘

a b

18 20

1618

1416

12

1410

128

1061 110 10100 1000 01000 1000

ac field [Am ]Hac1−

ac field [Am ]Hac1−

Fig. 135. Field dependence of χ' for (a) single crystal Tb at a constant temperature (T ≈ 207 K) in the ferro-

magnetic region (ν = 99 Hz), and (b) for polycrystalline Tb at T ≈ 204 K (ν = 493 Hz) [93McK].

Page 100: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 7

Temperature [K]T

Susc

eptib

ility

(

rela

tive)

χ‘

16

12

8

4

0220 230225 235215210

TbHac1= 200 Am−

40 Am−1

3 Am−11 Am−1;

Fig. 137. (a) Schematic representation of the be-haviour of susceptibility in a temperature modulationcycle AB on warming from the ferromagnetic regionto the AF region of Tb metal. Such an effect isexpected when the observed polarity of S↑ ≡ (∆χ'/∆T)↑is opposite to that of the analytical derivative(dχ'/dT)↑. (b) Illustration of the hysteresis expected inχD(T) + χW(T) for warming to a temperature Ts in the AF region followed by recooling. Points A and Bindicate the limits of a temperature modulation cycle.(c) Plot of the temperature dependence of thecontribution to susceptibility of χF(T) (or of χWF(T)),(d) Predicted behaviour of χ'(T). χD: susceptibilitywithin the spiral spin domains, χW and χWF: AF- andF- domain walls contribution, respectively, χF: F-islands contribution [91McK].

Temperature [K]T

Tb

Mag

neto

stric

tion

[10

]−3

λ

2.0

1.6

1.2

0.8

0.4

060 100 140 180 220 260

3

2

1

Fig. 136. ac magnetic susceptibility of single crystal Tb as a function of temperature in the critical region for several applied fields: Hac = 1, 3, 40 and 200 Am–1. The warming runs were started at T ≈ 210 K. All experiments were performed at a rate of ≈ 0.15 K min–1 and at a primary frequency ν = 1 kHz [93McK].

Temperature T

Tb

Susc

eptib

ility

χ‘

A

A

A

B

B

B

χ χD W( )+ ( )T T

χF( )T

Ts

Ts

Ts

a

b

c

d

Fig. 138. Temperature dependence of magneto-striction of Tb measured in a field 980 kA m–1: (1)submicrocrystalline state, (2) after annealing at 573 K, (3) after annealing at 1073 K [97M].

Page 101: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.1 Rare earth elements

magnetization [G cm g ]2 2 6 2−σSquared

Tb

Mag

neto

stric

tion

[10

]−6

ω

800

600

400

200

0 5000 10000 15000 20000

T = 232 K

231

229

230

228

H bII

Fig. 139. Dependence of the Tb volume magneto-striction on the square of a specific magnetization value in the vicinity of the Néel point in the magnetic field H||b: T = 232, 231, 230, 229, and 228 K [91N1].

Tb

Mag

neto

stric

tion

[10

]−6

ωTemperature [K]T

40

32

24

16

8

0

− 8215 220 225 230 235 240

H = 450 Oe

300200

100 Oe

H bII

Fig. 140. Dependence of the Tb volume magnetostric-tion on temperature in the magnetic field H||b [91N1].

Tb

Temperature [K]T

Spin

pol

ariza

tion

[]

P%

25

20

15

10

5

0

TCb TNb

120 150 180 210 240 270 300

Fig. 142. Magnetic order at surfaces of Tb metal investigated by electron cap-ture spectroscopy (ECS) which probes the electron spin polarisation of the topmost surface layer of 1 mm-thick Tb samples as function of temperature. TCb denotes the bulk Curie temperature as determined using ferromagnetic induction and the magnetooptical Kerr effect. TNb denotes the bulk Néel temperature of Tb [88R].

Page 102: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 9

Tb

Mag

neto

stric

tion

[10

]−6

ω

H aII

Temperature [K]T

800

600

400

200

0100 150 200 250 300

9

5

3

1H = 13 kOe

Fig. 141. Dependence of the Tb volume magnetostric-tion on temperature in the magnetic field H||a: H = 13, 9, 5, 3, and 1 kOe [91N1].

Mag

netiz

atio

n

[rel

ativ

e]σ

Temperature [K]T

Tb/YH = 2 Oe

26

13

0215 225 235 245 250240230220

Fig. 144. Thermal dependence of the magnetization of1000 Å Tb film epitaxially grown on Y (solid circles), and Tb (26 Å)/Y(44 Å) superlattice (open circles) under2 Oe magnetic applied in the basal plane. Tb directly undergoes a transition from the paramagnetic phase to the ferromagnetic one whereas there is no ferromagnetic long range order in the superlattice [95D].

Inte

nsity

Tb/W

Binding energy [eV]Eb Binding energy [eV]Eb

h = 100 eVνT = 110 K

12 1216 168 84 40 0− 4 − 4

6H

6G

6I

6P

87/2S

a

MCD

spec

trum

theory

b

Fig. 143. (a) Tb 4f photoemission (PE) spectra (hν = 100 eV) of a remanently magnetized Tb(0001)/W(110) film (150 Å thick; T = 110 K). Open (solid) circles are for nearly parallel (antiparallel) orientation of photon spin and sample magnetization. (b) Solid squares:

Intensity difference of the experimental magnetic circular dichroism (MCD) spectra in (a); the solid curve at the bottom of (b) reproduces the theoretical MCD spectrum [95A].

Page 103: 2 Magnetic properties of rare earth elements, alloys and ...

References

88R Rau, C., Jin, C., Robert, M.: J. Appl. Phys. 63 (1988) 3667

89B Baruchel, J., Sandonis, J. Pearce, A.: Physica B 156-157 (1989) 765

89K Kataev, G.I., Sattarov, M.R.,Tishin, A.M.: Phys. Status Solidi (a) 114 (1989) K79

89N Nikitin, S.A., Tishin, A.M., Bykhover, S.E.: Phys. Status Solidi (a) 114 (1989) K99

91McK McKenna, T.J., Campbell, S.J., Chaplin, D.H., Wilson, G.V.H.: J. Phys.: Condens. Matter 3

(1991) 1855

91N1 Nikitin, S.A., Tishin, A.M., Bezdushnyi, R.V., Spichkin, Yu.I., Red’ko, S.V.: J. Magn. Magn.

Mater. 92 (1991) 397

92G Gehring, P.M., Rebelsky, L., Gibbs, D., Shirane, G.: Phys. Rev. B 45 (1992) 243

92K Kawano, S., Achiwa, N., Onodera, A., Nakai, Y.: Physica B 180-181 (1992) 46

93McK McKenna, T.J., Campbell, S.J., Chaplin, D.H., Wilson, G.V.H.: J. Magn. Magn. Mater. 124

(1993) 105

94K Kawano, S., Fernandez-Baca, J.A., Nicklow, R.M.: J. Appl. Phys. 75 (1994) 6060

95A Arenholz, E., Navas, E., Starke, K., Baumgarten, L., Kaindl, G.: Phys. Rev. B 51 (1995) 8211

95D Dufour, C., Dumesnil, K., Vergnat, M., Mangin, Ph., Marchal, G., Hennion, M.: J. Magn.

Magn. Mater. 140-144 (1995) 771

96D Dan’kov, S.Y., Spichkin, Yu.I., Tishin, A.M.: J. Magn. Magn. Mater. 152 (1996) 208

97M Mulyukov, K.Ya, Korznikova, G.F., Sharipov, I.Z.: Phys. Status Solidi (a) 161 (1997) 493

Page 104: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.8 Dysprosium

Temperature [K]T

Mag

netic

fiel

d[k

Oe]

H

DyH aII

20

16

12

8

4

080 100 120 140 160 180 200

FP

spiral

fan - 2fan - 1

Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

H

DyH bII

I

II

III

IV

P

vortexstate

60 80 100 120 140 160 180 200

4

3

2

1

0

Fig. 145. Magnetic phase diagram of Dy determined from anomalies in specific heat. Magnetic field is applied along the a axis [96I].

Fig. 146. Magnetic phase diagram of single crystal Dy with an applied field along the b axis. Five magnetic phases below the paramagnetic (P) phase are indicated, I-helical antiferromagnetic phase, II-angular ferromagnetic phase, III-fan phase, IV-collinear ferromag-netic phase, and the so-called vortex state. Open circles represent the data from magnetization as a function of temperature at fixed applied magnetic fields and solid circles represent the data from magnetization as a function of field at fixed temperatures [97A].

Page 105: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements In

tens

ity (r

elat

ive)

Inte

nsity

(rel

ativ

e)

Inte

nsity

(rel

ativ

e)Wavevector [Å ]q −1

Wavevector [Å ]q −1

DyH = 0

H = 3 kOe

H = 8 kOe

1200

1000

1000

1000

800

800

800

600

600

600

400

400

400

200

200

200

0

0

06.62

6.62

6.64

6.64

6.66

6.66

6.68

6.68

6.70

6.70

spiral

Wavevector [Å ]q −16.62 6.64 6.66 6.68 6.70

ferro

ferro

spiral

a b

c

Fig. 147. Magnetic field dependence of the X-ray dif-fraction pattern of Dy at T = 95 K where the phase tran-sition induced by magnetic field takes place. The (006) diffraction pattern along the c*-direction. (a) H = 0 (virgin state). Only a single hexagonal phase appears. Two peaks are caused by Kα1 and Kα2 lines of Cu target. The arrow indicates the position of hexagonal phase reflected by Kα1 line. (b) H = 3 kOe. The diffraction profile for the coexistence of hexagonal and

orthorhombic phases. Two arrows correspond to the hexagonal and orthorhombic phase reflected by Kα1

line. (c) H = 8 kOe. The diffraction pattern corresponds to a single orthorhombic phase. The arrow corresponds to the orthorhombic phase reflected by Kα1 line. The coexistence of the spiral and ferromagnetic phase is a typical case of the first order phase transition from spiral to ferromagnetic structure [95S].

Page 106: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

Temperature [K]T

Temperature [K]T

Dy5

5

4

4

3

3

2

2

1

1

0

0

176

176

178

182

180

188

182 184

194

186

200

ββ

= 0.33

= 0.39

2D - model

Int.i

nten

sity [

10co

unts

]4

Int. i

nten

sity [

10co

unts

]3

a

b

γ - power law2D - power law

Mag

netiz

atio

n

[G cm

g]

31−

σ

Temperature [K]T

Dy

Criti

cal f

ield

[kOe

]H cr

H aII

400

300

200

100

0

12

8

4

0100 140 180 22060

1

2

34

56

Fig. 148. Integrated intensity for the (0,0,2–δ) neutron reflection vs. tem-perature for Dy. In (a) fits to (t−)2β

dependence of the spontaneous mag-netization in the ordered region and to a 2D-planar spin model in the paramag-netic region. In (b) fits to the persistent intensity observed in the paramagnetic region are indicated [95dP].

Fig. 149. Temperature dependencies of the specific magnetization and critical field Hcr for a Dy single crystal at H||a (the easy magnetization direction) and for various pressures; (1): H = 12 kOe, p = 106 dyn cm–2;(2): H = 12 kOe, p = 1010 dyn cm–2; (3): H = 5 kOe, p = 106 dyn cm–2; (4): H = 5 kOe, p = 1010 dyn cm–2; critical fields: (5) p = 1010 dyn cm–2, (6) p = 106 dyn cm–2. The magnetic field shifts the temperature Θ1 towards higher and the pressure towards lower temperature [91N].

Page 107: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements M

agne

tizat

ion

[G

cmg

]3

1−σ

Magnetic field [kOe]H

Dy360

240

120

0 5 10 15

78 K

128.5 K

1

2 3

H aIIH bII

1,32,4

4

Fig. 150. Dependence of specific magnetization σ on the field under atmospheric pressure for a Dy single crystal.The sharp increase of σ at the critical value Hcr is caused by the destruction of helicoidal antiferromagnetism (seecurves 3 and 4) [91N].

Mag

netiz

atio

n

[G cm

g]

31−

σ

[G cm

g]

31−

σ

Temperature [K]T

[K]T

300

200

100

080 120 160 200 240 280

H = 0.75 kOe

15

10

5

0180 200 220190170 210 230

H aIIDy

H = 1.6 kOe

H = 0.75 kOe

Fig. 151. Temperature dependence of the magnetizationof Dy monocrystal in the case a fixed magnetic field of0.75 kOe (H||a). Inset: H = 1.6 kOe and 0.75 kOe [96D].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Temperature [K]T

[K]T

Dy2.0

1.5

1.0

0.5

040 60 80 100 120 140 160 180 200 220 240 260

µ = 0.01 T II0H b

0.02

0.01

0

− 0.01

− 0.02150 170 190 210

Mag

netiz

atio

n slo

pe

Fig. 152. Magnetization of Dy as a function of temperature at 0.01 T along the b axis, arrows indicate magnetic transitions. The inset is the slope of magnetization, the arrow shows the vortex transition [97A].

Page 108: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 5 M

agne

tizat

ion

σ

Temperature [K]T

Dy

40 60 80 100 120 140 160 180 200 220 240 260

µ = 0.3 T0H

2.1 T

1.5 T

0.9 T

H bII

Mag

netiz

atio

n

[G cm

g]

31−

σ

Magnetic field [kOe]H

Dy180

150

120

90

60

30

0 10 20 30 40 50

T = 100 K120140

165 K

Fig. 153. Magnetization of Dy as a function of temperatures at µ0H = 0.3, 0.9, 1.5, and 2.1 T along the b axis, arrows indicate magnetic transitions 97A].

Fig. 154. Magnetization of Dy as a function of field along the b axis at T = 100, 120, 140, and 165 K, arrows indicate magnetic transitions [97A].

Page 109: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.1 Rare earth elements

Temperature [K]T Temperature [K]T

Susc

eptib

ility

[rela

tive]

acχ

Susc

eptib

ility

[rela

tive]

acχ

DyH bII

H cII

1.0 1.0

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

0 0200 20040 4080 80120 120160 160

a b

160 165 170 170160

Fig. 155. Alternate-current susceptibility (χac arbitrary units) of single-crystal Dy along the b (a) and c axis (b).TC, TN and the anomalies near 6.5 and 167 K are shown by arrows. The insets show the anomalies near 167 K.

The anomaly is most likely due to the so-called "vortex state" of Dy what means that the long-range order associated with the antiferromagnetic state has not fully developed [91W2].

Temperature [K]T Temperature [K]T

DyH bII

H cII

a b

Mag

netiz

atio

n

[G cm

g]

31−

σ

Mag

netiz

atio

n

[10

G cm

g]

−−

43

0.12

0.10

0.08

0.06

0.042 23 34 45 5

10.0

9.8

9.6

9.4

Fig. 157. Magnetization as a function of temperature along the b (a) and c axis (b) of single crystal Dy in an applied field (0.002 T). The anomalies in the magnet-

ization at T = 4.3 K and ac susceptibility at T = 6.5 K are due to a lifting of a component of the magnetic moment of Dy onto the c axis [91W2].

Page 110: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 7

DyT = 95 K

T = 100 K

T = 110 K T = 120 K

Volu

me

fract

ion

1.0

0.8

0.6

0.4

0.2

0

Volu

me

fract

ion

1.0

0.8

0.6

0.4

0.2

0

Magnetic field [kOe]H0 2 4 6 8 10

Magnetic field [kOe]H0 2 4 6 8 10

a b

c d

Fig. 156. Magnetic field dependence of the volume fraction of the orthorhombic (ferromagnet) phase. The abscissa is the external field. The hysteresis becomes small as the temperature is increased. (a) T = 95 K. Most

of the crystal structure remains at orthorhombic in the remanent state. (b), (c), (d) are the results for T = 100 K, 110 K, and 120 K, respectively [95S].

Temperature [K]T

Dy

Mag

neto

stric

tion

[10

]−

H aII

8

6

4

2

0

− 280 100 120 140 160 180 200

H = 11 kOe

5 kOe

1 kOe

Fig. 158. Temperature dependence of the volume mag-netostriction ω of a Dy single crystal at H||a: H = 11, 5 and 1 kOe [91N].

Page 111: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.1 Rare earth elements

Dy

Mag

neto

stric

tion

[10

]−

Magnetic field [kOe]H

7

6

5

4

3

2

1

0

− 10 2 4 6 8 10 12

H aIIT = 100 K

110120130

140

145150

155

160

170 K

Velo

city

[m s

]v 33

1−

Dy

Peak

inte

nsity

[10

coun

ts]

3At

tenu

atio

n[1

0dB

m]

332

1−α

Temperature [K]T

TN

TN

TN

6

4

2

0

2925

2910

2895

2880

20

15

10

5

0179 180 181 182 183

Fig. 159. Dependencies of volume magnetostriction ω on the magnetic field for a Dy single crystal at H||a [91N].

Fig. 160. Helical-paramagnetic phase tran-sition in Dy. Simultaneously measured ultrasonic velocity v33 and attenuation α33,and peak scattered neutron intensity vs. temperature for single-crystal Dy. The longitudinal ultrasonic wave was propa-gated along the c axis and neutrons probed the (0, 0.2 – δ) satellite. Open symbols indicate measurements taken during the cooling and closed symbols refer to the subsequent heating run [95dP].

Page 112: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 9

Temperature [K]T

Temperature [K]T

Temperature [K]T

Dy

Ther

moe

lect

ric p

ower

chan

ge d

/d[m

W m

ol]

Qt

−1Th

erm

oele

ctric

pow

er ch

ange

d/d

[mW

mol

]Q

t−1

Ther

moe

lect

ric p

ower

chan

ge d

/d[m

W m

ol]

Qt

−1

10

5

0179 180 181 182

7.5 J mol−1

0.2 J mol−1

36.6 J mol−1

200

150

100

50

090 91 92

1.0

0.5

0165 166 167 168 171 172 173 174

a b

c

0.2 J mol−1

Fig. 161. Investigation of the nature of the magnetic transitions in high-purity Dy with a high-resolution microcalorimeter. Change in energy content of Dy as a function of temperature (a) at the antiferromagnetic

transition, (b) at the ferromagnetic transition, (c) in the helical regime. The splitting of the curve TC into number of smaller peaks can arise from domain-related effects [88Å].

Page 113: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.1 Rare earth elements

Temperature [K]T

Ener

gy c

hang

e [K

]

Dy6

4

2

0100 120 140 160

1

2

3

4

Fig. 162. Temperature dependencies of the change of(1) exchange energy ∆Eexch, (2) magnetoelastic energy ∆Eme, (3) energy of magnetic anisotropy ∆EA

b, and (4) elastic energy ∆Emeb in Dy during

magnetic phase transition of the first type helicoidal antiferromagnetism-ferromagnetism [91N].

Temperature [K]TEn

tropy

[J m

olK

]S to

t1

1−

65

60

55

50

45140 160 180 200

DyH aII

H = 0

60 kOe

Fig. 163. Temperature dependence of the total entropy of Dy single crystal at H = 0 and 60 kOe (H||a) [91N].

Temperature [K]T

Entro

py[J

mol

K]

S m1

1−

DyH aII

Entro

py ch

ange

[J m

olK

]−∆

S m1

1−

2.5

2.0

1.5

1.0

0.5

− 0.5

0

100 125 150 175 20075

20

15

10

5

0

25

H = 0

10 kOe

60 kOe

Fig. 164. Temperature dependence of the change in the magnetic part of the entropy in a Dy single crystal in the field applied along the a axis: H = 10 kOe, 60 kOe, and temperature dependence of the magnetic part of Dy in a zero field [91N].

Page 114: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 11

Magnetic field [kOe]H

Entro

py[J

mol

K]

S m1

1−

Dy30

20

10

0 2 4 6 8

T = 200 K

175

160

130

100 K

Temperature [K]T Temperature [K]T

Tem

pera

ture

shift

[K]

∆T

Tem

pera

ture

shift

[K]

∆T

DyH aII H bII

8

6

4

2

040 100 160 220 280

1

1

22

33

4

45

56

6

a

7

5

3

1

10050 150 200 250b

Fig. 166. Temperature dependencies of the magneto-caloric effect in a Dy single crystal in fields applied (a)along the a axis and (b) along the b axis : H = 60 kOe

(1), 50 kOe (2), 40 kOe (3), 30 kOe (4), 20 kOe (5), 10 kOe (6) [91N].

Fig. 165. Dependence of the magnetic part of the entropy Sm (H, T) of a Dy single crystal on the field applied along the a axis [91N].

Page 115: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.1 Rare earth elements

Energy [keV]E

IIn

tens

ity[1

0co

unts

]6

Dy LIIIT = 105 K

5

4

3

2

1

07.77 7.78 7.79 7.80 7.81 7.82

4000

2000

0 Abso

rptio

n co

effic

ient

[cm

]−1

σ σ

σ π

Wavevector [Å ]Qz- 1

Inte

nsity

[10

coun

ts]

2

1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60

[Dy /Y ]16 20 89

320

280

240

200

160

120

80

40

0

T T< c

T T> c

magnetic order peaks

(0002)structure

peaks

Y

Dy

SDW

no 4fmagn.

moment

Fig. 168. Scattered neutron intensity for a scan along the c* direction (Qz) in a [Dy16/Y20]89 multilayer above and below the helimagnetic ordering temperature 167 K (shown as TC). For T > TC the small peak to the right of (0002) is a bilayer harmonic. Below TC the fundamental and two bilayer harmonics are shown for both Q

(≈ 2.02 Å–1) and for Q+(≈ 2.42 Å–1) magnetic satellites. For the multilayer structure see Fig. B. The right inset schematically depicts the Dy 4f local moment configuration and the long-range conduction electron spin density wave in both Dy and Y [89R1].

Fig. 167. Resonance enhancement of the magnetic scattering about the L absorption edge of Dy at the first-harmonic (0, 0.2+τ) with a total intensity that was 3⋅10–5 weaker than the charge peak at the (0, 0.2). Upper curve shows the absorption profile for a Dy foil taken with a singly bent, asymmetrically cut Ge(111) mono-chromator. Lower curves show the integrated intensity of the (0, 0, 2+τ) magnetic satellite for both scattered polarisation: σ to π and σ to σ. The intensity of the magnetic satellite drops by a factor of 90 when the incident X-ray energy is tuned below the absorption edge to E = 7.668 keV [89I].

Page 116: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 13 In

tens

ity [r

elat

ive]

[Dy /Y ]16 20 89

250

200

150

100

50

01.80 2.00 2.20 2.40 2.60

T = 165 K

160

150

130

110

80

6 K

Wavevector [Å ]Qz-1

Fig. 169. Neutron diffraction scans around the (0002) principal Bragg peak which is also the propagation’s direction (K) for the incommensurate helical magnetic order for the [Dy16/Y20]89 multistructure for several temperature below TC = 167 K. Note the temperature independence of the (0002) peak at Q2 = 2.215 Å–1. The small peak to the right of the (0002) is a bilayer harmonic. The fundamental and two bilayer harmonics

are shown for both Q–1(≈2.02 Å–1) and for Q+(≈2.42 Å–1)magnetic satellites and are observed to be temperature dependent. The presence of the fully resolved Q

–1

satellites makes it immediately obvious that the magnetism is coherent over many multilayer periods. The coherence range can be calculated from the width of the magnetic peaks [87R].

Page 117: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.1 Rare earth elements In

tens

ity (r

elat

ive)

Inte

nsity

(rel

ativ

e)

T = 150 K

1.8 1.82.0 2.02.2 2.22.4 2.42.6 2.6Wavevector [Å ]Q −1

z Wavevector [Å ]Q −1z

T = 160 K

[Dy / Y ]15 14 64 [Dy /(Dy Y) ]9 8 90

130

110

80

10 K

40 40

32 32

24 24

16 16

8 8

0 0

155

150

140

130

80

40

10 K

a b

Fig. 170. The (000l) scans in the neutron diffraction experiments for: (a) [Dy15/Y14]14 and (b) [Dy9/(DyY)8]90 made up of about 15 growth planes of Dy atoms followed by 14 planes o Y atoms. The second sample has 90 layers, each layer consisting of 90 Dy atomic planes and 8 Dy0.5Y0.5 alloy planes. As the temperature is lowered additional peaks of magnetic origin appear on either side

of τ0. In sample (b) only two additional peaks are found in the zone about the primary nuclear peak and the scattering pattern is identical to that found in the conventional helimagnetic phase such as bulk Dy. In sample (a), by contrast, a triad of magnetic peaks appear on either side of τ0 below 175 K [87E].

Page 118: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 15 In

tens

ity (r

elat

ive)

[Dy / Y ]15 14 64T = 10 K

80

70

60

50

40

30

20

10

01.8 1.9 2.0 2.1 2.2

Wavevector [Å ]Q −1z Wavevector [Å ]Q −1

z

(0002- )

(0002- )

H = 0 H = 0

1.5 kOe 1.5 kOe

10 10

25 25

H reduced to 0

H = 0 warmed to 60 K

[Dy / Y ]15 14 64T = 130 K

1.80 1.90 2.00 2.10 2.20

,

Fig. 171. Field dependence of the helimagnetic state is shown for sample Dy15/Y14]64 at temperatures of 10 and 130 K with the field along the easy direction. At low temperature the magnetic satellite intensity decreases for fields above about 1.5 kOe with complete ferromagnetic saturation by 25 kOe. Very little broadening of the magnetic satellites is observed at 10 K. However, at

130 K the first effect of the applied field is to broaden the magnetic satellites, and a field of 10 kOe is sufficient to limit the helimagnetic coherence to a single bilayer. The helimagnetic state is not reformed at low tem-perature, but can be regained upon warming, although with a shorter coherence length than the zero-field cooled state [87E].

Page 119: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.1 Rare earth elements In

tens

ity (r

elat

ive)

[Dy /Y ]16 9 100

Wavevector [Å ]QZ−1

240

180

120

60

02.10 2.20 2.30 2.40

H = 0

1 kOe

3

5

10

18 kOe

a

Inte

nsity

(rel

ativ

e)

Wavevector [Å ]QZ−1

240

180

120

60

02.10 2.20 2.30 2.40

H = 0

T = 130 K

T = 40 K

3kOe

5

10

18

25

40kOe

b

Fig. 172. (a) Nuclear peak intensity for a [Dy16/Y9]100

multilayer at 40 K as a function of applied field showing the added ferromagnetic component arising from the gradual elimination of the helical incommen-surate phase order. (b) Similar nuclear peak scans as a function of field at 130 K [89R].

Page 120: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 17 In

tens

ity (r

elat

ive)

[Dy /Y ]16 9 100

Wavevector [Å ]QZ−1

240

180

120

60

02.10 2.20 2.30 2.40

H = 0

kOe3

10

18 kOe

a

Inte

nsity

(rel

ativ

e)

Wavevector [Å ]QZ−1

01.90 2.00 2.10

H = 0

T = 10 K

3 kOe

10

18 kOe

b

36

30

24

18

12

6

Fig. 173. (a) Excess ferromagnetic intensity remains on the (0002) nuclear peaks following application of the field which indicates the strong metastability of the induced ferromagnetic state at 10 K for the multilayer with only 9 Y planes. (b) Residual intensity for H = 0 at the Q

– satellite positions in the [Dy16/Y9]100 multilayer after applying each of the fields shown [89R].

Page 121: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.1 Rare earth elements

Binding energy [eV]E Binding energy [eV]E

Dy /WT = 55 Kh = 100 eVν

Inte

nsity

I

K

L

D

F

5

5

5

5

7

0 01010 1515

a b

MCD

spec

trum

theory

55

Fig. 174. (a) Dy 4f photoemission (PE) spectra (hν = 100 eV) of a remanently magnetized Dy(0001)/W(110) film (150 Å thick; T = 55 K). Open (solid) dots are for nearly parallel (antiparallel) orientation of photon spin

and sample magnetization. (b) Solid squares: Intensity difference of the experimental magnetic circular di-chroism spectra in (a), the solid curve at the bottom of (b) represents the theoretical MCD spectrum [95A].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Magnetic field [kOe]H

Dy/LuH aII

HfT = 5 K

Hcr

400

300

200

100

0 5 10 15 20

120

160

200 K

4060

80

100

140

Fig. 175. Field dependent magnetization curves for thefield-cooled (Y0.45Lu0.55)1500Å/Dy50Å/(Y0.45Lu0.55)100Å

superstructure grown along the [0001] direction atvarious temperatures. The magnetic field was appliedalong one of the a axis in the growth plane. Note thatabove TC = 90 K the magnetization exhibits a low fieldanomaly at Hcr before its rapid rise to saturation. Thecritical fields Hcr and Hf are indicated by dashed lines [93T].

Layer thickness [Å]dY

Dy/Y

30 40 50 6020

d

c

b

a

6.8

6.4

6.0

200

100

0.5

0

140

120

Θ[K

σre

m/

(45

kOe)

∆[K

]D

[meV

Å]2

Fig. 176. (a) Curie temperature Θ obtained from a Curie-Weiss law fit above the paramagnetic transitionat 2 kOe, (b) the fractional remanence magnetization, σrem at 10 K after saturation in a field of 45 kOe, and (c)the spin-wave anisotropy gap and (d) the spin-wave stiffness D obtained from fits of the saturationmagnetization to spin-wave dispersion relations, all as functions of Y layer thickness in single-crystal superlattice of Dy and Y [87B].

Page 122: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 19

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

pµ B

Mag

netic

mom

ent

[]

pµ B

Mag

netic

mom

ent

[]

pµ B

Mag

netic

mom

ent

[]

pµ B

12

12

12

12

10

10

10

10

8

8

8

8

6

6

6

6

4

4

4

4

2

2

2

2

0

0

0

0

0 20 40 0 20 40 0 20 40 60

easy

hard

bulk Dy

4 K 80 K

130 K

easy

hard easy

hard

d

easyeasy

easy

(1120)

hard

hard

hard

hard(1010)

hard(1010)

T = 10 K

[Dy /Y ]15 14 64

[Dy /Y ]15 14 64

[Dy /(Dy Y) ]9 8 90

80 K

80 K

80 K

130 K

140 K

a

b

easy

easyeasy

T = 10 K

T = 10 K

c Fig. 178. (a) Magnetization of [D15/Y14]64 sample from neutron experiment for fields applied along the easy and hard directions in the basal plane. (b) Magnetometer measure-ments on the same sample. (c)[Dy9/(DyY)]90 multilayer. The basal-plane anisotropy is observed to be similar to that of bulk Dy shown in (d).At low temperatures the slope of the curves is clearly not demagnetization limited, and the first-order transition from the helimagnetic to ferromagnetic states in bulk Dy is not as sharp in the superlattice [87E].

Page 123: 2 Magnetic properties of rare earth elements, alloys and ...

20 2.1 Rare earth elements

Temperature [K]T

Laye

r mom

ent

[]

p DyBµ

12

10

8

6

4

2

0 30 60 90 120 150 180

Brillouin function ( =15/2)J

[Dy / Y ] total integrated intensity15 14 64[Dy /Y ]16 20 89[Dy /Y ]15 14 64

Fig. 177. Temperature dependence of the coherent Dy layer moment in [Dy16/Y20]89 and [Dy15/Y14]64 compared to a Brillouin function. Also shown is the total integrated magnetic intensity for [Dy15/Y14]64 [87R].

Mag

netiz

atio

n

/ (

45 k

Oe)

σσ

Magnetic field [kOe]H0 5 10 15 20 25 30 35 40 45

[Dy / Y ]16 9 100[Dy / Y ]16 12.5 62[Dy / Y ]16 20 89

1.0

0.8

0.6

0.4

0.2

Fig. 179. Field-cooled magnetization σ as a function ofapplied field at 10 K for the three superlattices as indicated. All results have been scaled by the value ofthe magnetization at 45 kOe unlike pure Dy, the initial susceptibility shows metamagnetic behavior at low fields [87B].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Mag

netiz

atio

n

[G cm

g]

31−

σ

Magnetic field [kOe]H Magnetic field [kOe]H0 050 50− 50 − 50

3.5ÅDy / 6ÅY3.5ÅDy / 6ÅTa

5.25ÅDy / 6ÅY

5.25ÅDy / 6ÅTa

7ÅDy / 6ÅY

7ÅDy / 6ÅTa

14ÅDy / 6ÅY 14ÅDy / 6ÅTa

IIII

T

T

IIII

T

T

II

II

T

T

II

II

T

T102

83.9121

98.1

151

116

188

146

26.9

25.1

39.3

36.1

51.0

44.3

79.7

73.8

a b

Fig. 180. (a) Layers-thickness dependence of hysteresis loops for Dy/6ÅTa and (b) for Dy/6ÅY superstructure at

5 K. Figure shows that all Dy/Y samples have σ > σ ,i.e., in-plane anisotropy [91S1].

Page 124: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 21

Temperature [K]T

Mag

netic

mom

ent

[]

pµ B

0 60 120 180

16

12

8

4

[Dy / Y ]16 9 100

[Dy / Y ]16 20 89

[Dy / Y ]15 14 64

Fig. 181. Uncompensated net layer moment resulting from incomplete helices in Dy layers. In an appliedfield this net moment is a pseudo-random orderparameter coupled to the external field which is suggested to destroy the long-range coherence for T

approaching TN [89R].

Mag

netiz

atio

n

[G cm

g]

31−

σTemperature [K]T

120

80

40

0 100 200 300

NM = Y

NM = Ta

5.25 ÅDy / 6 ÅNM

Fig. 182. Temperature dependence of magnetization atH = 55 kOe for 5.25ÅDy/6ÅTa and 5.25ÅDy/6ÅY multilayer superstructure. All the magnetization comes from Dy but is strongly effected by the Ta and Y atoms [91S1].

Magnetic field [T]µ0 H

Dy /Y25 15

0.20

0.15

0.10

0.05

0

0.1

0

− 0.1

− 0.2

− 0.3

12010

160180

180

140

8060

2010K

T = 60K80 100

140

160

100

40

120

Mag

neto

elas

tic st

ress

[GPa

]aσ~

Mag

neto

elas

tic st

ress

[GPa

]bσ~

0 2 4 6 8 10 12 14

0.2

a

b

Fig. 183. Magnetoelastic stress isotherms for SL

(Dy25/Y15)×50 superlattices. aσ~ (a) and bσ~ (b)

correspond to SL clamping along the a and b axes [97dM].

Temperature [K]T

Turn

ang

leω

50°

40°

30°

20°

10°

00 25 50 75 100 125 150 175

[Dy / Y ]9 17 30

[Dy / Y ]21 20 34

[Dy / Y ]30 13 30

[Dy / Y ]38 20 35

200 nm Dy

Fig. 184. Temperature dependence of interplane turnangles of the helimagnetic spiral for Dy/Y superlattices and 200 nm thick Dy film. The values are weighted averages of the turn angles of the Dy and the Y layers [97T-B].

Page 125: 2 Magnetic properties of rare earth elements, alloys and ...

22 2.1 Rare earth elements

Temperature [K]T

1.00

0.75

0.50

0.25

0

− 0.250 50 100 150 200 250 300

helimagnetic

ferromagnetic

[Dy / Y ]30 13 30

Peak

inte

nsiti

es√

() /

−N

N(000

2)I

II

Fig. 185. Dy/Y superlattices. Temperature dependencies of the magnetic peak relative intensities. The solid circles represent the ferromagnetic moment component derived from the square root of the excess integratedintensities of the (0002) peak at different temperatures normalized by its average value above TN. The open circles represent the helimagnetic component derivedfrom the square root of the integrated intensity of the (0002)– and the (0002)+ helimagnetic satellites normalized to the (0002) nuclear peak intensity [97T-B].

Temperature [K]TM

agne

tizat

ion

/

σ

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.0010 50 100 150 200 250 300

H = 100 Oe (ZFC)

[Dy /Y ]21 20 34

Fig. 186. Zero field cooled SQUID magnetization measurement for the superlattice [Dy21/Y20]34. The measurement was performed with increasing temper-ature from 10 K at a magnetic field of 100 Oe [96T-B].

Tempera

ture[K]

T

Criti

cal f

ield

[kOe

]H cr

10

5

02

1 0−1

−20

50

100

150

Tcr

Strain [%]ε

Fig. 187. Magnetic phase diagram for epitaxial Dy thin films grown along the c axis. The phase boundary corresponds to the locus of critical field Hcr. Tcr is defined where the phase boundary intersects the T-εplane at zero field. The open circles are data points for (YxLu1–x)1500Å/Dy50Å/(YxLu1–x)100Å sandwich films. The dashed line through the nearly linear part of the Tcr curve indicates the equivalent bulk uniaxial behavior [93T].

Page 126: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 23

Temperature [K]T

Turn

ang

le⟨

⟩ω

2.836

2.835

2.834

2.833

2.832

2.8310 100 200 0 100 200 300

2.86

2.85

2.84

2.83

2.82bulk

Dy

Y[Dy / Y ]15 14 64

[Dy /(Dy Y) ]9 6 90

superlattice

Inte

rpla

nar s

pacin

g/2

[Å]

⟨⟩c

a

55°

45°

35°

25°

Y

Dy

0 0.5 1.0Temperature /T TNb

[Dy / Y ]15 14 64

[Dy /(Dy Y) ]9 6 90

Fig. 188. (a) Average interplanar spacing along the c

axis obtained from the position of the primary nuclear Bragg peak. The temperature dependence in the Dy/Y superlattice is a weighted average of the behavior in the

constituent materials. Note the change of scale when comparing to the bulk materials. (b) shows the average turn angle in the superlattices as well as in the bulk materials [87E].

600 600

500 500

400 400

300 300

200 200

100 100

0 05 10 15 20 25 30 35Number of Y layers

Cohe

renc

e le

ngth

[

Å]ξ

Cohe

renc

e le

ngth

[

Å]ξ8

6

4

2

0

Num

ber o

f bila

yers

0.01 0.02 0.03 0.04Inverse Y thickness [Å ]− r− −1 1

200 100 50 30 25Y thickness [Å]− r

single Dy layer≈ 140 Å

[Dy / Y ]15 14 64

[Dy / Y ]16 20 89

Tc = 169 K

Tc = 171 K

Tc = 171 K

Tc = 171 K

[Dy / Y ]16 9 100

[Dy / Y ]14 34 74

Fig. 189. (Left) Magnetic coherence length ξ (in both Å and number of complete bilayers) obtained from the intrinsic Q width of the magnetic satellite peaks as a function of Y thickness for the four samples. (Right)

Linear inverse dependence of the coherence length on the Y interlayer thickness. The extrapolated ξ drops to a single Dy layer at 140 Å. In the figures Tc denotes the helical ordering temperature [89R].

Page 127: 2 Magnetic properties of rare earth elements, alloys and ...

24 2.1 Rare earth elements In

tens

ity (r

elat

ive)

Wavevector [Å ]Q -1

Dy/Lu

z

1.8 2.0 2.2 2.4 2.6

T = 150 K 170 K

170 K

150 K

10

8

6

4

2

0

Fig. 190. Diffraction scans for a Dy/Lu superlattice[94R].

300

250

200

150

100

50

0 5 10 15 20 25 30Number of Lu interlayers

Cohe

renc

e le

ngth

[

Å]ξ

bilayerthickness

Dy/Lu

Fig. 191. Magnetic coherence length vs. number of Lu interlayers for spiral (triangles), aligned ferromagnetic layers (open circles), and antialigned layers (solidcircles). The actual spacing is 2.77Å/Lu layer [93B].

Temperature [K]T

Mag

netic

mom

ent

[]

p DyBµ

Dy/Lu5

4

3

2

1

0 50 100 150 200

40 Å Dy

145 Å Dy

H = 200 Oe

Fig. 193. Magnetic moment of Lu(500Å)/(145Å)Dy/Lu(500Å) (solid circles) and Lu/40ÅDy/Lu(open circles) trilayers as a function of temperature.Both field-cooled (200 Oe) and zero-field-cooled dataare shown. Arrows indicate whether the temperaturewas being raised or lowered. The thermal hysteresis inthe FM transition of the 145 Å film is probablyconnected to structural distortion occurring at Tc. The Dy helical magnetic order yields to ferromagnetism(FM) at temperatures almost double Tc = 85 K of thebulk element [93B1].

Temperature [K]T

Dy/Lu

Mag

netiz

atio

σ /s

0.8

0.6

0.4

0.2

0 50 100 150 200 250

H = 1 kOe

200 Oe

50 Oe

200 Oe (ZFC)

Fig. 192. FC magnetization vs. temperature for the 40 Å Dy layer (sandwich between 500 Å slabs of Lu (Lu/40Å - Dy/Lu ) in the fields of 50 Oe, 200 Oe (FC and ZFC ) and 1 kOe [93B].

Page 128: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 25 M

agne

tic m

omen

t[

]p Dy

Dy/Lu

40 Å Dy

145 Å Dy

Magnetic field [kOe]H

10

8

6

4

2

0 2 4 6 8 10

Fig. 194. Zero-field-cooled magnetization (at T = 10 K) vs. field for the 40ÅLu- and 145ÅDy/Lu films. The fieldrequired to saturate the magnetization is large forthinner films, exceeding 10 kOe for the 40 Å sample. The saturation moment ps for the 40 Å sample is 65 % of ps bulk Dy [93B1].

Mag

netiz

atio

n

[G cm

g]

31−

σTemperature [K]T

70

60

50

40

30

20

10

0 50 100 150 200 250 300

Dy/ZrH II plane

Fig. 196. Temperature dependence of the magnetizationfor zero-field-cooled, field-cooled Zr(200Å)/Dy(600Å) (solid circles) and Zr(200Å)/Dy(100Å) (open circles) samples. The applied field (500 Oe) was in film plane. The sense of variation of temperature is indicated by arrows [95L].

Temperature [K]T Temperature [K]T

[K]T [K]T

χ−1

(rela

tive)

χ−1

(rela

tive)

Dy/Cu

Mag

netiz

atio

nM

[10

G cm

]−4

3

Mag

netiz

atio

nM

[10

G cm

]−4

3

8

4

6

2

0 100 20015050

1.80

1.30

0.80

0.3030 70 110 150

FC

FC

ZFC

ZFC

0.04

0.02

0 20 403010

0.03

0.01

2.00

1.20

0.405 14 23 32

a b

Fig. 195. (a) Low field M(T) data for Dy/Cu multilayers deposited on to crystalline Cu(111) with the composition [Cu(100Å)/Dy(20Å)]30. Inset: χ–1 vs. T. (b) Low field

M(T) data for [Cu(100Å)/Dy(40Å)]20 sample. Inset: χ–1

vs. T [94T2].

Page 129: 2 Magnetic properties of rare earth elements, alloys and ...

26 2.1 Rare earth elements M

agne

tizat

ion

[G

cmg

]3

1−σ

Mag

netiz

atio

n

[G cm

g]

31−

σTemperature [K]T Temperature [K]T

60

50

40

30

20

10

0 050 50100 100150 150200 200250 250300 300

TCbTCb

TNbTNb

H II planeZr 200 Å/Dy 600 Å

a b

140

120

100

80

60

40

20

Dy 20 Å/Zr 30 Å]40[

Fig. 197. (a) Temperature dependence of magnetization measured in the bilayer Zr(200Å)/Dy(600Å) and (b)[Dy(20Å)/Zr(30Å)]40 grown on Si(111) after previous

depositions of a 600Å-thick Zr buffer layer. Both samples were field-cooled. The magnetic field (500 Oe) was applied parallel to the layer plane [93L].

Mag

netiz

atio

n

[G cm

g]

31−

σ

H II planeDy 30 Å/Zr 30 Å]100[

Dy 15 Å/Zr 30 Å]50[

Dy 8 Å/Zr 30 Å]80[

Magnetic field [kOe]H

H II

H II

300

150

200

100

100

50

0

0

−100

−50

−200

−100

−300

−150

200150100

500

−50−100

−150−200

−50 −25 0 25 50

H plane

T

H

T

H

T

Fig. 198. Hysteresis loops measured at 10 K in multi-layers [Dy(xÅ)/Zr(30Å)]n (x = 30, 15 and 8), for applied fields parallel and perpendicular to the layer plane [93L].

Page 130: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 27

Dy/Sc

Sc

Nb

Al O2 3

DyDy - Sc

Sc

Dy - ScDy

Fig. 199. Sketch of the Dy/Sc superlattice (SL) with the enlarged section to the right indicating the Dy-Sc alloyed layers on both sides of each Sc layers [94T1].

Inte

nsity

(rel

ativ

e)

Wavevector [Å ]Qc*−1

Dy/Sc

a

b

c

8000

4000

0

2000

6000

2.0 2.3 2.6

Fig. 200. Neutron diffraction from c-[Dy25Å/Sc40Å]66 for scans along the [0002] diffraction (a) nuclear intensityat 160 K showing five structural superlattice sidebandsand (0002) Sc reflection from the buffer layer; (b) zero-field scan at 10 K showing the short-ranged ferromag-netic order along the growth direction that is indicatedby the thick line underneath the unchanged structuralsuperlattice peaks; and (c) zero-field-cooled scan at10 K, and at 60 kOe field applied along the a axisshowing the magnetic superlattice intensities on top ofstructural peaks, indicating a coherent ferromagneticorder with vanishing short-ranged order [93T2].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Temperature [K]T

Dy/Sc H = c10 Oe

T

H = c100 Oe II

a

b

10

5

0

1.0

0.5

00 100 200 25015050

Fig. 201. Temperature dependence of the field-cooled(open circles) and zero-field-cooled (solid circles) magnetizations for c-[Dy25Å/Sc40Å]66: (a) 10 Oe fieldapplied perpendicular to the c axis, and (b) 100 Oe field applied along the c axis [93T2].

Page 131: 2 Magnetic properties of rare earth elements, alloys and ...

References

87B Borchers, J., Sinha, S., Salamon, M.B., Du, R., Flynn, C.P., Rhyne, J.J., Erwin, R.W.: J. Appl.

Phys. 61 (1987) 4049

87E Erwin, R.W., Rhyne, J.J., Salamon, M.B., Borchers, J., Sinha, S., Du, R., Cunningham, J. E.,

Flynn, C.P.: Phys. Rev. B 35 (1987) 6808

87R Rhyne, J.J., Erwin, R.W., Borchers, J., Sinha, S., Salamon, M.B., Du, R., Flynn, C.P.: J. Appl.

Phys. 61 (1987) 4043

88Å Åström, H.U., Benediktsson, G.: J. Phys. F 18 (1988) 2113

89I Isaacs, E.D., McWhan, D.B., Siddons, D.P., Hastings, J.B., Gibbs, D.: Phys. Rev. B 40 (1989)

9336

89R Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., Flynn, C.P.: Physica B 159

(1989) 111

89R1 Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., Flynn, C.P.: Phys. Scr. T 29

(1989) 31

91N Nikitin, S.A., Tishin, A.M., Leontiev, P.I.: J. Magn. Magn. Mater. 92 (1991) 405

91S1 Shan, Z.S., Jacobsen, B., Liou, S.H., Sellmyer, D.J.: J. Appl. Phys. 69 (1991) 5289

91W2 Willis, F., Ali, N.: J. Appl. Phys. 69 (1991) 5694

93B Beach, R.S., Borchers, J.A., Matheny, A., Erwin, R.W., Salamon, M.B., Everitt, B., Pettit, K.,

Rhyne, J.J., Flynn, C.P.: Phys. Rev. Lett. 70 (1993) 3502

93B1 Beach, R.S., Matheny, A., Salamon, M.B., Flynn, C.P., Borchers, J.A., Erwin, R.W., Rhyne,

J.J.: J. Appl. Phys. 73 (1993) 6901

93L Luche, M.C., Baudry, A., Boyer, P.: J. Magn. Magn. Mater. 121 (1993) 148

93T Tsui, F., Flynn, C.P.: Phys. Rev. Lett. 71 (1993) 1462

93T2 Tsui, F., Flynn, C.P., Beach, R.S., Borchers, J.A., Erwin, R.W., Rhyne, J.J.: J. Appl. Phys. 73

(1993) 6904

94R Rhyne, J.J., Salamon, M.B., Flynn, C.P., Erwin, R.W., Borchers, J.A.: J. Magn. Magn. Mater.

129 (1994) 39

94T1 Tsui, F., Uher, C., Flynn, C.P.: Phys. Rev. Lett. 72 (1994) 3084

94T2 Tejada, J., Zhang, X.X., Ferrater, C.: Z. Phys. B 94 (1994) 245

95A Arenholz, E., Navas, E., Starke, K., Baumgarten, L., Kaindl, G.: Phys. Rev. B 51 (1995) 8211

95L Luche, M.C., Baudry, A., Boyer, P., Rouvière, J.L., Fermon, C., Miramond, C.: J. Magn.

Magn. Mater. 150 (1995) 175

95S Shinoda, Y., Tajima, K.: J. Phys. Soc. Jpn. 64 (1995) 1334

95dP Du Plessis, P. de V., Venter, A.M., Brits, G.H.F.: J. Phys.: Condens.Matter 7 (1995) 9863

96D Dan’kov, S.Y., Spichkin, Yu.I., Tishin, A.M.: J. Magn. Magn. Mater. 152 (1996) 208

96I Izawa, T., Tajima, K., Yamamoto, Y., Fujii, M., Fujimaru, O., Shinoda, Y.: J. Phys. Soc. Jpn.

65 (1996) 2640

96T-B Theis-Bröhl, K., Ritley, K.A., Flynn, C.P., Hamacher, K., Kaiser, H., Rhyne, J.J.: J. Appl.

Phys. 79 (1996) 4779

97A Alkhafaji, M.T., Ali, N.: J. Alloys Compounds 250 (1997) 659

97T-B Theis-Bröhl, K., Ritley, K.A., Flynn, C.P., Van Nostrand, J.E., Cahill, D.G., Hamacher, K.,

Kaiser, H., Rhyne, J.J.: J. Magn. Magn. Mater. 166 (1997) 27

97dM del Moral, A., Ciria, M., Arnaudas, J.I., Ward, R.C.C., Wells, M.R.: J. Appl. Phys. 81 (1997)

5311

Page 132: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.9 Holmium

Temperature [K]T

Mag

netic

fiel

d[T

]m 0

H

HoH aII

6

5

4

3

2

1

0 20 40 60 80 100 120 140

TC

TN

Temperature [K]T

[K]T

Mag

netic

fiel

d[T

]m 0

H

[T]

m 0H

HoH bII

6

5

4

3

2

1

0 20 40 60 80 100 120 140

2

1

0 20 40 60

ferro

fan

cone

helifan

TC

TN

helix

Fig. 202. Magnetic phase diagram of Ho single crystal along the a axis. The phase transition temperatures are mapped out as magnetic field vs. temperature. The transition temperatures are determined by temperature dependence of magnetization measurements in constant magnetic fields along the a axis. The TC transition splits into two parts at a field of 2 T whereas TN transition splits into two parts at 0.5 T. The rest of the curves in the figure represent the transitions between various spin-slip structures [90W].

Fig. 203. H-T phase diagram of single crystal Ho for applied magnetic field along the b axis. Closed circles indicate data from resistance vs. temperature measurements, and open circles indicate data from magneto-resistance vs. field measurements. The inset shows the H-T phase diagram for temperatures below 70 K. The curves not labelled in the figure attribute to the transitions to various spin-slip structures [97G1].

Page 133: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements

Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

H

HoH cII

6

5

4

3

2

1

0 20 40 60 80 100 120 140

Ho

Sublattice 1

Sublattice 2b = 5 q = c*/5

planar

planar

hcp

Fig. 205. Magnetic phase diagram of Ho single crystal along the c axis. The phase transition temperatures are mapped out as field vs. temperature. The transition temperatures are determined by temperature dependence of mag-netization measurements in constant magnetic field along the c axis. There are two separate transitions observed. One occurred at a temperature just below the 20 K anomaly and the other occurred near 25 K. In addition to TC, TN

and the anomalies attributed to spin-slip structures the additional anomaly near 110 K was observed. The anomalies at 20, 42 and 98 K are attributed to various spin-slip structures [90W].

Fig. 206. A pictorial representation of Ho magnetic structure with Debye-Waller factor b = 5(q = 1/5 c*) for temperatures between 30 and 18 K just above the transition to a ferromagnetic cone phase with a wavevector of 1/6 c*. The sublattices are viewed togeth-er as they would appear in the hcp structure and separately in planar relief. The arrows denote sublattice spin orientation. One of the possible antiferromagnetic arrangements for the c axis moments is also indicated [88C].

Page 134: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

+ +

++

++

++

+ +

++

++

++

+ +

-- -

-

- -Ho

a b

Fig. 207. Basal-plane projections of moments in the 1/6 c* phase. At low temperatures, the structure is that of (a), with moments having two values of bunching angle and tilt alternately. The tiltsare the same direction along c and the larger tilt is marked +. Thebunching angles are not to scale. Moments in (b) have equal andopposite tilts out of the basal plane, indicated + and –, and this represents the structure near the transition at 19.5 K [95S2].

Ho2/11

Fig. 208. A schematic and simplified drawing of the directions of the atomic moments in the 11 atomic layer commensurate 2/11 structure. The dotted lines indicate the 6 easy directions in the basal plane of the hcp crystal structure [86B].

Wavevector / *q c

Inte

nsity

[ co

unts

/20s

]

Ho

4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29

1200

1000

800

600

400

200

0

T = 24.5 K

130 K

40 K

60 K

80 K

100 K 120 K

2/12 2/12

2/11 2/920 K< <132 KT T<20 K

Fig. 209. Temperature dependence of the Ho (004)+

magnetic satellite taken with synchrotron radiation. Inset: Right, schematic representation of the magnetic

structure of Ho. Left, projections of the magnetic unit cell for different spin-slip structures. For simplicity the doublet has been drawn as two parallel spins [85G].

Page 135: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements

Wavevector / *q c

Inte

nsity

[ co

unts

/25

s]≈

Ho

4.15 4.20 4.25 4.30 4.35

250

0

250

0

0

1000

750

500

250

0

250

0

250

0

250

250

magnetic

slip

T = 17 K

qm = 5/27 qs = 2/9

18

19

20

21

23

25 K

Magnetic field [kOe]H

Wavevector [r.l.u.]

HoH bII

−18.96

−18.98

−19.00

−19.02

−19.04 −19.04

−19.06−19.06

−19.089 10 11 12 13

Mag

netic

free

ene

rgy

[meV

]

Mag

netic

free

ene

rgy

[meV

]

0.16 0.18

fan

fanH = 12.5 kOe

ferro

helifan

helix

(2)(3)

(4)

(3/2)

(4)

(3)(3/2)

(2)

T = 50.2 K

Fig. 210. Magnetic X-ray scattering in Ho metal. The magnetic order below the Néel point is an incom-mensurate spiral in which each basal plane of the hexagonal closed packed (hcp) crystal structure orders ferromagnetically. Moments in successive basal planes are rotated relative to each other by the turn-angle of the antiferromagnetic magnetic spiral. This leads to a diffraction pattern with satellites of magnetic origin along the 001 direction above and below the Bragg points of the crystal lattice. Figure shows the satellite in Ho above the (004) Bragg peak. In addition to the sharp magnetic satellite an initially broad second peak appears at a higher wavevector. At lower temperatures when the magnetic period approaches 5/27 the additional peak becomes sharper and well defined [90B1].

Fig. 211. Magnetic free energy, for different magnetic structures in Ho at 50 K, as a function of the magnetic field along an easy b axis. The free energy is in each case minimized with respect to the wave vector which characterised the structure, as illustrated for the fan phase in the inset [90J].

Page 136: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 5

Ho helifan (3/2)

H

Ho

Wavevector q c /2 π

Inte

nsiti

es

− 0.4 − 0.2 0 0.2 0.4

0.5

00.3

00.3

00.3

00.3

00.5

0

helix

helifan (4)

helifan (3)

helifan (3/2)

helifan (2)

fan

T = 50K

Fig. 212. Neutron-diffraction patterns pre-dicted for the different periodic structures at 50 K. The scattering vector is assumed to lie along the c axis. The structures are calculatedwith a field of 11 kOe along the b axis [90J].

Fig. 213. Helifan (3/2) structure in Ho at 50 K. The moments lie in planes normal to the c axis and their relative orientations are indicated by arrows. A magnetic field of11 kOe is applied in the basal plane, andmoments with components respectively parallel and antiparallel to the field are designated by filled and open arrow heads. This component of the moments has a periodicity which is 3/2 that of the corresponding helix, and the helicity of the structure changes regularly [92J].

Page 137: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.1 Rare earth elements

Reduced wavevector [relative]q

Ho

Spin

- w

ave

ener

gyE

4

3

2

1

0 0.25 0.50 0.75 1.00

T = 19.5 K

6/11

5/11

Wavevector [Å ]qab−1 Wavevector [Å ]qab

−1 Wavevector [Å ]qab−1

Inte

nsity

[ co

unts

/s]

Ho

20 20

15 15

10 10

5 5

0 0− 0.03 − 0.03 − 0.03−0.02 −0.02 −0.02−0.01 −0.01 −0.010 0 00.01 0.01 0.010.02 0.02 0.020.03 0.03 0.03

T T= +0.66 KN

T T= +0.23 KN

T T= 1.09 KN− T T= 1.11 KN−

(0,0,2 )− τ

(0,0,2 )− τ

(0,0,2 )− τ (0,0,2 )− τ

X ray−

X ray−

X ray− Neutron

280

210

140

70

0

4000

3000

2000

1000

0

1600 1600

1200 1200

800 800

400 400

0 0

80

60

40

20

0

36

27

18

9

0

60

45

30

15

0

T T= +0.27 KN

T T= +0.61 KN T T= +0.56KN

(0,0,2 )− τ

(0,0,2 )− τ (0,0, )τ

Neutron

Neutron Neutron

T T= 0.62KN−

T T= +0.25KN

(0,0, )τ

(0,0, )τ

Neutron

Neutron

Fig. 215. Transverse X-ray- and neutron-scattering scans taken at the (0,0,2–τ) and (0,0,τ) magnetic peak po-sitions of Ho. The scans in the top row of the figure were taken at temperatures below the transition and represent the resolution of the different experimental

configurations. The centre and bottom rows show critical scattering observed at temperatures above the transition. The solid lines represent fits to the Lorentzian plus squared-Lorentzian line shape [94T3].

Fig. 214. Spin-wave dispersion relation along (00l) of Ho in its one-spin-slip phase at 19.5 K. The presence of a gap of 0.6 meV at q = 5/11 c* is clearly shown [91McM].

Page 138: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 7

Wavevector [Å ]qc−1 Wavevector [Å ]qc

−1 Wavevector [Å ]qc−1

Inte

nsity

[ co

unts

/s]

Ho

20 20

15 15

10 10

5 5

0 01.900 1.915 1.930 1.945 1.960

T T= +0.66 KN

T T= +0.23 KN

T T= 1.09 KN− T T= 1.11 KN−

(0,0,2 )− τ

(0,0,2 )− τ

(0,0,2 )− τ (0,0,2 )− τ

X ray−

X ray−

X ray− Neutron

280

210

140

70

0

4000

3000

2000

1000

0

1600 1600

1200 1200

800 800

400 400

0 0

80

60

40

20

0

36

27

18

9

0

60

45

30

15

0

T T= +0.27 KN

T T= +0.61 KN T T= +0.56KN

(0,0,2 )− τ

(0,0,2 )− τ (0,0, )τ

Neutron

Neutron Neutron

T T= 0.62KN−

T T= +0.25KN

(0,0, )τ

(0,0, )τ

Neutron

Neutron

1.905 1.920 1.935 1.950 1.965 0.280 0.295 0.310 0.325 0.340

Fig. 216. Longitudinal X-ray- and neutron-scattering scans taken under identical conditions to those of Fig. 215 for Ho sample [94T3].

Page 139: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.1 Rare earth elements

Temperature [K]T

Temperature [K]T

Temperature [K]T

0.19

0.18

0.17

0.1615 20 25 30

1/6

/* c

τ/

* cτ

/* c

τ

0.193

0.191

0.189

0.18724 26 28 30

4/21

0 40 80 120 160

film

bulk

0.28

0.24

0.20

0.16

Ho

Fig. 218. Neutron diffraction studies of the lock-in behaviour of the spiral wavevector of Ho τ vs.temperature in a 3 T b-axis applied magnetic field. τvalues of 5/18 and 8/29 are shown by dashed lines. These data clearly support the lock-in transition from a paramagnetic phase directly to a commensurate phase with τ = 5/18 = 0.2778 [94T].

Fig. 217. Magnetic modulation wavevector τ (in c*units) vs. temperature for the bulk and film Ho samples. The two upper figures show the hysteresis measured nearthe spiral-to-conical transition of the bulk sample and a lock-in transformation which was observed in the bulksample after the temperature was cycled in a loop aroundT = 27 K. Close to TN, τ = 0.28 for both samples, which corresponds to an average turn angle δ = τ x180° = 50.4° between moments in neighbouring planes along the c

axis. Near TC = 17.0 K, the bulk sample exhibits a lock-in transition to τ = 1/6, which corresponds to the spiral-to-conical phase transformation. The latter is marked by an abrupt change in wave vector from τ = 0.1795 at 17.5 K to τ = 0.1677 ± 0.0010 at 17 K. When the temperature of the bulk sample is raised from 10 K, the conical- to-spiral transition occurs at a higher

temperature ( 'CT = 19 K) than for cooling cycles. A

lock-in transition to τ = 4/21 was observed in the experiments in a separate cycling of the temperature in a loop around 27 K [94H].

Temperature [K]T

Ho

Wav

evec

tor

[rela

tive]

τ

0.2780

0.2775

0.2770

0.2765

0.2760

0.2755

5/18

8/29

124 126 128 130 132 134

Page 140: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 9

Temperature [K]T

Inte

nsity

(rel

ativ

e)

Ho

Turn

ang

leω

35°

33°

31°

29°12 16 20 24 28

c

Sate

llite

wid

ths

0.20°

0.19°

0.18°

0.17°

0.16°

0.15°

0.14°

0.13°

002−002+

b

250000

200000

150000

100000

50000a

002−002+002N

Fig. 219. Temperature evolution of (a) integratedintensities (in arbitrary units) of the 0 0 2±τ and (002) nuclear reflections, (b) widths of the 0 0 2±τ reflections, and (c) interplanar turn angle, of a (b, c) Ho sample in b-axis applied field of 0.025 T [92P].

Temperature [K]T

Temperature [K]T

Inte

nsity

[10

coun

ts]

4In

tens

ity[1

0co

unts

]5

Ho

5

4

3

2

1

0130 150 170 190 210 230

γ - power law2D - model

2D - modelβ = 0.39

3

2

1

0a

b

130 131 132 133 134 135

Fig. 220. Integrated intensity for the (0, 0.2–δ)reflection vs. temperature for Ho helical to paramag-netic phase transition. In (a) fits to a t2β dependence ofthe spontaneous magnetization in the ordered region and to a 2D-planar spin model in the paramagnetic region. In (b) fits to the persistent intensity observedin the paramagnetic region [95dP].

Page 141: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.1 Rare earth elements

Wavevector [r.l.u.]

Inte

nsity

(rel

ativ

e)

Ho106

105

104

103

102

10

12.00 2.25 2.50

µ = 2.0T II0 H b

a b

12 3 4

5

H

1415

161112

13

3231

30 29

2827

109 8 7

621

20 19 1817

2223 24 25

26

Fig. 221. (a) Scattered-neutron intensity observed in a scan of the neutron wavevector transfer along [00l] peak of Ho neutron diffraction pattern at 40 K in a field of 2.0 T applied along the easy b axis. The solid vertical lines represent the intensity calculated for a helifan (3/2) structure, with 20 moments having a component aligned along the field and 12 moments with a component anti-

aligned. (b) A representation of the helifan (3/2) structure which was found to give the best fit to the data shown in (a). The arrows point in the direction of the moments and have been projected onto the basal plane. They are numbered in the order in which they occur along the c axis. Note: the changes of helicity at moments numbered 6 and 22 [92J1].

Temperature [K]T

Mag

netic

mom

ent

[]

p HoBµ

HoH cII

2.5

2.0

1.5

1.0

0.5

05 15 25 35 45

µ = 0.3898 T0 H0.19000.09490.04060.0051 T

Fig. 223. Temperature variation of Ho single crystal magnetization as a function of the applied c-axis field. The results give evidence for the existence of a net c-axis magnetic moment and hence a low temperature (< 25 K) conical phase in Ho [92P].

Page 142: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 11 M

agne

tizat

ion

[/

]M

Ms

Magnetic field [T]µ0 H

Ho

Latti

ce p

aram

eter

/[1

0]

∆c

c 03−

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5 6

T = 40K

T = 40K

60 K

60 K

80 K

80 K

helifan (3/2)

helix

helix

fan

fan

ferro

ferro

b

10

8

6

3

5

helifan (3/2)

stablemeta - stable

a

Mag

netiz

atio

n

[G cm

g]

31−

σ

[G cm

g]

31−

σ

[K]T

Temperature [K]T

Ho

0 10 20 30 40

80

60

40

20

µ = 0.1T II0H b

3.25

3.00

2.75

2.5035 40 45 50

Fig. 222. (a) Magnetic field depend-ence of the c-lattice parameter in Ho metal at various temperatures. The solid thick and thin lines are calcu-lated results for the stable and meta-stable phases, respectively, at 80 K. (b) Magnetization curves at various temperatures. The solid line is cal-culated result for the stable phase at 80 K. The helifan phase is stable between 1.69 and 1.73 T. Open symbols and dotted lines are the results obtained with decreasing magnetic field [97O].

Fig. 224. Magnetization as a function of temperature from 5 to 40 K for magnetic field of 0.1 T along the b axis of Ho single crystal. The arrows show 20 K and 24 K anomalies. The inset shows the expanded σ vs. T region between 35 and 50 K. The arrow indicates the 42 K anomaly [90W].

Page 143: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.1 Rare earth elements M

agne

tizat

ion

[G

cmg

]3

1−σ

Mag

netiz

atio

n

[G cm

g]

31−

σ

/dT

σ

Temperature [K]T Temperature [K]T

[K]T

Ho

µ = 0.1T II0H b

1.875

1.825

1.775

1.72590 95 100 105

90 95 100 105

2.1

2.0

1.9

1.8

1.7

TN

100 110 120 130 140a b

d

Fig. 225. (a) Magnetization as function of temperature from 90 K to 105 K for a magnetic field of 0.1 T along the b axis . The inset of (a) shows dσ/dT vs. T. The arrows indicate the 98 K anomaly. (b) Magnetization σ

as function of temperature between 100 K and 140 K for a magnetic field of 0.1 T along the b axis. The peak is in the Néel temperature [90W].

Temperature [K]T

HoH bII

30

20

10

0

Bulk

mag

netic

mom

ent [

10Am

]−7

2

6

4

2

0

3

2

1

0

0.6

0.4

0.2

00 10 20 30 40

H = 940 Am−1

223

104

29 Am−1

Fig. 226. Temperature dependencies of the magnetic moment of a Ho single crystal on sample heating in magnetic field. H = 29, 104, 223, and 940 A m–1, with H||b [91S2].

Page 144: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 13

Temperature [K]T

Ho

Bulk

mag

netic

mom

ent [

10Am

]−7

2

5

4

3

2

1

05 10 15 20 25 30 35 40

H b= 104 Am II−1

Fig. 227. Temperature dependence of the magnetic moment of Ho single crystal in the warming and cooling runs in the magnetic field H = 104 A m–1.H||b in the temperature range where the helimagnetic-ferromagnetic phase takes place. The hysteresis observed is an evidence of the first-order transition [90B2].

Temperature [K]T

Ho

Bulk

mag

netic

mom

ent [

10Am

]−1

02

10

370 90 110 130 150 170 190

H b= 30 Am II−1

9

8

7

6

5

4

Fig. 228. Temperature dependencies of the magnetic moment of a Ho single crystal on sample cooling andheating in the fields H = 30 A m–1. in the vicinity ofthe paramagnetism-helicoidal antiferromagnetismphase transition (H||b) [91S2].

Temperature [K]T

Velo

city

[10

m s

]v 33

31−

Inte

nsity

[10

coun

ts]

5

Atte

nuat

ion

coef

ficie

nt[1

0dB

m]

332

1−α

Ho

3

2

1

0130 131 132 133

2.98

2.96

2.94

2.92

2.90

12

9

6

3

v33

α 33

1 mm1 mm

6 m

m

kf

k i

Q(002)

Fig. 229. Simultaneously measured ultrasonic velocity v33 and attenuation α33 and integrated neutron intensity vs. temperature for the Ho crystal. The longitudinal ultrasonic wave was propagated along the c axis and neutrons probed the (0, 0.2–δ) satellite while passing through the bulk of the crystal on account of the Cd-masking arrangement. Open symbols refer to cooling and closed symbols refer to the subsequent heating run [95dP].

Page 145: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.1 Rare earth elements

Temperature [K]T

Ho2.93

2.92

2.91

2.90

2.89

2.88

2.87

2.86120 150 180 210 240 270 300

Velo

city

[10

m s

]v 33

31−

Fig. 230. Longitudinal velocity v33 vs temperature forultrasonic waves propagated along the c axis of crystalHo. The solid line represents the "normal" temperaturedependence expected for a non-magnetic crystal in thetemperature region of interest [95dP].

Temperature [K]T

Ho

Elas

tic co

nsta

nt[1

0Nm

]c 66

102−

2.85

2.83

2.81

2.79

2.7710 30 50 70 90 110 130 150

Temperature [K]T

Ho

Atte

nuat

ion

coef

ficie

nt[1

0dB

m]

332

1−α

10

8

6

4

2130 131 132 133 134

µ = 1.0 T0 H

µ = 1.0 T0 H

7.85

7.85

7.75

7.75

7.65

7.65

7.55

7.55

H = 0

Elas

tic co

nsta

nt[1

0Nm

]c 33

102−

Elas

tic co

nsta

nt[1

0Nm

]c 33

102−

Fig. 231. Temperature dependence of the longitudinal elastic constant c33 for Ho measured by the pulse echo overlap method. Anomalies in elastic constant c33 andattenuation coefficient α33 indicating the extent of the τ = 5/18 c* lock-in below TN in an applied field of 1 T. Results obtained in a cooling run are indicated by open symbols and during a heating run by closed symbols [95V].

Fig. 233. Temperature dependence of the elastic constant c66 of Ho measured by propagating shearwaves down the a axis polarised perpendicular to c inthe range 10 - 150 K [88B1].

Page 146: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 15

Temperature [K]T

Temperature [K]T

Temperature [K]T

Ho

Elas

tic co

nsta

nt[1

0Nm

]c 44

102−

Elas

tic co

nsta

nt[1

0Nm

]c 44

102−

Elas

tic co

nsta

nt[1

0Nm

]c 44

102−

2.880

2.870

2.860

10 16 22 28 34 402.855

2.865

2.875

b

2.830

2.825

2.810

2.820

2.815

2.80588 94 100 106

c

2.95

2.85

2.75

2.65

2.5560 120 180 240 3000

a

Fig. 232. Temperature dependence of the elastic con-stant c44 (shear waves polarised parallel to c). (a) 4.2 −300 K, (b) 7 − 40 K, (c) 88 − 106 K. Crosses: cooling,

squares: warming. The small step and dip around 19.8 K indicate the dual nature of the low-temperature transition [88B1].

Page 147: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.1 Rare earth elements

Temperature [K]T Temperature [K]T

Heat

capa

city

[Jm

olK

]C p

−−

11

Heat

capa

city

[Jm

olK

]C p

−−

11

20

16

12

12

8

84

0 168 1816 2024 2232 246

10

14

a b

Fig. 234. Specific heat, Cp, of Ho in the temperature range: (a) 0 - 32 K; (b): 16 - 23 K. The narrowness (0.03 K) of the peak at 19.46 K suggest its discontinuance [89S].

Temperature [K]T

Wavevector [00 ]Q l

[00 ]Q l

Intensity [10counts]

3

Inte

nsity

[10

coun

ts]

3

Ho/Y

7.5

5.0

2.5

0

100 50 0

2.3 2.2 2.1 2.0 1.9 1.8

7.5

5.0

2.5

0

2.3 2.2 2.1 2.0 1.9 1.8

T = 10 K

Fig. 235. Neutron-scattering intensity observed from a (Ho40Y15)50 superlattice along (00l) at a series temper-atures at intervals of 10 K from 130 to 10 K. The nuclear (002) scattering is temperature independent and the

magnetic scattering grows with decreasing temperature. Note that even at 120 K, the magnetic scattering is two peaks showing long-range coherence [94C].

Page 148: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 17 Né

el te

mpe

ratu

re[K

]T N

Number of Y layers

Ho/Y140

130

120

110

100

900 10 20 30 40 50

10 Ho layers/filmbulk9 Ho layers6 Ho layers

,

Fig. 236. Néel temperature dependence on Y layerthickness in Ho/Y superlattice structure. Notice alower Néel temperature than in a bulk Ho [95T2].

Temperature [K]TM

agne

tic fi

eld

[T]

µ 0H

Ho/Y5

4

3

2

1

0 20 40 60 80 100 120 140

Fig. 237. b axis magnetic phase diagram of a 3000 Å Ho film [95T2].

[K]T

Magnetic field [T]µ0 H

[T]

µ 0H

Ho/Lu

0

− 0.05

− 0.10

0 2 4 6 8 10 12

0

− 0.1

− 0.2

Stre

ss[G

Pa]

aσ~

Stre

ss[G

Pa]

bσ~

6

4

2

0 40 80 120

FMF

H

T = 12.7 K42.55991

109136 K

Fig. 239. Magnetoelastic stress isotherms

for (Ho6 /Lu6)100: aσ~ and bσ~ correspond

to clamping along a- and b- superlattice axes. Inset: magnetic phase diagram (open circles: from magnetoelastic stress and solid circles: from magnetization measure-ments; ferromagnetic (FM), fan (F), and helical phases (H) [96dM].

Page 149: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.1 Rare earth elements

Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

H

1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100 120 140

Ho/Lu

ferro

helical

para

ferro - like

Fig. 238. Magnetic phase diagram of (11Ho⁄50Lu)50

superstructure with magnetic field H applied in the bdirection investigated by vibrating sample magneto-metry [95T1].

Mag

netic

fiel

d[T

]µ 0

HM

agne

tic fi

eld

[T]

µ 0H

Ho/Lu

Temperature [K]T

3

2

1

0

2.0

1.5

1.0

0.5

0 20 40 60 80 100

Fe

HFA

Fe

F

H

a

b

Fig. 240. Magnetic phases of (a) (Ho40Lu15)50 and (b)(Ho20Lu10)50 superlattices in a basal plane magnetic field. Fe: ferromagnetic, H: basal plane helix, FA: ferromagnetic ordering with antiferromagnetic coupling between blocks and fan phase (F) [95S1].

Turn

ang

leω

Ho/Y

Ho layers

50°

45°

40°

35°0 10 20 30 40 50

3015

6

Y layers

Fig. 241. Turn angle ω for Ho in various superlattices showing that at least for thick superlattices, ω is largely independent of the Y thickness and that ω is close to a commensurate spin-slip value [94C].

Turn

ang

leω

Temperature [K]T

Ho/Y

55°

50°

45°

40°

35°

30°

25°0 20 40 60 80 100 120 140

Fig. 242. Temperature dependence of the turn angles ωfor successive Ho (triangles) and Y (solid circles) layers of the Ho40Y15 superlattice. Also shown is ω (opencircles) for an epitaxially grown Ho film and for bulkHo (solid line) [94C].

Page 150: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 19 Tu

rn a

ngle

α

c a/ ratio

50°

40°

30°

20°

10°

01.570 1.575 1.580 1.585

0.3

0.2

0.1

0

Wav

evec

tor

[2/

]k

cH

π

Fig. 243. Helix turn angle α and the helix wavevector kH

vs. c/a ratio of the crystalline lattice Ho (solid circles), Dy (+), Er (solid triangle), Tb (open triangles, down-ward), Tb91Y9 (open circles), Tb84Y16 (open triangles,upright), Tb69Y31 (x), Tb39Y61 (squares). Composition inat %. Dashed curve is a square root fit [95A1].

Magnetic field [T]µ0 H

Ho/Zr

Mag

netiz

atio

n,m

agne

tore

sista

nce

(rela

tive)

MM

r

M

Mr

1.5

1.0

0.5

0 8 16 24 32 40

[Ho (30Å) / Zr (30Å)]160

Fig. 244. Typical magnetization and magnetoresistance with a magnetic field perpendicular to the plane at 4.2 K for Ho/Zr multilayers. Both results point out a large magnetic transition around 11 T. This transition would be related to the closing of the conical or helical magnetic configurations finally producing ferromag-netic alignment along the direction of the field [95R].

Layer thickness [Å]dZr Layer thickness [Å]dZr

Ho/Zr0.2

0.1

0

− 0.1

− 0.25 15 25 35

µ = 5 T0 H

Mag

neto

resis

tanc

e/

[%]

∆ρ

ρ

0.90

0.86

0.82

0.78

0.74

0.700 10 20 30 40

Squa

rene

ss

Fig. 245. Oscillation of magnetoresistance for [Ho(30Å)/Zr(xÅ)]×20 multilayers. The right figure

shows the squareness of the hysteresis loops of same samples [95R].

Page 151: 2 Magnetic properties of rare earth elements, alloys and ...

20 2.1 Rare earth elements M

agne

tore

sista

nce

/[%

]∆

ρρ

Mag

neto

resis

tanc

e/

[%]

∆ρ

ρMagnetic field [T]µ0 H Magnetic field [T]µ0 H

1.0

0.5

0

− 0.50 05 510 1015 1520 2025 25

T = 4.2 K

T = 50 K10

20

30 K

[Ho(25Å) / Zr (30Å) ]30

a b

0.5

0

− 0.5

−1.0

−1.5

65

77 K

Fig. 246. Typical magnetoresistance for Ho/Zr multilayers at (a) low temperature showing a sharp

magnetic transition and (b) temperature higher than 50 K [95R].

Temperature [K]T

0.8

0.6

0.4

0.2

0 40 80 120 160

µ = 12 T0H

Ho / Lu14 15Ho / Lu30 15Ho / Lu40 15Ho / Lu45 15

Mag

neto

elas

tic st

ress

(+

) /[G

Pa]

Mn

nn

exp

HoLu

Hoγ

Fig. 247. Variation with temperature of the

magnetoelastic stress γexpM (12 T), multiplied by

(nHo + nLu)/nHo, for the (Hon/Lu15)×50 superlattices,with nHo = 14, 30, 40, 45. The lines are the scaling withthe reduced magnetization [98dM].

Mag

neto

elas

tic st

ress

(+

) [G

Pa]

Mn

nex

pHo

Luγ

Mag

neto

elas

tic st

ress

[GPa

]M

nth

Hoγ

Number of layers n Ho

[Ho /Lu ]n 15 50

103

103

103

102

102

102

10

10

10

11

1104

Fig. 248. Variation of the basal plane cylindrical

symmetry breaking magnetoelastic stress, γexpM , at 10 K

and at an applied magnetic field of 12 T, multiplied by (nHo + nLu) (solid circles), against nHo (where nHo and nLu

respectively are the number of atomic planes in the Ho and Lu blocks), for the (Hon /Lu15)×50 superlattices.

γexpM multiplied by the same factor is plotted for

5⋅103 Å and 104 Å thick Ho films (open circles) [98dM].

Page 152: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 21

Magnetic field [T]µ0 H

T = 110K

Mag

neto

elas

tic st

ress

[GPa

]aσ~

Mag

neto

elas

tic st

ress

[GPa

]bσ~

0 2 4 6 8 10 12 14

0

− 0.04

− 0.08

− 0.12

0

− 0.1

− 0.2

[Ho / Lu ]40 15 50

14080604010

4050

80

100

140120 K

10

Fig. 249. Magnetoelastic stress measured isotherms for the

superlattice (SL) (Ho40/Lu15)×50. aσ~ and bσ~ respectively

correspond to the SL clamping along the a and b axes of the hexagonal structure, with magnetic field applied along the beasy axis [98dM].

Temperature [K]T

Turn

ang

leω

ωω

Ho

Lu

Ho/Lu55°

55°

50°

50°

45°

45°

40°

40°

35°

35°

30°

30°

25°

25°0 20 40 60 80 100 120 140

a

b

Fig. 250. Temperature dependence of the turn angle ω Ho in Ho and ω Lu in Lu for the (a) (Ho40/Lu15)50

and (b) (Ho20/Lu15)50 superlattices. The full curves are the turn angle measured in bulk Ho [93S].

Inte

nsity

(rel

ativ

e)

Wavevector [Å ]Q −1

Wavevector [Å ]Q −1

Ho/Sc[00 ]l

[10 ]l

(002- )q (002)

(002+ )q

(101- )q (101) (101+ )q

104

104

103

103

102

102

10

10

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a

b

Fig. 251. Neutron scattering observed at T = 4 K from sample Ho30/Sc10 with wavevector transfer, Q along (a)[00l], and (b) [10l]. The structure of the scattering at (002-q) suggests coherence of the magnetic ordering along [00l] [97B-J].

Page 153: 2 Magnetic properties of rare earth elements, alloys and ...

22 2.1 Rare earth elements

Temperature [K]T

Wav

evec

tor

/*

qc

Ho

Turn

ang

leω

Ho/Sc

bulk HoHo / Sc20 40Ho / Sc30 10Ho / Sc20 20

0.28

0.24

0.20

0.16

0.04

00 20 40 60 80 100 120 140

48°

42°

36°

30°

0

Fig. 252. Temperature dependence of the Ho turn angle per plane, ω Ho(qHo) in Ho/Sc superlattices [97B-J]. Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

H

4

3

2

1

0 50 100 0 50 100 150

F

H

F

H

fan

[Ho / Lu ]31 19 50 [Ho / Lu ]12 30 50

Fig. 253. Magnetic phase diagrams for [Ho31Lu19]50 and[Ho12Lu30]50 superlattices [96A1].

Page 154: 2 Magnetic properties of rare earth elements, alloys and ...

References

85G Gibbs, D., Moncton, D.E., D’Amico, K.L., Bohr, J., Grier, B.H.: Phys. Rev. Lett. 55 (1985)

234

86B Bohr, J., Gibbs, D., Moncton, D.E., D’Amico, K.L.: Physica A 140 (1986) 349

88B1 Bates, S., Patterson, C., McIntyre, G.J., Palmer, S.B., Mayer, A., Cowley, R.A., Melville, R.: J.

Phys. C 21 (1988) 4125

88C Cowley, R.A., Bates, S.: J. Phys. C 21 (1988) 4113

89S Stewart, A.M., Collocott, S.J.: J. Phys.: Condens. Matter 1 (1989) 677

90B1 Bohr, J.: J. Magn. Magn. Mater. 83 (1990) 530

90B2 Burhanov, G.S., Volkozub, A.V., Snigirev, O.V., Tishin, A.M., Chistykov, O.D.: Solid State

Phys. 32 (1990) 2483

90J Jensen, J., Mackintosh, A. R.: Phys. Rev. Lett. 64 (1990) 2699

90W Willis, F., Ali, N., Steinitz, M.O., Mojtaba Kahrizi, Tindall, D.A.: J. Appl. Phys. 67 (1990)

5277

91McM McMorrow, D.F., Patterson, C., Godfrin, H., Jehan, D.A.: Europhys. Lett. 15 (1991) 541

91S2 Snigirev, O.V., Tishin, A.M., Volkozub, A.V.: J. Magn. Magn. Mater. 94 (1991) 342

92J Jensen, J., Mackintosh, A.R.: J. Magn. Magn. Mater. 104-107 (1992) 1481

92J1 Jehan, D.A., McMorrow, D.F., Cowley, R.A., McIntyre, G.J.: Europhys. Lett. 17 (1992) 553

92P Pearce, A., Baruchel, J., Kulda, J.: Phys. Status Solidi (b) 172 (1992) 443

93S Swaddling, P.P., McMorrow, D.F., Simpson, J.A., Wells, M.R., Ward, R.C.C., Clausen, K.N.:

J. Phys.:Condens. Matter 5 (1993) L481

94C Cowley, R.A., McMorrow, D.F., Simpson, A., Jehan, D., Swaddling, P., Ward, R.C.C., Wells,

M.R.: J. Appl. Phys. 76 (1994) 6274

94H Helgesen, G., Hill, J.P., Thurston, T.R., Gibbs, D., Kwo, J., Hong, M.: Phys. Rev. B 50 (1994)

2990

94T Tindall, D.A., Adams, C.P., Steinitz, M.O., Holden, T.M.: J. Appl. Phys. 75 (1994) 6318

94T3 Thurston, T.R., Helgesen, G., Hill, J.P., Gibbs, D., Gaulin, B.D., Simpson, P.J.: Phys. Rev. B

49 (1994) 15730

95A1 Andrianov, A.V.: J. Magn. Magn. Mater. 140-144 (1995) 749

95R Raquet, B., Sdaq, A., Broto, J.M., Rakoto, H., Ousset, J.C., Askenazy, S., Baudry, A., Boyer,

P., Luche, M.C., Khmou, A.: Physica B 211 (1995) 335

95S1 Swaddling, P.P., McMorrow, D.F., Cowley, R.A., Simpson, J.A., Wells, M.R., Ward, R.C.C.,

Clausen, K.N., Collins, M.F., Buyers, W.J.L.: J. Magn. Magn. Mater. 140-144 (1995) 783

95S2 Simpson, J.A., McMorrow, D.F., Cowley, R.A., Jehan, D.A.: J. Magn. Magn. Mater. 140-144

(1995) 751

95T1 Tomka, G.J., de Groot, P.A.J., Rainford, B.D., Wells, M.R., Ward, R.C.C., Arnaudas, J.I.: J.

Magn. Magn. Mater. 140-144 (1995) 785

95T2 Tomka, G.J., de Groot, P.A.J., Rainford, B.D., Wells, M.R., Ward, R.C.C., del Moral, A.: J.

Magn. Magn. Mater. 140-144 (1995) 777

95V Venter, A.M., du Plessis, P. de V.: J. Magn. Magn. Mater. 140-144 (1995) 757

95dP Du Plessis, P. de V., Venter, A.M., Brits, G.H.F.: J. Phys.: Condens.Matter 7 (1995) 9863

96A1 Arnaudas, J.I., del Moral, A., Ciria, M., Tomka, G.J., de la Fuente, C., de Groot, P.A.J., Ward,

R.C.C., Wells, M.R.: J. Magn. Magn. Mater. 156 (1996) 421

96dM del Moral, A., Arnaudas, J.I., Ciria, M., Wells, M.R., Ward, R.C.C.: J. Magn. Magn. Mater.

157-158 (1996) 539

97B-J Bryn-Jacobsen, C., Cowley, R.A., McMorrow, D.F., Goff, J.P., Ward, R.C.C., Wells, M.R.:

Physica B 234-236 (1997) 495

97G1 Gebhardt, J.R., Baer, R.A., Ali, N.: J. Alloys Compounds 250 (1997) 655

97O Ohsumi, H., Tajima, K., Wakabayashi, N., Shinoda, Y., Kamishima, K., Goto, T.: J. Phys. Soc.

Jpn. 66 (1997) 1896

98dM de Moral, A., Ciria, M., Arnaudas, J.I., Wells, M.R., Ward, R.C.C., de la Fuente, C.: J. Phys.:

Condens. Matter 10 (1998) L139

Page 155: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.10 Erbium

Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

H

6

5

4

3

2

1

020 40 60 80 100

ErH cII

5/21 1/4

2/7

2/7

inc.6/231/4 3/11

P

c -axismodulated

paramagneticphase

IIIIIIV

I

Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

H

6

5

4

3

2

1

020 40 60 80 100

Er H bII

5/21

1/4

para -magnetic

c -axismodulated

ferromagneticfan

ferro -magnetic

cone

T N

T

T N II

?

Temperature [K]T

Mag

netic

fiel

d[k

Oe]

H

Erferromagnetic

fan1/4

cone5/21

6/23

4/15

2/7

5/19

1/4

3/11

50

40

30

20

10

0 10 20 30 40 50 60

Fig. 256. Schematic phase diagram of Er in a basal-plane field determined from neutron diffraction. The shaded regions represent incommensurable values of the modulation wavevector [94J].

Fig. 254. The c-axis magnetic phase diagram of single crystal Er in the temperature range from 10 K to 100 K and in applied c-axis magnetic fields from 0 to 5.50 T. Solid circles represent transitions. Dashed lines have been added to suggest transition lines. Regions with unknown structure have been labelled with Roman numerals; inc.: incommensurate phase [97W].

Fig. 255. The b-axis magnetic phase diagram of Er between 10 K and 100 K up to 5.5 T from the resistance and magnetoresistance measurements. Solid circles represent transitions. Lines are used to suggest transition. Reduced c-axis wavevectors (1/4, 5/21) are indi-cated [96W1].

Page 156: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements Te

mpe

ratu

re[K

]T

Tem

pera

ture

[K]

T

Tem

pera

ture

[K]

T

Magnetic field [kOe]H Magnetic field [kOe]H

H cII

H c

H c

Er85

65

45

25

TB

TB

TN

TN

AFLSW

AFLSW

P

P

FS

FS

FS FS

AFCS

AFCS

TC

TC

TC

85

60

50

30

20

100 10 20 30 40 50

F

TS

T

T

b

a

AFSS

T2T1

90

80

70

60

50

40

30

20

10

0 5 10 15 20 25 30c

Ho

Fig. 257. H-T phase diagrams for (a) Er orientation H||c,(b) Er with H⊥c orientation and (c) Ho for H⊥c

orientation. The shaded portion stands for the hetero-phase state (HS) [95B].

c

a

c

b

H

H

Er

H = 0 10 kOe 20 kOe 60 kOe

Fig. 258. Calculated stages in the collapse of the qc = (2/7)c* structure of Er with a magnetic field along the a axis at 35 K. Scaling: a to c2:1, and b to c 1:1 [94J].

Page 157: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

Er

Mag

netic

mom

ent

[]

µµ

zB

Magnetic moment [ ]µ µx B

− 5 0 5

10

5

0

−5

−10

Mag

netic

mom

ent

[]

µµ

zB

Magnetic moment [ ]µ µx B

− 5 0 5

10

5

0

−5

−10

Mag

netic

mom

ent

[]

µµ

zB

Magnetic moment [ ]µ µx B

− 5 0 5

10

5

0

−5

−10

Mag

netic

mom

ent

[]

µµ

zB

Magnetic moment [ ]µ µx B

− 5 0 5

10

5

0

−5

−10

a b

c d

6 0 1

54 3

2

016

5

4 3

2

67 0

1

54 3

2

70 1

6 2

5 4 3

Fig. 259. Spin configuration for a cycloidal structure of Er at 4.5 K and at 11.5 kbar hydrostatic pressure determined by the neutron diffraction studies. The moments have been projected onto the zz-plane and displaced to a common origin. The numbers i = 0, 1, 2,6, 7 refer to spins in the i-th layer of atoms. The moment components along the y axis were assumed to be zero. The two arcs mark the 9 µB upper limits of the total Er

moment per atom. The borders of the hatched areas in (a) are given by the two curves calculated for an incommensurate structure by using the upper and lower limits for the ordered moment amplitudes. Figures (c)and (d) show similar diagrams derived for Er at 22 K and at ambient pressure. Figure (b) shows the spin configuration for Er at ambient pressure and 49 K [93K].

Page 158: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements

Temperature [K]T

Inte

nsity

[ co

unts

/60

s]≈

Er

0 10 20 30 40 50 60

5/21

6/23

4/15

2/7

104

103

102

10

4 10⋅ 4

2

86

4

2

86

4

2

86

4

2

Fig. 260. Peak intensity of the scattering at themagnetic satellite above the (002) Bragg point in Er.The intensity is enhanced at temperatures where themagnetic wavevector corresponds to a structure with aferromagnetic component. The 2/7 structure has 3spins up followed by 4 spins down. The 4/15 structurehas, 4 up and 4 down. Similarly for the 6/23 structure. The 5/21 structure is the conical structure whichoccurs below the Curie point [90B1].

Temperature [K]TTu

rn a

ngle

ω

Er/Lu56°

52°

48°

44°

40°0 20 40 60 80 100

2/7

3/11

6/23

1/4

5/21

5/194/15

Fig. 261. Phase angle of the modulated spin state measured as a function of temperature in zero field. Open symbols correspond to the basal plane spiral and closed symbols to the c-axis modulation. Data for the 600 Å Er/Lu film (circles), the 9500 Å film (triangles), and for bulk Er (solid line) are shown for comparison. The commensurate spin states in bulk are labelledfollowing the notation of Gibbs [91B1].

Temperature [K]T

Redu

ced

wav

evec

torq

Er0.29

0.28

0.27

0.26

0.25

0.24

0.2320 30 40 50 60

2/7

3/11

4/15

5/196/23

1/4

5/21

µ = 00 H0.5 T1.01.51.82.12.5 T Fig. 262. Magnitude of the wavevector

q as a function of temperature at different fields applied along the c axis for Er single-crystal. Lock-ins at 5/21, 1/4, and 5/19 in zero field, at 1/4 in a field of above 1.8 T and at 2/7 in a field 2.1 T can be seen. The rational fractions on the right are zero field lock-ins predicted by the c-axis spin-slip model [92L].

Page 159: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 5

Temperature [K]T

Redu

ced

wav

evec

torq

Er0.30

0.29

0.28

0.27

0.26

0.250 20 40 60 80 100

2/7

Tcy

p = 11.5 kbar14 kbar

ambient pressure

Temperature [K]T

Redu

ced

wav

evec

torq

Er0.270

0.260

0.250

0.240

0.23010 15 20 25 30 35 40 0 0.2 0.4 0.6 0.8

Magnetic field [T]µ0 H

H = 0H = 0(0,0,2- )q(1,1, )q(1,1, 3 )q

4/155/19

6/23

5/21

1/4

(0,0,2- )qT = 22 KT = 24 KT = 27 K

a b

Fig. 264. (a) Lock-ins in zero field along the [00l] and [11l] directions. (b) Wavevector q as a function of field

near the q = (1/4)c* in the intermediate phase of the Er metal [92L].

Fig. 263. Temperature dependence of the modulation wavevector Q = q(2π/c) obtained from the displacement between (1 1 l±q) satellites of Er neutron pattern. At 4.5 K, q = 2/7 for 11.5 and 14 kbar. Below 18 K, q = 5/21 at ambient pressure [95K].

Page 160: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.1 Rare earth elements M

agne

tizat

ion

[G

cmg

]3

1−σ

Mag

netiz

atio

n

[G cm

g]

31−

σMag

netiz

atio

n

[G cm

g]

31−

σ

Mag

netiz

atio

n

[G cm

g]

31−

σ

Temperature [K]T Temperature [K]T

Temperature [K]T Temperature [K]T

ErH aIIH cII

H = 12 kOeH = 12 kOe

H = 2 kOe

H = 2 kOe

H = 2 kOe

H = 2 kOe

300

200

100

0 0100 100200 200300 300

20

10

0 100 200 300

10

5

2

1

40 100 160

a b

Fig. 265. (a) Temperature dependencies σ(T) of Er in the field H||c in cooling the sample at 12 kOe and 2 kOe. Hysteresis of σ(T) near the temperature 82 K is shown in the inset on an enlarged scale. (b) Temperature dependencies σ(T) of Er in the field H||a in cooling the sample at 12 kOe and 2 kOe. Hysteresis of σ(T) near

82 K is shown in the inset on an enlarged scale. Both in the case H||c and H||a the magnetization hysteresis in the vicinity of 82 K does exist. In the field H||c no maximum of magnetization is observed at 52 K where the LSW – CS transition occurs [92S].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Mag

netiz

atio

n

[G cm

g]

31−

σ

ErH cII

a bMagnetic field [kOe]H Magnetic field [kOe]H

280

200

280

200

T = 4.2 K

8.5 K

ααα

α

αα

αα

1

1

2

2

3

3

4

4

0 10 20 30 40

300

250

200

150

100

50

0 10 20 30 40

T = 21 K29 3350

4558 K

Fig. 266. Measured field dependencies of the magnetization of Er single crystal in the field applied along the axis of easy magnetization, the c axis. In the

region of weak fields four bends are observed (αi )[91G]. (a) T = 4.2 and 8.5 K, (b) 21 K < T < 58 K.

Page 161: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 7 M

agne

tizat

ion

[G

cmg

]3

1−σ

H aII

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p ErBµ

Er200

150

100

50

0 20 40 60 80 100

6

5

4

3

2

1

0

D

C

B

A

Fig. 267. The a axis magnetization of Er at 10 K vs. abasal-plane magnetic field applied to c-axis conicalstructure. Between the origin and A slight distortion ofthe conical structure takes place. Between A and B thelarge jump in magnetization corresponds to a first-ordertransition from cone to a "fan" structure. In this fanphase, the basal-plane moments are no longer orderedhelically as in the cone but are arranged with a largecomponent along the applied field (a axis) and smallmodulated component transverse to the field (b axis). Between B and C the fan angle closes up and the fanharmonics been progressively weaker. At about 45 kOethere is no longer a basal-plane component transverse to the applied field and the c axis moment begins to bepulled down into the basal plane. This process continues until the kink in magnetization data at D [94J].

Mag

netic

fiel

d[k

Oe]

H

Er

Temperature [K]T

50

40

30

20

10

010 20 30 40 50 60

Z

C

A Y

X

Fig. 268. Schematic phase diagram of Er in a basal-plane field determined from the magnetization study. The letters show how the phase boundaries relate to the magnetization data in Fig. 267 [94J].

Page 162: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.1 Rare earth elements

Temperature [K]T

Temperature [K]T

Susc

eptib

ility

(rela

tive)

acχ

(rela

tive)

acχ

Temperature [K]T Temperature [K]T

3.2

3.1

3.0

2.9

2.8

2.7

2.60 20 40 60 80 100

ErH aII

3.13

3.11

3.09

3.0718 22 26

a

Susc

eptib

ility

(rela

tive)

acχ

Susc

eptib

ility

(rela

tive)

acχ

3.12

3.10

3.08

3.0625 30 35 37 41 45 4933

3.05

3.03

3.01

2.99

b c

Fig. 269. (a) ac susceptibility (χac, in arbitrary units) of single-crystal Er in the temperature range from 5 K to 100 K along the a axis. The inset shows χac vs. T for the

a axis near 22 K. (b) χac vs. T for Er along the a axis near 30 K. (c) χac vs. T for Er along the a axis near 41 K [95W].

Page 163: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 9

Temperature [K]T

Temperature [K]T

Temperature [K]T Temperature [K]T

20

15

10

5

00 20 40 60 80 100

ErH cII

a

22

16

10

425 30 35 40 44 48

2.6

2.4

2.2

2.1

b c

(rela

tive)

acχ

Susc

eptib

ility

(rela

tive)

acχ

19 21 23 25

0.6

Susc

eptib

ility

(rela

tive)

acχ

Susc

eptib

ility

(rela

tive)

acχ

0.4

0.2

0

2.5

2.3

Fig. 270. (a) ac susceptibility (χac, in arbitrary units) of single-crystal Er in the temperature range from 10 K to 100 K along the c axis. The inset shows χac vs. T for the

c axis near 22 K. (b) χac vs. T along the c axis for Er near 30 K. (c) χac vs. T for Er along the c axis near 42 K. Anomalies are indicated by arrows [95W].

Page 164: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.1 Rare earth elements M

agne

tizat

ion

[G

cmg

]3

1−σ

Mag

netiz

atio

n

[G cm

g]

31−

σ

[G cm

g]

31−

σ

Temperature [K]T

Temperature [K]T

ErH cII

H bII

4

3

2

1

0

0.30

0.25

0.2035 40 45 50

0.18

0.16

0.14

0.12

0.10

0.080 20 40 60 80 100

1.5

1.1

0.7

0.3

−0.1

− 0.5

Slop

e (re

lativ

e)

a

b

Fig. 271. (a) Magnetization σ of single-crystal Er along the c axis as a function of temperature in a constant magnetic field of 100 G. The inset shows σ against T for the c axis near 42 K. (b) The upper curve is the magnetization of Er along the b axis as a function of temperature for a constant magnet-ic field of 100 G. The lower curve is the slope of the b axis σ-T plot for Er [95W].

Page 165: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 11

Time [s]t

Er Tc = 18.5 K

Tm = 19.6 K19.7

19.8

20.024.4 K

1.0

0.8

0.6

0.4

0.2

0

1.2

200 400 600 800

Volu

me

fract

ion

Temperature [K]T Temperature [K]T

Temperature [K]T

Er

Inv.

susc

eptib

ility

χ−1

Inv.

susc

eptib

ility

χ−1

Inv.

susc

eptib

ility

χ−1

0.20 0.20

0.20

0.16 0.16

0.16

0.12 0.12

0.12

0.08 0.08

0.08

0.04 0.04

0.04

0 0

0

0 0

0

20 20

20

40 40

40

60 60

60

80 80

80

100 100

100

120 120

120

Tc

Tc

Tb

Tb

Tn

a b

c

Tn

Fig. 272. (a) Reciprocal of the susceptibility of a poly-crystalline Er metal. All known three phase transitions are visible. (b) Reciprocal susceptibility of pure Er particles slowly evaporated and condensed in the inert gas. The two high-temperature phase transitions are absent but superparamagnetic or spin-glass-like be-haviour appears. (c) Reciprocal susceptibility of a rapidly evaporated sample. Note the shift in the high-temperature phase transitions and the supermagnetic behaviour below TC [87C].

Fig. 273. Time evolution for the volume fraction of cycloidal magnetic phase in Er as an evidence of the first-order phase transitions from cycloidal to one ferromagnetic studied by X-ray diffraction. Temperature of the sample is heated from 13 K to Tm just above TC

[95T].

Page 166: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.1 Rare earth elements

Temperature [K]TTemperature [K]T

Heat

capa

city

[Jm

olK

]C p

--

11

Heat

capa

city

[Jm

olK

]C p

--

11

Er32

28

24

20

16

1220 30 40 50 60 70 80

51.4 K48.9

42

27.525.1

a

26

22

18

14

1021 26 31 36 41

27.5 K25.1

22.6

b

Fig. 274. Heat capacity of Er in a region of (a) 20 - 80 K and (b) 21 - 41 K. The maximum located at 51.4 K is evidence of the antiferromagnetic phase transition due to the basal plane moment ordering. The small anomaly at 48.9 K is a spin-slip transition which is associated with the magnetic wavevector 2/7. Similarly the flat step at

42 K is also evidence of the spin-slip transition with τm = 3/11. Two transitions at 27.5 and 25.1 K are due to spin-slip transformations with τm = 5/19 and τm = 4/15, respectively [93P1].

Temperature [K]T

Temperature [K]T Temperature [K]T

Heat

capa

city

[Jm

olK

]C p

−−

11

Heat

capa

city

[Jm

olK

]C p

−−

11

Heat

capa

city

[Jm

olK

]C p

−−

11

Er

a b

8

6

4

2

0 4 8 12 16

200

200

160

160

120

120

80

80

40

40

0

0

16 17 18 19 20 21

c18.2 18.4 18.6 18.8 19.0 19.2 19.4

18.7 K

cooled down to 18 KT=

cooled down to <16 KT

Fig. 275. Heat capacity of Er in a region of (a) 1.5 - 16 K, (b) 16 - 21 K, and (c) 18.4 - 19.1 K. The anomaly at 18.7 K (c) is associated with the antiferromagnetic to ferromagnetic transition [93P1].

Page 167: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 13

Temperature [K]T Temperature [K]T

Temperature [K]T

Er250 250

200 200

150 150

100 100

50 50

0 020 24 2816

Ener

gy co

nten

t d/d

[mW

mol

]Q

t−1

Ener

gy co

nten

t d/d

[mW

mol

]Q

t−1

d/d

[mW

mol

]Q

t−1

10

5

020 22 24 26 28

16 18 20 2214a b

Fig. 276. Change in energy content of Er at the ferro-magnetic transition as measured with a scanning cal-orimeter: (a) increasing temperature and (b) decreasing temperature. The large peak below 20 K caused by the ferromagnetic transition corresponds to an energy of

(18.5 ± 1.0) J mol–1. The inset shows a blow-up of the energy scale between 20 and 26 K. The energy of the peak at 25 K is (1.2 ± 0.3) J mol–1 [89Å].

Temperature [K]T Temperature [K]T

Er2

05648

Ener

gy co

nten

t d/d

[mW

mol

]Q

t−1

Ener

gy co

nten

t d/d

[mW

mol

]Q

t−1

48 50 52 5446a b

1

50 52 54

2

1

0

Fig. 277. Change in an energy content of Er near the basal-plane ordering temperature for (a) increasing

temperature and (b) decreasing temperature. The energy of the larger peaks is (1.3 ± 0.3) J mol–1 [89Å].

Page 168: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.1 Rare earth elements

Film thickness [10 Å]dEr

Er film

Criti

cal f

ield

[kOe

]H c r

T = 20 K

10 K

15

12

9

6

3

0 400 800 1200 1600 2000

Fig. 278. Critical field vs. Er film thickness at 10 K (solid circles) and 20 K (open circles). The critical fields were obtained from plots of the magnetizationvs. field for each film. The solid lines mark linearextrapolations of the data to Hcr = 0 kOe [91B].

Mag

netiz

atio

n

[G cm

g]

31−

σMagnetic field [kOe]H

Er film T = 10 K203040

70 K

60

240

180

120

60

0 10 20 30 40

Fig. 279. Field dependence of the magnetization forthe 9500-Å Er film at various temperatures. The c-axisfields have been corrected for demagnetization effects [91B].

Temperature [K]T

Mag

netiz

atio

nM

[G]

Er film

TN = 87 K

6/23

2/7

12

8

4

0 40 80 120

Fig. 280. Magnetization of the strain-free filmsample vs. temperature in a small (200 G) appliedmagnetic field. Below its Néel temperature, Erhas a helimagnetic c-axis modulated magneticstructure. In this state each Er atom has amagnetic moment aligned along the c axis , andthe sign of the moment oscillates with a period ofabout eight atomic layers. The two peaks on theleft are quite sharp and can be associated withknown spin-slip states in which the oscillationslock to the lattice before completing a harmoniccycle, thus leaving a small net magnetic moment[96C].

Er / Y

Y [0002]

Er [0002]Er [0002]

Y [0002]

Nb [110]

sapphire[1120]

sapphire[1120]

Y [0002]

Y [0002]

Nb [110]

a b

Fig. 281. Schematic drawing of (a) an Er thin films and (b) an Er/Y superlattice [91B].

Page 169: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 15 In

tens

ity [1

0co

unts

]2

Wavevector - [Å ]Qz z−1τ

[Er /Y ]32 21

100

80

60

40

20

0− 0.8 − 0.4 0 0.4

101101

_

101+c axis

T =6 K

65 K

20

3550

basal plane6 K

20 K

102_ 5

002_ 002

002+

100+3 102_3

Temperature [K]T Temperature [K]T

Mag

netic

mom

ent

[]

p ErBµ

Turn

ang

leω

Er layers

Y layers

c axisbasal

bulk Er c axisbasal

bulk Er

4/7

12/23

1/2

10/21

8/15

c axis basal[Er / Y ]32 21[Er / Y ]23 19[Er / Y ]13 26

c axis basal[Er / Y ]32 21[Er / Y ]23 19[Er / Y ]13 26

60°

50°

40°

0 040 4045

55

80 80

12

8

4

bulk

[23/19]

a b

Fig. 283. (a) Turn angles in the Er and Y layers are shown and compared to bulk Er. In the Er layers ω is "clamped" near the high-temperature lock-in value of bulk Er (2π/7). The basal plane ω which appears at low temperature has a somewhat lower value than the c-axis ω. The ω in the Y layers is near the 50° found in other superlattices and dilute Y alloys. The total phase shift across the Y layers is not a sample multiple of π (b). The

c-axis and basal-plane moments obtained for the super-lattices [Er32 /Y21], [Er23 /Y19], [Er13 /Y26], (TN = 78.0, 78.5, and (72.2 ± 1) K, respectively) are shown along with the values for bulk Er (TN = 84 K). The ordering temperature for the basal-plane components is about half of the value in Er, and the saturation moment reaches only 8.5 µB obtained for Er [89R1].

Fig. 282. Neutron diffraction scans along the c*direction, through (101*1) and (0002) for [Er32/Y21]show the development of a linear-spin-density-wave state with moments along the c axis, which then "squares-up" on lowering the temperature as indicated by the appearance of higher order harmonics. Below about 30 K, the order of the basal-plane components, is indicated by the satellites of (0002). This ordering has a different turn angle than the c-axis component [89R].

Page 170: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.1 Rare earth elements

Magnetic field [T]µ0 H

T = 80 K

[Er / Lu ]30 10 40

0 4 8 12 14

0.8

0.6

0.4

0.2

0

0.2

0.1

0

− 0.1

− 0.2

− 0.3

Stre

ss[G

Pa]

Stre

ss[G

Pa]

90 K

504030

15

20

1015

40607080

25 30

Temperature [K]T Temperature [K]T

Temperature [K]T

Er/Lu

Er/Y

Wav

evec

tor

/* c

τ

Wav

evec

tor

/* c

τ

Wav

evec

tor

/* c

τ

0.30 0.30

0.30

0.29 0.29

0.29

0.28 0.28

0.28

0.27 0.27

0.27

0.26 0.26

0.26

0.25 0.25

0.25

0.24 0.24

0.24

0.23 0.23

0.23

0 0

0

20 20

20

40 40

40

60 60

60

80 80

80

100 100

100

6/23

5/19

6/23

11/45

12/47

4/15

2/7 2/7

10/39

1/4

6/25

4/15

5/21

1/4

bulk Er

coolingheating

2/7

10/39

6/23

a b

c

Fig. 284. Magnetic wavevector τ of Er as a function of temperature for an Er film on a Lu substrate (a), for bulk Er (b), and for an Er film on a Y substrate (c). Small arrows are used to indicate the hysteresis found between measurements done on heating and cooling of the sample [97H].

Fig. 285. Magnetoelastic stress isotherms for SL (Er30/Lu10)×40 superlattices. σa and σb correspond to SL clamping along the a and b axes [97dM].

Page 171: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 17

Temperature [K]T

Criti

cal f

ield

[kOe

]H cr

Er/Y30

20

10

0 20 40 60

bulk Er

Fig. 286. Critical field plotted as a function of temper-ature for [Er23.5/Y19]100 (squares), [Er13.5/Y25]100 (solidcircles),and [Er31.5/Y21]60 (triangles). The bulk Er values (open circles) are shown for comparison [91B].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Magnetic field [kOe]H

T = 10 K

20

40

60 K

50

250

150

100

50

0 10 20 30 40

200 30

[ Er / Y ]23.5 19 100

Fig. 287. Field dependence of the magnetization for[Er23.5/Y19]100 superlattice at various temperatures. The c-axis fields have been corrected for demag-netization effects [91B].

Magnetic field [kOe]H

[kOe]H

Er

Mag

netiz

atio

nM

[G]

M[G

]

T = 10 K

2000

1500

1000

500

0 10 20 30

0 20 40

2000

1000

2030 40

50 K

Fig. 288. Magnetization measurements for a 200 Å-single-crystal Er film grown on Y39Lu61 substrate vs.internal field at temperatures from 10 K to 50 K. Inset:Magnetization vs. applied field at 10 K without demag-netizing correction [96C].

Mag

netiz

atio

n

[G cm

g]

31−

σ

Temperature [K]T0 25 50 75 100

Er / Y ]23 19 100H c= 5 kOe II

30

20

10

Fig. 289. Magnetization vs. temperature for[Er23/Y19]100 in a 5-kOe field applied along the c axis. The solid and dashed curve correspond to field-cooledand zero-field-cooled data, respectively [88B].

Page 172: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.1 Rare earth elements M

agne

tizat

ion

[G

cmg

]3

1−σ

Temperature [K]T

H c= 2 kOe II

bulk Er

4000 Å Er / Y

4000 Å Er / Lu

20

16

12

8

4

0

20

16

12

8

4

0

20

16

12

8

4

00 20 40 60 80 100

Temperature [K]T

Er

Criti

cal f

ield

[kOe

]H cr

40

30

20

10

0 20 40 60

film on Y

bulk

film on Y Lu39% 61%

Fig. 290. Critical field Hcr vs. temperature for three Er samples: 1750 Å film on Y, 2000 Å film on strain-free alloy, and a bulk Er sample [96C].

Fig. 291. Magnetization as a function of temperature in a 2-kG field applied along the c axis for a 4000 Å Er film grown on Lu (closed symbols are fieldcooled and open symbols are zero-field cooled) and a 4000 Å Er film on Y (field cooled). The dashed line marks the maximum magnetization allowed by demagnetization effects in the field. Magnetization data for bulk Er are shown for comparison [91B1].

Temperature [K]T

[K]T

Er

10 20 30 40 50 60 70 80 90

91

88

85

82

79

Elas

tic co

nsta

nt[G

Pa]

c 33

[GPa

]c 33

88

87

8615 20 25 30 35 40 45 50 55

Tc

Tm

Tn

Fig. 292. The c33 elastic modulus of Er derived from the velocity of a longi-tudinal wave propagating along the c

axis. The temperature dependence of c33 cooled at 1 K/min and 0.5 K/min (inset) [92E].

Page 173: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 19

Temperature [K]T

Elas

tic co

nsta

nt[G

Pa]

c 11

Atte

nuat

ion

coef

ficie

nt[ d

B cm

]11

1−α

Er86

84

82

80

78

7646 48 50 52 54 56 58 60

22

18

14

10

6

2

a Temperature [K]T

Elas

tic co

nsta

nt[G

Pa]

c 11

Atte

nuat

ion

coef

ficie

nt[ d

B cm

]11

1−α

95

94

93

92

91

9014 16 18 20 22 24 26 28

10

9

8

7

6

b

5

4

3

Fig. 293. The c11 elastic constant and the α11 attenuation coefficient of Er derived from a longitudinal wave propagation parallel to the basal plane. (a) Temperature

dependence of c11 and α11 between 60 K and 46 K. (b)Temperature dependence of c11 and α11 between 15 K and 28 K [92E].

Page 174: 2 Magnetic properties of rare earth elements, alloys and ...

References

87C Cowen, R.A., Stolzman, B., Averback, R.S., Hahn, H.: J. Appl. Phys. 61 (1987) 3317

88B Borchers, J.A., Salamon, M.B., Du, R., Flynn, C.P., Rhyne, J.J., Erwin, R.W.: J. Appl. Phys.

63 (1988) 3458

89R Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., Flynn, C.P.: Physica B 159

(1989) 111

89R1 Rhyne, J.J., Erwin, R.W., Borchers, J., Salamon, M.B., Du, R., Flynn, C.P.: Phys. Scr. T 29

(1989) 31

89Å Âström, H.U., Benediktsson, G.: J. Phys. Condens. Matter 1 (1989) 4381

90B1 Bohr, J.: J. Magn. Magn. Mater. 83 (1990) 530

91B Borchers, J.A., Salamon, M.B., Erwin, R.W., Rhyne, J.J., Du, R.R., Flynn, C.P.: Phys. Rev. B

43 (1991) 3123

91B1 Beach, R.S., Borchers, J.A., Erwin, R.W., Rhyne, J.J., Matheny, A., Flynn, C.P., Salamon,

M.B.: J. Appl. Phys. 69 (1991) 4335

91G Godovikov, S.K., Nikitin, S.A., Tishin, A.M.: Phys. Lett. A 158 (1991) 265

92E Eccleston, R.S., Palmer, S.B.: J. Phys.: Condens. Matter 4 (1992) 10037

92L Lin, H., Collins, M.F., Holden, T.M., Wei, W.: Phys. Rev. B 45 (1992) 12873

92S Snigirev, O.V., Tishin, A.M., Volkozub, A.V.: J. Magn. Magn. Mater. 111 (1992) 149

93K Kawano, S., Lebech, B., Achiwa, N.: J. Phys.: Condens. Matter 5 (1993) 1535

93P1 Pecharsky, V.K., Gschneidner jr., K.A., Fort, D.: Phys. Rev. B 47 (1993) 5063

94J Jehan, D.A., McMorrow, D.F., Simpson, J.A., Cowley, R.A., Swaddling, P.P., Clausen, K.N.:

Phys. Rev. B 50 (1994) 3085

95B Bulatov, A.S., Dolzhenko, V.F., Korniets, A.V.: J. Magn. Magn. Mater. 147 (1995) 403

95K Kawano, S., Sørensen, S. Aa., Lebech, B., Achiwa, N.: J. Magn. Magn. Mater. 140-144 (1995)

763

95T Tajima, K., Shinoda, Y., Tadakuma, M.: J. Magn. Magn. Mater. 140-144 (1995) 765

95W Watson, B., Ali, N.: J. Phys.: Condens. Matter 7 (1995) 4713

96C Conover, M.J., Kaldowsky, A., Flynn, C.P.: Phys. Rev. B 53 (1996) R2938

96W1 Watson, B., Ali, N.: J. Phys.: Condens. Matter 8 (1996) 1797

97H Helgsen, G., Tanaka, Y., Hill, J.P., Wochner, P., Gibbs, D., Flynn, C.P., Salamon, M.B. Phys.

Rev. B 56 (1997) 2635

97W Watson, B., Ali, N.: J. Alloys Compounds 250 (1997) 662

97dM del Moral, A., Ciria, M., Arnaudas, J.I., Ward, R.C.C., Wells, M.R.: J. Appl. Phys. 81 (1997)

5311

Page 175: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 1

2.1.3.11 Thulium

Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

H

TmH cII

CAMA

6

4

2

0 10 20 30 40 50 60 70

paramagnetic

ferrimagnetic

ferromagnetic

Mag

netiz

atio

n

[G cm

g]

31−

σ

[G cm

g]

31−

σ

Magnetic field [kOe]H

[kOe]H

TmH aII

H cIIH bII

250

250

200

200

150 150

100

100

50

50

0

00

10

10

20

20

30

30

40

40

50

50

60

60

Fig. 295. Magnetic moment of Tm at 5 K measured with a SQUID magnetometer to a maximum field of 50 kOe for different crystallographic orientations: parallel a, b

and c axis. The inset shows measurements on the same crystal at 4.2 K with a vibrating-sample magnetometer

for increasing and decreasing values of the applied field. For the field parallel to the c axis there are two distinct saturation levels: at low fields connected with ferri-magnetic state; at higher fields moments are decoupled into ferromagnetic order [91Å].

Fig. 294. Magnetic phase diagram constructed from the isothermal magnetization (squares), magnetoresistance (open circles), and resistance in a constant field (solid circles). The division of the ferromagnetic phase into two phases at nonzero field which is indicated by the dashed line, is tentative [98E].

Page 176: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.1 Rare earth elements M

agne

tizat

ion

[10

G cm

mol

]m

33

1−σ

Mag

netiz

atio

n[1

0G

cmm

ol]

m3

31−

σ

Mag

netiz

atio

n[1

0G

cmm

ol]

m2

31−

σ

Temperature [K]T Temperature [K]T

Tm TmH cII H a bII ,

37.5 5.0

30.04.5

22.5

4.0

15.0

3.5

7.5

3.0

0 025 2550 5075 75100 100

30

10 kOe

H = 36 kOe

2.5

2.0

2.0

1.5

1.00.5

H = 50 kOe

II b

II b

II a

II a

H = 1 kOe

a b

Fig. 296. (a) Temperature variation of the magnetization for Tm with fields applied parallel to the c axis; and (b)parallel to the ab-plane [90D].

Magnetic field [meV]g HµB

Ener

gy[m

eV]

ETm

0 0.5 1.0 1.5 2.0 2.5

20

15

10

5

0

0.996 0> + 0.092 6 >s

0.943 1 > + 0.334 5 >s,a s,a

0.852 2 > + 0.523 4 >s,a s,a

0.852 4 > 0.523 2 >s,a s,a−0.943 5 > 0.334 1 >s,a s,a−

3 >a

3 >s

6 >a

0.996 6 > 0.092 0>s −

Fig. 297. Crystal-field levels in Tm calculated from the

parameters 096.002 −=B ; 00

4 =B ; 506 1092.0 −⋅=B ;

566 1086.8 −⋅=B as a function of the field gµBH (1 meV

corresponds to 14.8 T). The state vectors to the left of

the vertical axis are the zero field states of the corresponding levels. |6s(a)> denotes the (anti)-symmetrical combination of |+6> and |–6> states [91McE].

Page 177: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 3

Temperature [K]T

Tm

Susc

eptib

ility

χ‘

Susc

eptib

ility

χ‘’

H = c0.1 Oe II

0.30

0.25

0.20

0.15

0.10

0.05

0

1.50

1.00

0.50

00 20 40 60 80 100 120

Fig. 298. ac susceptibility vs. temperature with the applied field of 0.1 Oe along the c axis for two frequencies: 100 Hz (solid triangles) and 1000 Hz (solid circles) for Tm. A cusp in χ' at 58 K marks an anti-

ferromagnetic transition. The sharp maximum at 35 K reveals transition into the ferrimagnetic antiphase-type structure [91Å].

Page 178: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.1 Rare earth elements

Temperature [K]T

Tm

Susc

eptib

ility

χ‘

Susc

eptib

ility

χ‘’

0.010

0.008

0.006

0.004

0.002

0

0.080

00 20 40 60 80 100 120

H = b100 Oe II

0.060

0.040

0.020

Fig. 299. ac susceptibility vs. temperature and frequency with the applied field of 100 Oe, parallel to the b axis: 10 Hz (open circles) and 100 Hz (solid triangles) for Tm. The strong peak in χ' at 35 K seen along the c axis

is virtually missing for this orientation. The small anomaly at 35 K might be the sign of interaction between magnetization along c and the magnetic component in the basal plane [91Å].

Page 179: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 5

Energy [meV]E

Inte

nsity

[ cou

nts /

5 m

in]

Tm

0 5 10 15 20

150

150

150

100

100

100

50

50

50

0

0

0

(11 )ξ

ξ

ξ

ξ

= 0

= 0.3

= 0.8

T = 5K

Fig. 300. Low-temperature excitation spectra for Tmsingle-crystal from inelastic neutron scattering meas-urements at 5 K. The constant κ scans at κ = (1,1,ζ)for ζ = 0, 0.3, 0.8 with a fixed neutron energy Ef =14.8 meV. The three excitations are observed. Thesolid lines are from a fit to three Gaussian. The twolower energy excitations originate from magneto-vibrational scattering from TA phonon, higher energyexcitation is magnetic. The observed gap in dispersion( 8 meV) is related to the first dipolar transition inthe crystal-field levels scheme [90F-B].

Ener

gy[m

eV]

E

Tm

Reduced wavevector / 100ττ0 0.05 0.10 0.15

12

10

8

6

4

2

Fig. 301. Dispersion relations along the c direction, at zero temperature, of the spin wave (solid lines) and the transverse phonons (heavy dashed lines) in "ferromagnetic" Tm folded into the magnetic Brillouin zone of the antiferromagnetic phase.The energies of the phonons coupled to the spin waves have been adjusted so as to agree with the results calculated in the antiferromagnetic phase. The thin dashed lines show the dispersion relation assumed for the phonons in the nonmagnetic case. The circles are the experimental results [90F-B ] for the phonon energies [91McE].

Page 180: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.1 Rare earth elements

Magnetic field [T]µ0 H

µ0 H [T]

Mag

neto

stric

tion

/[1

0]

∆l l

−3

Tm H cII T = 4.2 KT = 33.9 K

15

10

5

0 2 4 6 8

33.9

44.9

59.3

84.3 K

0

2

0 0.4 0.8

H[1

0T

]−

−5

1

Fig. 302. Magnetostriction of Tm, measured in increas-ing field along the c axis, for various temperatures. The inset shows thermal expansion αH = [δ(∆l/l)/δH]T at

T = 33.9 K. The sudden increase in length in 3.0 T is characteristic. Arrows indicate anomalies [92Z].

Mag

neto

stric

tion

/[1

0]

∆l l

−3

TmH cII

αT

[10

T]

−−

51

Temperature [K]T

[K]T

µ0 H = 2.0 T

0

4.0 T

5

4

3

2

1

0 20 40 60 80

50 54 58

7.8

7.6

TN

H = 0

Fig. 303. Thermal expansion of Tm, measured as a function of temperature along the c axis at various magnetic fields µ0H = 0, 2.0 T and 4.0 T. The inset

shows the αT , where αT = [δ(∆l/l)/δT]H, near TN: at 2.0 T, TN = 52.1 K, the additional anomalies are observed at T = 31.0, 36.5 and 38.8 K [92Z].

Page 181: 2 Magnetic properties of rare earth elements, alloys and ...

2.1 Rare earth elements 7

Magnetic field [T]µ0 H Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p TmBµ

Mag

netic

mom

ent

[]

p TmBµ

TmH cII

Resis

tivity

(

,)

(0,

)[µ

cm]

HT

T−

Ωρ

ρ

Resis

tivity

(

,)

(0,

)[µ

cm]

HT

T−

Ωρ

ρ

8 8

6 6

4 4

2 2

0 0

T = 5.0 K

1

0

−1

−2

− 3

− 4

T = 5.0 K

T = 5.0 KT = 35.1 K

T = 35.0 K

T = 35.0 K

longitudinal longitudinal

ρ (0, )= 4.53 µ cmT Ω

ρ ρ

ρ

(0, )= 0.96 µ cmT Ω (0, )= 10.36 µ cmT Ω

(0, )= 13.35 µ cmT Ω

0.10

0.05

0

− 0.050 01 12 23 34 45 56 67 7

transverse transverse1.0

0.5

0

− 0.5

−1.0

−1.5

0

−2

− 4

− 6

− 8

−10

a

b

c

d

e

f

Fig. 304. Isothermal magnetization and longitudinal and transverse magnetoresistance in Tm metal at 5 K and 35 K [98E].

Page 182: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.1 Rare earth elements

Photon energy [eV]E

8620 8640 8660 8680

(Tm)L III

100

80

60

40

20

0

Fluo

resc

ence

(rel

ativ

e)

Fig. 305. Fluorescence at the centre of the Brillouinzone vs. incident photon energy through the LIII

absorption edge. The fluorescence reflects theelectric dipole transition involving 2p(3/2) 5d(5/2) [90B].

Temperature [K]T

Tm6

4

2

0

− 2

− 4

− 625 30 35 40

2.5 K

0.7 J / mol

0.8 J / mol

Ener

gy co

nten

t d/ d

[mW

mol

]Q

t−1

Fig. 306. The calorimetric measurements by continu-ously scanning the temperature. The change in energy content at the ferrimagnetic transition in Tm for increasing temperature (endothermic peak) and fordecreasing temperature (exothermic peak). The inte-gration of dQ/dt over time are shown for both peaks. The sharpness and thermal hysteresis are typical of a first-order process [91Å].

Page 183: 2 Magnetic properties of rare earth elements, alloys and ...

References

90B Bohr, J. Gibbs, D., Huang, K.: Phys. Rev. B 42 (1990) 4322

90D Daou, J.N., Burger, J.P., Vajda, P., Chouteau, G., Tur, R.: J. Phys.: Condens. Matter 2 (1990)

7897

90F-B Fernandez-Baca, J.A., Niclow, R.M., Rhyne, J.J.: J. Appl. Phys. 67 (1990) 5283

91McE McEwen, K.A., Steigenberger, U., Jensen, J.: Phys. Rev. B 43 (1991) 3298

91Å Åström, H.U., Noguest, J., Nicolaides, G.K., Rao, K.V., Benediktsson, G.: J. Phys.: Condens.

Matter 3 (1991) 7395

92Z Zochowski, S.W., McEwen, K.A.: J. Magn. Magn. Mater. 104-107 (1992) 1515

98E Ellerby, M., McEwen, K.A., Jensen, J.: Phys. Rev. B 57 (1998) 8416

Page 184: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348] 2.5 Rare earth elements and 4d or 5d elements 167

Landolt-Börnstein New Series III/32D

2.5 Compounds of rare earth elements and 4d or 5d elements

2.5.1 Introduction

This section 2.5 covers relevant literature published since about the year 1905 until the year 1999. The magnetic data of the same group of compounds published earlier have been compiled by A. Chelkowski and have already been published in Landolt-Börnstein, Volume 19 "Magnetic Properties of Metals", sub-volume d2, pages 469-545. The tables and figures in this section contain magnetic data on metallic or pseudometallic compounds of the rare earth group of elements which contain besides the rare earth element at least one 4d (Mo, Ru, Rh, Pd) element and/or one 5d (Re, Os, Ir, Pt) element. The compounds are summarized in two tables in subsect. 2.5.2. Table 1 is devoted to binary and pseudobinary compounds of the rare earth elements with 4d or 5d elements. Table 2 is devoted to ternary compounds which contain besides the rare element at least one 4d or 5d element and as a third one another element of the periodic system. The compounds listed in the tables are designated by their chemical formula. The compounds are arranged in the order as their elements appear in the periodic system. Thus the rare earth elements are listed in following order

Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,

the 4d elements in the order

Mo, Ru, Rh, Pd,

and the 5d element in the order

Re, Os, Ir, Pt.

The compounds are listed in such a way that rare-earth-rich compounds appear in the begining of each table. The tables provide information on paramagnetic Curie temperature Θ, ferromagnetic Curie tempera-ture TC, Néel temperature TN , magnetic susceptibility χ, saturation or spontaneous magnetic moment ps and effective paramagnetic moment peff . The column "Remarks" may provide further data.

Page 185: 2 Magnetic properties of rare earth elements, alloys and ...

168 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

2.5.2 Survey of compounds and properties

Table 1. Binary and pseudobinary compounds of rare earth elements with 4d and 5d elements. R: rare earth element, M: 4d or 5d element, ps refers to 4.2 K. For properties of the same compounds published earlier is refered by page number in Landolt-Börnstein NS, group III, volume 19d2, pages 469 - 545, in which also many compounds have been reviewed for which no new data would be found in the literature published in the reviewed period 1985 - 1999.

Compound page in Vol. 19d2

Θ [K]

TC [K]

TN [K]

χ ps

[µB]/R peff

[µB]/R Remarks Ref.

R3M 470

Gd3Rh 470 XPS valence band of single crystal, pure Rh and Gd: Fig. 1; ρ vs. T: Fig. 2

95T2

146 112 Fig. 3 14.7 ∆p = (peff/f.u.)/31/2

Gd3Pd 340 325 Fig. 4 13.27 ∆p = (peff/f.u.)/31/2, ρ vs. T: Fig. 5 95T2

Gd3Ir XPS valence band of single crystal, pure Ir and Gd: Fig. 6; ρ vs. T: Fig. 2

95T2

169 155 Fig. 7 14.07 ∆p = (peff/f.u.)/31/2

R7M3 471

Ce7Ru3 Fig. 8 magnetization 1.5 µB/mol at 2 K and 5 T, Cel/T vs. T: Fig. 9

95T4

Ce7Rh3 471 6.8 Fig. 10 magnetization 6 µB/mol at 2 K and 5 T Cel /T vs. T: Fig. 11

95T4

6.9 6.5 Fig. 12 Cm = 4.23 cm3K/mol, the positive value of Θ is in agreement with the onset of the spontaneous magnetization

92S1

Ce7Pd3 471 3.6 Fig. 8 magnetization 5.8 µB/mol at 2 K and 5 T, Cel /T vs. T: Fig. 9

95T4

Page 186: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

169

Landolt-Börnstein

New

Series III/32D

Compound page in Vol. 19d2

Θ [K]

TC [K]

TN [K]

χ ps

[µB]/R peff

[µB]/R Remarks Ref.

Ce7Ir3 4.45 Fig. 10 magnetization 4.8 µB/mol at 2 K and 5 T, Cel/T vs. T: Fig. 11

95T4

Ce7Pt3 6.85 2.85 Fig. 8 magnetization 6 µB/mol at 2 K and 5 T, CelT vs. T: Fig. 11

95T4

R5M3

Ce5Rh3 45 4.5, 4.6 Figs. 13, 14

0.72 χ0 = 7⋅10–3 cm3/Ce at, C = 0.64 cm3K/Ce at, pm vs. H: Figs. 15, 16, specific heat vs. T: Fig. 17

92K1

RM

CePt magnetic contribution to the specific heat: Fig. 18

95B1

R3M4 474

Gd3Pd4 474 – 9.5 18 Fig. 20 8.19/Gd another magnetic transition observed at 6 K 92T1

Yb3Pd4 476 3 4.42 valency of Yb 2.95 suggested 85P1 3.2

Fig. 21 Mössbauer spectroscopy and neutron dif-

fraction study, Hhf vs. T: Fig. 21, ps = 0.6 µB 94B2

RM2 475

LaRh2 476 Fig. 22 at 4.2 K χm = 1.7 10–4 cm3 mol–1 95O1

CeRu2 476 Fig. 23 cubic Laves phase superconductor characterized by extremely small magnetic moments, static electronic magnetism occurs at TM = 40 K

96H1

Page 187: 2 Magnetic properties of rare earth elements, alloys and ...

170 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound page in Vol. 19d2

Θ [K]

TC [K]

TN [K]

χ ps

[µB]/R peff

[µB]/R Remarks Ref.

Fig. 24 temperature dependence of magnetic susceptibility at µ0H = 0.1 T

97S2

σ vs. µ0H: Figs. 25, 26 97D1

CeRh2 477 Fig. 22 at 4.2 K χm = 7.8⋅10–4 cm3 mol–1 95O1

CeOs2 – 0.39P14 1.9 P15

Fig. 27 two different crystallographic structures: C14 and C15, the C14 behaves like a normal metal with a stable Ce4+ valence, the C15 exhibits various features, characteristic of valence fluctuating compounds, only C14 becomes superconductive

97S1

CePt2 Figs. 28, 29, 30

alloying Ir or Rh on the Pt-site decrease TN, no magnetic order was detected for x > 0.25, the electronic part of the specific heat at temperatures higher than 10K shows a maximum dependent on x, dilution of Ce in CexPt1–xPt2 results in a suppression of the magnetic order and an enhanced γHT

97B1

Ce1–xGdxRh2 ps vs. x: Fig. 31, P(n,x) and <p> vs. x: Fig. 32

90T1

PrRu2 477 Fig. 33 90D1

Gd(Al1–x Pdx)2 Fig. 34 Curie temperatures vs. concentration from electrical resistivity measurements

94C1

TmIr2 – 4 K Fig. 35 4.49 antiferromagnetic below 0.05 K trivalent above 4 K

85W1

YbIr2 – 4 K Fig. 36 7.57 antiferromagnetic below 0.40 K, above 4 K trivalent

85W1

Page 188: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

171

Landolt-Börnstein

New

Series III/32D

Compound page in Vol. 19d2

Θ [K]

TC [K]

TN [K]

χ ps

[µB]/R peff

[µB]/R Remarks Ref.

RM3 479

CePd3 480 dynamical magnetic susceptibility investigation in αCE

90S6

temperature dependence of the electrical resistivity investigations under hydrostatic pressure up to 15 kbar

90A1

RM5 483

CePt5 – 9.44 Fig. 37 2.20⋅10–2 at 16 K

2.00 temperature independent susceptibility at 16 K, σ : Fig. 38, χ0 = 9.37⋅10–4 cm3 mol–1, C = 0.500 cm3 K mol–1

93B2

CeAlxPt5–x x = 0 0.5 1 2

– 24 – 11 – 9 – 28

Fig. 39 weak Kondo interaction, long-range magnetic order

97S3

RM11

YbGa7.75Pd3.25 Fig. 40 space group Pm3m, for x ≤ 3 temperature independent Pauli paramagnets

97G1

Page 189: 2 Magnetic properties of rare earth elements, alloys and ...

172 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Table 2. Ternary compounds of rare earth elements with 4d or 5d elements. R: rare earth element, M: 4d or 5d element. ps refers to 4.2 K.

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

RMM'

R/MM' = 0.66

Ce2Rh2In Fig. 49 96K2

Ce2Pd2.04In0.96 – 22 3.7 4.5 2.48 two magnetic transitions under an applied field µ0H = 0.01 T

96F1

Ce2Pd2In 18 Figs. 41 - 44 2.48 95G1 Fig. 47 σ vs. H: Fig. 47 and vs. H and T: Fig. 48 96K2

Ce2(Pd(1– x) Nix)2In x = 0 0.25 0.50

20

4 – 39

4.2

Figs. 45, 46 2.45 2.39 2.46

magnetic properties change continuously from ferromagnetic for x = 0 to the temperature-independent paramagnet for x = 1

96I1

Ce2Pd2+xSn1– x pm vs. T and x: Fig. 57 97C1

Ce2Pd2.06Sn0.94 – 20 3.0 4.7 Fig. 58 2.47 pm vs. T: Fig. 59, pm vs. H: Figs. 60, 61 96F1

Ce2Pd2.2Sn0.79 – 34 4.2 Fig. 58 2.54 pm vs. T: Fig. 59 96F1

Ce2Pd2Sn 18 Figs. 62 - 64, 44

2.62 95G1

Ce2Pd2Pb – 32 Figs. 65 - 67 2.70 95G1

Ce2Pt2In 8.4 Fig. 50 2.49 96K2

Ce2Pt2Sn pm vs. T: Fig. 68 97C1

Gd2Pd2.02Sn0.98 Fig. 69 98C2

Page 190: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

173

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Tb2Pd2.05Sn0.95 – 13 27.3 Fig. 70 10.15 neutron diffraction study, polycrystalline sample, TN2 = 20.8 K, magnetic structure between TN and TN2 – incommensurate wavevector k1 = (kx kx ½) (with a continuous decrease of the incommensurate component kx from kx = 0.115 at T = 26.3 K to kx = 0.070 at T = 20.8 K). Below TN2, a commensurate magnetic structure is observed with k2 = (0 0 ½) wavevector (kx located to zero), magnetic structure: Fig. 71

98L1

Tb2Pd2.02Sn0.98 Fig. 69 Figs. 72, 73 ρ vs. T: Fig. 74, pm vs. H: Fig. 75 98C2

Dy2Pd2.02Sn0.98 Fig. 69 98C2

Ho2RuGe2 Figs. 51, 53 σ : Fig. 52 96S1

Ho2Pd2.02Sn0.98 Fig. 69 98C2

Ho2OsGe2 Figs. 54, 56 σ : Fig. 55 96S1

Er2Pd2.02Sn0.98 Fig. 69 Figs. 72, 73 pm vs. H: Fig. 75 98C2

R/MM' = 0.6

Ho3Ru2Ge3 Figs. 51, 53 σ : Fig. 52 96S1

R/MM' = 0.5

YPdAl resistivity vs. T: Fig. 76, specific heat vs. T: Fig. 77

94K1

Y2PdSi3 Non magnetic compound 90K3

LaRuSi Pauli paramagnet, space group P4/nmm, 93W2

Page 191: 2 Magnetic properties of rare earth elements, alloys and ...

174 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

LaRuGe space group P4/nmm, unit cell volume: Fig. 78, Pauli paramagnet

93W2

CeRuSi – 52 Fig. 80 2.56 space group P4/nmm, unit cell volume: Fig. 78 93W2

CeRuGe – 73 Fig. 80 2.55 space group P4n/nmm, unit cell volume: Fig. 78 93W2

CeRuSnx Fig. 81 pm vs. H: Fig. 82 90F2

CeRu0.15Ni0.85Sn Fig. 83 97A1

Ce0.25U0.75Ru2 σ vs. T: Fig. 84 92R1

CeRhGe 10 Fig. 85 2.25 pm vs. T: Fig. 85, pm vs. H: Fig. 87, magnetic structure Fig. 88

96B1

CeRhIn Fig. 89 90M1

CeRh1– xPdxIn x = 1.00 0.95 0.90 0.85 0.80 0.60

– 48 – 52 – 51 – 57 – 60 – 69

Figs. 90, 91

2.49 2.52 2.47 2.49 2.51 2.54

pm vs. x: Figs.: 92, 93, Cp vs. T:Fig. 94, ρ/ρ(300K) vs. T: Fig. 95, valence fluctuation of Ce with x discussed, schematic representation of CeTX crystallizing in the ZrNiAl-type structure, the volume shown contains 3 unit cells and 9 Ce atoms

93B1

CeRh0.15Ni0.85Sn Fig. 83 97A1

CeRhSn Fig. 96 σm vs. H at 4.6 K: Fig. 97 92R2

Page 192: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

175

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

CePdAl Fig. 77: 2.7

resistivity vs. T: Fig. 76, heavy-fermion compound

94K1

heavy fermion, frustrated magnetic structure, studied by powder neutron diffraction, space group P62m, below orders with an incommensurate antiferromagnetic propagation vector k = (1/2,0,τ), τ ≈ 0.35, and a longitudinal sin-wave modulated spin arrangement

CePdGa – 35 2.2 90S2 Fig. 98 TK =8.8 K well defined crystal field transition at

18.9 meV and 33.8 meV, presence of CEF splitting

94A3

CePdIn 1.8 Figs. 99, 100 2.61 single crystal, Θa=– 65 K, Θc=– 43 K 90F1

CePdG 120 3.3 Figs. 116, 117

90S1

CePdSn – 52 7 Fig. 101 2.62 88K1 7 90S1 – 6.3 7.0 0.88 2.7 magnetic structure: Fig. 102, simple spiral

magnetic structure with the wavevector k = (0, 0.473, 0) in the temperature range 1.4 K to TN = 7.3 K: Fig. 102a

94A5

7 Fig. 103

neutron scattering studies on single crystal, magnetic structure below TN is an incommensurate with propagation vector of (0, 0.473, 0) and magnetic moment of about 1 µB

92K2

Fig. 104 90S2

CePd0.15Ni0.85Sn Fig. 83 97A1 – 176 Fig. 105 2.77 94A2

Page 193: 2 Magnetic properties of rare earth elements, alloys and ...

176 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Ce(PdxNi1– x)Sn Fig. 106 neutron diffraction, single crystal, crossover from magnetic to nonmagnetic ground state in the Kondo alloy system, below 7 K incommensurate magnetic structure with propagation vector q = (0, 0.473, 0)

91K1

CeOsSi – 29 Fig. 80 2.03 Curie-Weiss paramagnets down to 4.2 K, space group P4/nmm, unit cell volume: Fig. 78

93W2

CePtAl 6.5 Fig. 107 2.58 pCe vs. H: Fig. 108 97K2

CePtGa 3.5 90S1 Figs. 109,

110 temperature and pressure dependence of ρ:

Fig. 109, pressure dependence of TN: Fig. 110 95U1

– 68 Fig. 112 2.36 do not present any ordering down to 5 K, σ vs. H: Fig. 111

96K5

CePtSi Fig. 113 90K1

CePt1– xNixSi Fig. 114 γ vs. x: Fig. 114, correlation between γ and χ mainly reflect a lowering of the density of states of the conduction electrons at the Fermi level rather than reduced magnetic correlations suggested

96K3

CePtSi1– xGex Fig. 115 unit cell volume, TN and C/T vs. x: Fig. 115 92G1

Page 194: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

177

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

CePtSn 7.5 90S1 7.5 ρ and S vs. T:Fig. 118 94B1 5.5, 8 Fig. 119 antiferromagnetic Kondo lattice, crystal field

splitting below 80 K of Ce3 J = 5/2 state, CEF parameters B2

0 = 0.83 meV, B22 = 1.53 meV,

B40 = 0.088 meV, B4

2 = – 0.027 meV, χp = 4.4⋅10–4 cm3 mol–1 and λ = – 188 mol cm–1, ρ vs. lnT: Fig. 120

94A2

7.8 sine modulated magnetic structure, an additional anomaly at 5.2 K

95B3

Ce(Pt1– xNix)Sn Fig. 121 Fig. 122 Fig. 121 lattice constants: Fig. 121 92S5

CePt0.15Ni0.85Sn – 214 Fig. 105 2.95 94A2

PrRuSi 7 73 Fig. 123 3.52 unit cell volume: Fig. 78 93W2

PrRuGe 0 62 Fig. 79 3.82 space group P4/nmm, unit cell volume: Fig. 78 93W2

PrRhSn 10 Fig. 96 3.83 σm vs. H at 103 K: Fig. 97 92R2

PrPdSn Fig. 104 90S2

PrPtGa – 18 Fig. 112 3.50 do not present any ordering down to 5 K, σ vs. H: Fig. 111

96K4

Pr2PdSi3 8 Fig. 125 3.47 pm vs. H: Fig. 125, no magnetic ordering down to 4.2 K

90K3

Page 195: 2 Magnetic properties of rare earth elements, alloys and ...

178 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

NdRuSi 29 74 Fig. 123 3.46 space group P4/nmm, collinear antiferromagnetic, structure which consists of ferromagnetic (001) Nd layers with moments ⊥ to the layers, antiferromagnetically coupled along c axis in the sequence + − − + , unit cell volume: Fig. 78, magnetic moment vs. temperature: Fig. 126, magnetic structure: Fig. 127

93W2

NdRuGe 4 65 Fig. 79 3.91 space group P4/nmm, unit cell volume: Fig. 78 93W2

NdRhGe 14 Fig. 86 3.73 pm vs. T: Fig. 86, pm vs. H: Fig. 87, magnetic structure Fig. 88

96B1

NdRhSn 12 Fig. 96 3.55 σm vs. H at 30 K: Fig. 97 92R2

NdPtGa – 15 Fig. 112 3.55 do not present any ordering down to 5 K, σ vs. H: Fig. 111

96K4

Nd2PdSi3 17 16 Fig. 125 3.54 pm vs. H: Fig. 125 90K3

SmRuSi 65 Fig. 123 non Curie-Weiss behaviour, unit cell volume: Fig. 78, space group P4/nmm σs = 0.15 µB mol–1, Hc = 12.5 kG

93W2

33 62.5 TM = 16 K, TR = 16 K 96K1

SmRuGe 45 Fig. 79 space group P4/nmm, unit cell volume: Fig. 78, non-Curie-Weiss behaviour

93W2

SmRhSi 33 73 TM = 18 K, TR = 23 K 96K1

SmRhGe 56 TM = 11.5 K, TR = 11.5 K,:Fig. 128, ρ vs. T: Fig. 130

96K1

SmPdIn Figs. 134, 135

magnetic transition temperature Tc = 54 K, pm vs. T: Fig. 133, pm vs. H: Figs. 132, 136, ρ vs. T: Fig. 137, Cp vs. T: Fig. 138

95I1

Page 196: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

179

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

SmPdSn Figs. 141, 142

ρ vs. T: Figs. 139, 140, C vs. T : Fig. 143, thermopower vs. T

95S2

EuRuGe 15 9.3 space group Pnma 93W2

EuPdIn 13 pm vs. H: Figs. 145, 146, magnetic phase diagram: Fig. 147

98I1

GdRuGe 68 8.1 space group Pnma 93W2

GdRuSi 78 85 Fig. 124 8.58 space group P4/nmm, unit cell volume: Fig. 78, σs= 6.4 µB mol–1, Hc = 0

93W2

18.5 98I1

GdPdSn Fig. 104 90S2

GdPtGa 34 Figs. 148, 150

7.90 ordering temperature 25 K, σ vs. H: Fig. 149 96K4

Gd2RhSi3 2 14 7.61 98M1

Gd2PdSi3 33 Fig. 151 7.97 ordering temperature 21 K 90K3

TbRuGe 44 9.7 space group Pnma 93W2

TbPdIn Fig. 152 spin-glass behaviour, σm vs. T and H: Fig. 152 98N1

TbPdSn – 11 19 Fig. 153 7.6 10.1 σ vs. T: Fig. 154, pm vs. H: Fig. 155, Tb moment order in a sine-wave-modulated magnetic spin arrangement with the wavevector k = (0, 0.25, 0.075) below Tt

94A5

– 11 21 Fig. 156 10.1 pm vs. T and H: Fig. 157 95G2 23.5 critical fields: Hc1 and Hc2 at 4.2 K = 65 and

105 kOe, respectively

Fig. 104 90S2

Page 197: 2 Magnetic properties of rare earth elements, alloys and ...

180 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

TbPtGa 25 7.4 at 18 K

antiferromagnetic unit cell:Fig. 158, collinear antiferromagnetic structure with propagation vector k = [0,1/2,0], configuration spin sequences (+ + + + ) and (− − − − ) of Tb moments on sides A and B, respectively, ferromagnetic (110) planes coupled pairwise antiparallel to each other, space group Pnma

94S3

20 Figs. 148, 150

9.70 ordering temperature 20 K, σ vs. H: Fig. 149 96K4

TbPtSn 13.8 sine modulated magnetic structure, change of magnetic structure at 10 K

95B3

12 hexagonal phase, ZrNiAl-type of crystal structure, non-collinear magnetic structure with wavevector k = (0.726, 0.766, 1/2), magnetic moment localized on Tb3+ is 8.8 µB at 1.9 K, magnetic moment distribution: Fig. 159, magnetization vs. T: Fig. 160

96S2

Tb2PdSi3 28 Fig. 151 9.70 ordering temperature 19 K 90K3

DyRuGe – 2.5 10.6 space group Pnma 93W2

DyPdIn Fig. 161 spin-glass behaviour, σm vs. T and H: Fig. 161 98N1

DyPdSn – 7 10 7.6 10.5 magnetic structure:Fig. 102, Dy+3 order

antiferromagnetically, below TN = 10.5 K in a sine-modulated spin arrangement of the magnetic moments with the wavevector k = (0, 0.25, 0), below Tt = 7 K two magnetic structures coexist: the sine-modulated below Tt and a spiral structure, in both structures the magnetic moments are || to the b axis

94A5

Page 198: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

181

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

DyPtGa 10 Figs. 148, 150

10.68 ordering temperature 15 K σ vs. H: Fig. 149 96K4

Dy2PdSi3 4 Fig. 151 10.43 ordering temperature 7 K 90K3

HoRuGe 14 10.9 space group Pnma 93W2 Figs. 51, 53 σ vs. H: Fig. 52 96S1

HoPdGe Figs. 162, 164

χ': Fig. 164 96S1

HoPdSn – 7.5 3.7 9.0 10.7 at low temperature a coexistence of two magnetic structures is observed, one with the wavevector k1 = (0, 0.268, 0) and a second one with k2 = (0.333,0.0635, 0,0748)

94A5

HoIrGe Figs. 54, 56 σ :Fig. 55 96S1

HoPtGa 6 Fig. 165 10.55 do not present any ordering down to 5 K 96K4

HoPtGe Figs. 162, 164

χ': Fig. 164 96S1

Ho2PdSi3 5 Fig. 166 10.58 ordering temperature 6 K 90K3

ErPdSn 5.2 9.01 9.62 square-modulated structure with wavevector k = (1/3, 1/2, 1/3)above 2.5 K changes to a single-modulated structure with k = (kx, ½, kz), at 1.5 K in a magnetic field Hc = 2 kOe a transition to a ferromagnetic field is obtained, pm vs. H and T: Figs. 167, 168

95A1

ErPtGa 5 Fig. 165 9.55 do not present any ordering down to 5 K 96K4

Er2PdSi3 6 Fig. 166 9.50 ordering temperature 8 K 90K3

TmPtGa – 5 Figs. 148, 150

7.40 ordering temperature 8 K σ vs. B:Fig. 149 96K4

Page 199: 2 Magnetic properties of rare earth elements, alloys and ...

182 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Tm2PdSi3 – 4 Fig. 166 7.30 no ordering down to 4.2 K observed 90K3

YbPdAl Fig. 169 Yb mixed valence suggested, ρ vs. T: Fig. 170 93C1

YbPtAl – 60 5.8 Fig. 172 4.5 dc magnetization vs. H and resistivity at 2.0 K: Fig. 173, resistivity vs. T: Fig. 171

95D1

Fig. 174 4.5 Yb valency close to + 3 95S4

YbPtSn 0.44 4.46 Tm = 3.5 K -antiferromagnetic ordering of trivalent Yb ions suggested: Fig. 175, temperature dependence of σm/H at 10 kOe, pm vs. H at 3 and 4.2 K

97K4

(YxCe1– x)2PdSi3 x = 0 0.2 0.5 0.8

– 16 – 37 – 45 – 75

Figs. 176, 178

pm vs. H: Fig. 177, no magnetic ordering observed down to 1.4 K, the Kondo effect is operative in all these alloys, strength of the Kondo effect increases with the compression of the lattice by the general replacement of Ce by Y

96M1

R/MM' = 0.375

Ho3Pd4Ge4 Figs. 162, 164

σ vs. H: Fig. 163 96S1

R/MM' = 0.357

Dy1.5 Sc3.5 Ir4Si10 Fig. 179 93G2

Dy1.75 Sc3.25 Ir4Si10 Fig. 180 93G2

Dy3Y2Os4Ge10 Fig. 181 96R1

Dy5Os4Ge10 Fig. 181 96R1

Ho5Os4Ge10 Figs. 54, 56 σ vs. H: Fig. 55 96S1

Page 200: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

183

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

R/MM' = 0.333

CePd2Al – 23 3.3 Figs. 182, 183

2.5 Θ < 30 K, around ≈–10 K, pm vs. H: Fig. 184, heat capacity vs. T: Fig. 185

95D2

CePd2 (Al1– xGax)3 Fig. 186 TN vs. coupling strength: Fig. 187 97T4

Ce1– xYxPd2Ga Fig. 190 χm and ρ vs. T: Fig. 190 93D1

CePd2Ga Fig. 188 χm and ρ vs. T: Figs. 188, 190, pm vs. H: Fig. 189 93D1

Ce(PdxNi1– x)2Sn ρ vs. T: Fig. 191 88K1

CePtSi2 1.5 intermediate-valent system, magnetic ordering in the presence of heavy fermions, γ = 220 mJ K–2

92G1

Figs. 192, 193

96K5

CePtGe2 3.75 Fig. 194 2.49 below TC exhibits metamagnetic transition, low-temperature χ could be fitted by using a different CEF on each of the two CE sites, low-temperature C at zero and elevated H up to 10 T gave a fairly large γ (93 - 115 mJ/molCe K2) for ferrimagnetically ordered phase and, > 257 mJ/mol Ce K2 for the paramagnetic state, suggesting a moderately heavy fermion system

96G2

YbPdGa2 – 2 4.3 96G2

YbPtGa2 – 22 4.4 96G2

R/MM' = 0.2857

Gd2Mo3Si4 4.9 10.0 Fig. 195 8.29 σ vs. H at 5 K: Fig. 195, Hc = 8.0 kOe 95L1

Page 201: 2 Magnetic properties of rare earth elements, alloys and ...

184 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Tb2Mo3Si4 19 Fig. 201 9.6 second magnetic transition at 2.3 K, heat capacity: Fig. 202

94A4

11.0 19.0 and 2.3

Fig. 196 9.55 σ vs. H at 5 K: Fig. 196, Hc 8.0 kOe 95L1

Dy2Mo3Si4 5.2 12.0 Fig. 197 10.42 σ vs. H at 5 K: Fig. 197, Hc = 2.0 kOe 95L1

Ho2Mo3Si4 3.0 4.8 Fig. 198 10.49 σ vs. H at 5 K: Fig. 198 95L1

Er2Mo3Si4 1.2 Fig. 199 9.51 σ vs. H at 5 K: Fig. 199 95L1

Tm2Mo3Si4 1.7 Fig. 200 7.18 σ vs. H at 5 K: Fig. 200 95L1

R/MM' = 0.2727

Y3Pt2.5Ga8.5 temperature-independent paramagnetic, structure type La3Al11

94G4

Tb3Pt2.2Ga8.8 0 20 Figs. 203, 204

10.7 structure type La3Al11 94G4

Dy3Pt2.2Ga8.8 2 Figs. 203, 204

11.6 metamagnetic ordering temperature 20 K, structure type La3Al11, σ vs. H: Fig. 205

94G4

Ho3Pt2.2Ga8.8 – 5 12 Figs. 206, 208

11.4 structure type La3Al11 94G4

Er3Pt2.2Ga8.8 0 Fig. 203 10.3 ordering temperature < 5 K, structure type La3Al11

94G4

Tm3Pt.2.2Ga8.8 – 1 Fig. 206 8.5 ordering temperature < 5 K structure type La3Al11

94G4

Yb3Pt2.0Ga9.0 – 12 Fig. 207 1.1 temperature-independent magnetic susceptibility, intermediate valence behaviour suggested, structure type La3 Al11

94G4

Page 202: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

185

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

R/MM' = 0.25

(Y0.37La0.63)x- Ce1– xRu2Si2

Figs. 209, 211

diluted Kondo system, magnetization : Fig. 210, simulations of χ(T) for random Kondo system

95M2

(YLa)1– xCexRu2Si2 Fig. 212 magnetization vs. H at 1.5 K: Fig. 212, Ce dilution progressively reduces the short- range exchange effects, resulting in continuously increasing heavy-fermion state suggested, differential susceptibility vs. H: Fig. 213, magnetic specific heat Cm vs. T: Fig. 214

95M1

YxCe1– xRu2Si2 pm vs. H: Fig. 215 88H1

LaPd2Al3 NMR: Fig. 217 94F1

La2Rh3Si5 Fig. 218 below 4 K diamagnetic 96P1

Page 203: 2 Magnetic properties of rare earth elements, alloys and ...

186 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

LaxCe1– xRu2Si2 pm vs. H: Figs. 215, 216 88H1 pm vs. H: Fig. 219, ∆l/l vs. B: Fig. 220,

∆l/l vs. ∫BdM: Fig. 221, ∆l/l vs. M2: Fig. 222 88L1

Figs. 223, 224

ρ vs. T: Figs. 223, 224, single crystals down to 20 mK, a Kondo behaviour with logarithmic slope linear with x observed for x ≥ 0.3, variation of ρ discussed

88D1

ρm vs. H: Figs. 225, 226, 227, pm vs. H: Fig. 227 88D2 RH vs. T: Fig. 228,

Hall resistance vs. H: Fig. 229 88D3

Fig. 230 pm vs. H for H || c at 1.5 K, ∂pm/∂H at different temperatures: Fig. 231, magnetic phase diagram: Fig. 232

90H1

magnetic phase transition in heavy-fermion compounds studied by thermal- expansion measurements

Fig. 233 moment amplitude from neutron diffraction vs. x Fig. 233

94B3

theory of the magnetic instability in heavy-fermion system

96K6

La1– xCexRu2 Si2 Figs. 234 - 236

92H1

pm vs. T:Fig. 237, all compounds order in structure with the incommensurate wavevector k = (0.309, 0, 0), the magnetic moment and the transition temperature decrease continuously with x, moments are directed along the c axis of the tetragonal structure

88Q1

La0.3Ce0.7Ru2Si2 neutron intensity vs. H: Fig. 239 90M3

Page 204: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

187

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

La0.2Ce0.8Ru2Si2 magnetic phase diagram: Fig. 240 90M3 Fig. 241 single crystal, pressure dependence of magnetic

Bragg peaks: Fig. 241, magnetic field dependence of magnetic intensities for neutron scattering vectors Q = (0.69, 0.69, 0) and (0.69, 1, 0) at 3.2 K: Fig. 243, magnetic correlations around Q vs. T: Fig. 242

90R1

inelastic neutron scattering study of magnetic fluctuations in the heavy-fermion system, single site and intersite fluctuations have been studied between 1.4 and 100 K

92J1

Fig. 244 moment amplitude from neutron diffraction vs. pressure: Fig. 244

94B3

La0.05Ce0.95Ru2Si2 pm vs. T2: Fig. 245 90P2

LaxCe1– xPd2Si2 Fig. 246 resistivity and specific heat vs. T show similar behaviour

90S3

La0.5 Ce0.5Pd2Si2 – 49 4 Figs. 248, 249

2.55 specific heat vs. T: Fig. 250 90S4

La0.5Ce0.5Pd2Ge2 Figs. 251, 252

pm vs. H: Fig. 253 92B1

LaxCe1– xIr2Ge2 Fig. 254 97M1

La1– x PrxRu2Si2 Fig. 255 pPr vs. T and H: Fig. 256 98M2

La2– xNdxRh3Si5 Fig. 257 96P1

La1– xUxRu2Si2 Fig. 258 Tdχm/dT vs. T: Fig. 258, pm vs. H: Fig. 259 96M2

La0.95U0.05Ru2Si2 Fig. 260 96M2

Page 205: 2 Magnetic properties of rare earth elements, alloys and ...

188 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

CeRu2Si2 magneto-thermopower vs. H || c: Fig. 261, influence of the metamagnetic-like transition on magneto-thermopower

88A1

pm vs. H and p: Fig. 304, ρm vs. H: Figs. 305, 306, magnetostriction vs. H: Fig. 307

88M1

pm vs. T2: Fig. 262 90P1 Fig. 263 90B1 de Haas-van Alphen effect for magnetic field

ranges below and above metamagnetic transition field Hm

94A1

single crystal heavy-fermion compound, absence of magnetic order and superconductivity, at least down to 20 mK, ρm vs. T: Figs. 264, 265

92L1

Fig. 266 heavy-fermion paramagnet, metamagnetic transition (µ0Hc ≈ 7.8 T) for H || c: Fig. 266

95T1

single crystal, heavy-electron compound, pm and (∆χ)– 1 the reciprocal of the peak height of ∂pm/∂H: Figs. 267, 268 in low-temperature metamagnetic behaviour quite sharp at 0.1 K. TK ≈ 20 K

95S1

Figs. 269, 270

single crystal, heavy fermion, tetragonal structure, non-linear susceptibility: Fig. 269

95P1

ρ vs. H: and T: Fig. 271 97L1

Ce(RuxRh1– x)2Si2 specific heat of heavy-fermion system: Figs. 272, 273, 274

90C1

Page 206: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

189

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Ce(Ru1– xRhx)2Si2 Fig. 275 phase diagram: Figs. 275, 276, pm vs. H: Fig. 277

92S2

Fig. 278 single crystals, pseudo-binary system, from neutron diffraction in the intermediate phase with 0.05 ≤ x ≤ 0.25 incommensurate magnetic modulation regarded as purely sinusoidal: Fig. 278, the magnetic moment polarized along c axis

95K1

Fig. 279 Kondo effect exists in the intermediate concentration range 0.3 ≤ x ≤ 0.5

98T3

CeRu1.7Rh0.3Si2 5.5 Fig. 280 single srystal, differential susceptibility vs. H: Fig. 280, pm vs. T: Fig. 281, phase diagram: Fig. 282, the antiferromagnetic phase has an incommensurate sinusoidal spin modulation with a wavevector τ = (0, 0, 0.42) and the magnetic moment is polarized along the c axis with the amplitude of 0.65µB/Ce

98S1

Fig. 283 heavy-fermion which shows a SDW ordering at TN = 5.6 K, pm vs. H and ∂pm/∂H: Fig. 284, magnetostriction vs. H: Fig. 285

96T1

CeRu1.5Rh0.5Si2 ≈ 4.35 Figs. 286 - 288

Fig. 286 single crystal, commensurate magnetic structure with the wavevector k = (0, 0, 1/2) and the moment oriented along c axis, which mostly corresponds to + – – + stacking sequence of ferromagnetic planes along c*, the anomalies of χ, Cp and ρ are weak, even undetectable

94H1

CeRu2Si2– xGex neutron spectroscopy was used to study the spin dynamics

92R1

Page 207: 2 Magnetic properties of rare earth elements, alloys and ...

190 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

CeRu2Si2– xGex x = 0 0.1 0.2 0.3 0.5 1.0 2.0

– 13.2

- – 1.5

3.0 4.1 7.9

11.1

9

- 9.3 9.8 10.0 10.2 10.2

- 0.35 1.16 1.41 1.20 1.53 1.76

Q (in [2π/a] modulation wavevector) - 0.327 0.328 0.326 0.327 0.323 0 pCe vs. T: Fig. 289, pCe vs. H: Fig. 290

92D1

CeRu2(Si1– xGex)2 Fig. 292 antiferromagnetic, pm vs. H: Fig. 291 96B2

CeRu2Ge2 Fig. 293 88B1 Fig. 294 effect of pressure and temperature on the

magnetic transition: Fig. 294 95U2

CeRuGe3 Fig. 194 96G2

CeRh2Ge2 Figs. 295 - 297

effect of pressure and temperature on the magnetic transition: Figs. 295, 296, 297

95U2

Ce(Ru1– xPdx)2Si2 magnetization vs. H: Fig. 298, differential susceptibility ∂pm/∂H vs. H: Fig. 299

95B2

Fig. 300 Fig. 301 magnetic specific heat Cm: Fig. 302 95K2 Fig. 19 Fig. 303 phase diagram: Fig. 19 95S3

Ce(Ru0.96Pd0.04)2Si2 3.1 96M4

CeRh2Si2 Fig. 308 magnetic phase diagram: Fig. 308 97G2 Fig. 309 heavy-fermion compound 98H1 35

Figs. 310, 311

Cm/T vs. T: Fig. 310, TN(p)/TN(0) vs. p: Fig. 311

96M3

Page 208: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

191

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Ce(Pd1– xRhx)2Si2 Figs. 312 - 314

the as-cast samples show with monotonous evolution complete miscibility in samples annealed at 1200 °C

97T5

Ce(Pd1– xNix)2Al2 Fig. 315 NMR study of magnetic properties 95F1

CePd2Si2 magnetic excitations in the antiferromagnetic Kondo compound

97G2

Fig. 308 magnetic phase diagram:Fig. 308 97G2 Fig. 309 heavy-fermion compound 98H1

CePd2– xMnxSi2 Fig. 316 Fig. 317 crystal volume and lattice parameters vs. x: Fig. 318

94G2

CePd2Ge2 Fig. 319 96O1

CePd2Sn2 0.5 Fig. 320 Cmag vs. T: Fig. 321, Kondo behaviour down to 50 mK

98K2

CePt2Si2 magnetostriction vs. H, for an elongation direction along H || [110] at 0.4 K shows an inflection point at around 2.7 T, the volume expansion exhibits two broad anomalies centred at 70 and 180 K

92D2

single crystal, heavy-electron compound, pm and differential susceptibility: Fig. 323, in low temperature metamagnetic, TK ≈ 50 K, nonmagnetic Kondo lattice system with γ ≈ 80 mJ/mol K2 intermediate valence, tetragonal CaBe2Ge2-type

95S1

Ce2Rh3Si5 Fig. 324 90G1

Ce2Rh3Ge5 Fig. 324 90G1

Page 209: 2 Magnetic properties of rare earth elements, alloys and ...

192 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Ce2Pd3Ge5 3.8 2.43 orthorhombic U2Si5Pd3-structure, specific heat, resistivity and magnetic susceptibility show antiferromagnetic ordering below 3.8 K

90G1

Ce2Ir3Si5 Fig. 325 90G1

Ce2Ir3Ge5 Figs. 325, 326

90G1

PrRu2Si2 Fig. 327 pm vs. H: Fig. 328, σ vs. T: Fig. 329 92S3

NdRu2Si2 24 Figs. 330, 331

2.8 ferro-antiferro transition temperature 10 K: Fig. 330, pm vs. H: Fig. 332

90S5

Fig. 333 Fig. 333 dρ/dT: Fig. 333 92P1 magnetic phase diagram Fig. 334, isothermal

magnetization at several temperatures Fig. 335, magnetization vs. T at several H: Fig. 336

94S1

NdRu2Ge2 17 Figs. 337, 340

4.84 pm vs. H: Fig. 337, pm vs. H and T along the [001] easy axis: Fig. 338, phase diagram: Fig. 339

94G1

NdRh2Si2 53 critical fields: Hc1 and Hc2 = 134 and 143 kOe at 4.2 K, respectively

94S2

Nd2Rh3Si5 8.9 2.7 Fig. 218 3.69 96P1

SmRu2Si2 15.5 TM = 11 K, TR = 15.5 K, σm vs. T: Fig. 129, hysteresis loop: Fig. 131

96K1

SmRh2Si2 35 62 TM = 10 K, TR = 60.5 K, ρ vs. T: Fig. 128, σm vs. T: Fig. 130

96K1

SmRu2Ge2 15 TR = 15.5 K, ρ vs. T: Fig. 128, σm vs. T: Fig. 129, hysteresis loop: Fig. 131

96K1

SmRh2Ge2 17 43 TR = 17.5 K 96K1

Page 210: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

193

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

EuPt2Si2 – 30 15 Figs. 341, 342

7.7 90N1

EuPd2Si2 ∂pm/∂H vs. H and T: Fig. 343, Ht vs. T: Fig. 344 96W1

Eu(Pd1– xPtx)2Si2 Fig. 345 pEu vs. H: Fig. 346 96W1

GdRu2Si2 38.7 45.4 Fig. 347 8.20 pGd vs. H: Fig. 348 97T1 47 Figs. 349,

350 8.35 single crystal, at Tt = 40 K transition between the

two magnetic phases: Fig. 349, pm vs. H: Figs. 351, 352, 353; H-T phase diagram: Fig. 354

95G3

GdRu2Ge2 33 pm vs. H: Fig. 355, Cm vs. T: Fig. 356, space group I4/mmm

96G1

GdRu2Sn2 ESR investigations 90K2

GdRh2Si2 – 2.1 106 Fig. 347 8.25 pGd vs. H: Fig. 348 97T1 pm vs. H: Fig. 357 92S4

GdPd2Si2 – 43.9 16.5 Fig. 347 8.01 pGd vs. H: Fig. 348 97T1

Gd.Pd2Ge2 – 34.3 9.0 8.03 93M1

GdPd2Sn2 ESR investigations 90K2

GdOs2Si2 22.6 28.5 Fig. 359 8.15 pGd vs. H: Fig. 360 97T1

GdIr2Si2 – 6.4 82.4 Fig. 359 7.94 pGd vs. H: Fig. 360 97T1

GdIrSi3 – 30 15.5 Fig. 361 8.12 Mössbauer spectroscopy investigations 91S1

GdPt2Si2 – 5.6 9.3 Fig. 359 8.01 pGd vs. H: Fig. 360 97T1 9.90 Cm vs. T: Fig. 362, structure determined from

neutron diffraction is modulated incommensurate antiferromagnetic type

91G1

Gd2Rh3Si5 – 15.4 8.4 Fig. 363 8.08 Cp vs. T: Fig. 364 97P1

Page 211: 2 Magnetic properties of rare earth elements, alloys and ...

194 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

TbRu2Si2 Fig. 333 dρ/dT: Fig. 333 92P1 isothermal magnetization at several temperatures

Fig. 365 94S1

57 Fig. 366 single crystal, magnetization vs. H || c: Fig. 367, magnetostriction vs. H || c: Fig. 368

95T3

57 AM structure with propagation vector Q = (τ,0,0) with τ =0.2352, at lower temperatures, it becomes antiphasic with the magnetic moments aligned along the c direction owing to the uniaxial anisotropy and reaching the maximum saturated value for free ions of 9.0 µB

97S5

56 Figs. 369, 370

9 Cp vs. T: Fig. 371, χ' vs. H: Fig. 370, new phase boundaries observed at low temperatures below 4.2 K

98K1

57 Fig. 372 8.94 single crystal, pm vs. H: Fig. 373, metamagnetic along the c axis

95G3, 95S5

TbRu2Ge2 Fig. 374 pm vs. H: Figs. 376, 377, H-T diagram: Fig. 375 96G1 37 pTb vs. H: Fig. 378, magnetic structure: Fig. 379 97B3 37 neutron diffraction, single crystal, magnetic

phase transitions at 4.30, 37 and 30 K, the magnetic structures are an anti-phase structure with the propagation vector k1 = (0.235, 0, 0) (0.235 = 4/17), an amplitude modulated (AM) structure with k1 and a sinusoidal modulated structure with k1 and k2 = (0.247, 0, 0), respectively, for low, middle and high temperatures

97S5

Page 212: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

195

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

TbRh2 – xRuxSi2 pm vs. T: Fig. 380, phase diagram: Figs. 381, 382 93I1 x = 0.25 59 8.5 0.5 7.5 0.6 44.5 8.0 pm from neutron diffraction 8.2 µB 0.7 38 7.2 pm from neutron diffraction 6.0 µB 0.8 36 6.3 pm vs. H: Fig. 383 1.0 12 6.9 pm from neutron diffraction 5.9 µB 1.25 23 8.2 pm from neutron diffraction 8.75 µB 1.5 40 8.5 pm from neutron diffraction 8.65 µB 1.75 47 8.1 pm vs. H: Fig. 384, dpm/dH vs. H: Fig. 385

TbRh2Si2 pm vs. H: Fig. 358 92S4 critical field vs. T: Fig. 386, pm vs. H at different

T: Fig. 388, dpm/dH vs. H: Fig. 387 93I1

94 critical fields: Hc1 and Hc2 = 80 and 190 kOe at 4.2 K, respectively

94S2

TbRh2Ge2 Fig. 375 96G1

TbRu2– xPdxSi2 Fig. 389 Fig. 390 magnetic phase diagram: Fig. 389, pm vs. H: Fig. 391, lattice parameters: Fig. 392

96I3

TbRh2– xPdxSi2 Fig. 389 Fig. 393 pm vs. H: Fig. 394, magnetic phase diagram: Fig. 389, lattice parameters: Fig. 392

96I3

TbRhSi3 – 8 9 Fig. 395 9.4 pm vs. H: Fig. 396, magnetic structure: Fig. 397 96J2

TbPd2Si2 16 neutron diffraction magnetic structure, orders below TN: Fig. 398, sine- modulated structure with k = (0, 0.4057, 0.1671): Fig. 399, pTb

3+ = 9.0 µB at 1.5 K || to the c axis, pTb vs. T: Fig. 400

97B5

Page 213: 2 Magnetic properties of rare earth elements, alloys and ...

196 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

TbPd2Ge2 neutron diffraction, magnetic structure, sine-modulated structure with magnetic moments of 8.9 µB at 1.5 K at Tb3+ || to the a axis, propagation vector k = (0, 0.4401, 0.1158), magnetic order is confident to clusters

97B5

TbIr2Si2 75 critical fields: Hc1 and Hc2 = 85 and 135 kOe at 4.2 K, respectively, pTb vs. H: Fig. 401, differential magnetization vs. H: Fig. 402, magnetic phase diagram: Fig. 403

94S2

TbIrSi3. – 17 15.41 Figs. 404, 405

9.75 σ vs. T: Fig. 406, pm vs. H: Fig. 407, magnetic structures: Fig. 408, total magnetic moments and propagation vector vs. T: Fig. 409, tetragonal cells :Fig. 410, stability conditions: Fig. 411

98B3

TbRh1.5Ir0.5Si2 Fig. 413 pm vs. H and T: Fig. 414, magnetic phase diagram: Fig. 412

95I2

Tb2Rh3Si5 – 17.9 7.8 Fig. 363 10.1 Cp vs. T: Fig. 364 97P1

DyRu2Si2 29 neutron diffraction, and Mössbauer measurements, ferrimagnetic, sine-wave modulation, Q = (2/9, 0, 0): Fig. 415, magnetic moments vs. T: Fig. 416, magnetization vs. T: Fig. 417, magnetization vs. H :Fig. 418

94B4

59 28 Fig. 366 11 single crystal, magnetization vs. H ||c: Fig. 367, magnetostriction vs. H || c: Fig. 420

95T3

DyPd2Si2 6 Fig. 421 9.93 σ vs. H: Fig. 422, magnetic structure: Fig. 423 91B1

DyIrSi3 16 7.5 Fig. 424 10.4 Mössbauer spectroscopy investigations 91S1

Page 214: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

197

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

DyIr2Si2 40 Fig. 425 metamagnetic transition at 1.4 T at 4.5 K, moment direction in c axis, the magnetic structure consists of a stacking of ferromagnetic (00l) planes with a (+ − + −) sequence along c axis

93S1

22 40 11.2 metamagnetic-like behaviour

Dy2Rh3Si5 1.2 4.5 Fig. 363 10.6 Cp vs. T: Fig. 426 97P1

HoRu2Si2 43 18 Fig. 366 11 single crystal, magnetization vs. H || c: Fig. 367, magnetostriction vs. H || c: Fig. 427

HoRu2Ge2 Figs. 51, 53 σ : Fig. 52 96S1

HoRh2Si2 pHo vs. H: Fig. 428 96I2

HoRh2– xRuxSi2 Fig. 429 phase diagram: Fig. 430, σ vs. x and H: Figs. 431-434, pHo vs. x and H: Fig. 435

96I2

HoRh2– xPdxSi2 Fig. 436 phase diagram: Fig. 430, σ vs. x and H: Figs. 437 - 439

96I2

HoPd2Si2 pHo vs. H: Fig. 428 96I2

HoPd2Ge2 Figs. 162, 164

σ : Fig. 163 96S1

HoPt2Ge2 Figs. 162, 164

σ : Fig. 164 96S1

Ho2Ru3Ge5 Figs. 51, 53 σ : Fig. 52 96S1

Ho2Rh3Si5 0.8 2.8 Fig. 363 10.2 Cp vs. T: Fig. 426 97P1

Page 215: 2 Magnetic properties of rare earth elements, alloys and ...

198 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

ErRu2Si2 6 [100] from neutron diffraction is considered to

be the magnetic easy axis, magnetization in c plane: Figs. 440, 441, magnetization vs. θ at several magnetic fields at 2 K: Fig. 442

98T1

3.8 5.7 9.11 neutron diffraction, and Mössbauer measurements, at low temperature metamagnetic-like behaviour, sine- modulated magnetic structure, wavevector Q = (1/5, 0, 0), moment along b axis: Fig. 443, σm vs T: Fig. 444, magnetization vs. T and vs. H: Fig. 445

94B4

ErPd2Si2 <4 Fig. 421 9.66 σ vs. H: Fig. 422 91B1 3.4 4.8 Figs. 446,

447 8.2 958 pm vs. H: Fig. 448, magnetic structure: Figs. 449,

450 94T1

ErOs2Si2 – 3 4.7 large scattering of peff but the average close to the free-ion estimate, magnetic structure is of sine-modulated with a wavevector Q = (5/17,0,0): Fig. 451, magnetization vs. H: Fig. 452, magnetization vs. T: Fig. 453

94B4

ErIr2Si2 9.5 Fig. 454 Fig. 425 moment direction in the basal plane, magnetic structure consists of stacking of a ferromagnetic (00l) plane with (+ − + −) sequence along c axis

93S1

Er2Rh3Si5 4.4 2.6 Fig. 363 9.6 Cp vs. T: Fig. 364 97P1

Tm2Rh3Si5 12.3 Fig. 363 7.5 97P1

R/MM' = 0.20

CePd2Al3 – 32.6 2.8 Figs. 455, 456

2.40 C = 0.62 cm3 K mol–1, ρ vs. T: Fig. 457 93G1

Page 216: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

199

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

CePd2Al3 Fig. 217 2.9

NMR, heavy-fermion compound 94F1

CePd2Al3 Fig. 458 TC from electrical resistivity measurements 95H1

CePd2Ga3 Fig. 459 97B2

CePd2Ga3 Fig. 460 TC from electrical resistivity measurements 95H1

CePd2(Al1– xGax)3 Fig. 461 phase diagram, TC (∆) and TN: Fig. 461 96L1

CePt2Al3 – 2.92 Fig. 462

3.88⋅10–2 at 16 K

2.75 σ vs. H: Fig. 38, χ0 = 1.24⋅10– 4 cm3 mol–1 at 16 K, C = 0.830 cm3 K mol–1

93B2

CePt3Al2 – 4.72 Fig. 462 2.18⋅10–2 at 16 K

1.92 σ vs. H: Fig. 38, χ0 = 9.73⋅10–4 cm3 mol–1 at 16 K, C = 0.459 cm3 K mol–1

93B2

CePt4Al – 5.13 Fig. 37 2.87⋅10–2 at 16 K

2.37 σ vs. H: Fig. 38, χ0 = 8.05⋅10–4 cm3 mol–1 at 16 K, C = 0.640 cm3 K mol–1

93B2

CePt4In – 255 Fig. 463 2.54 90M5

PrInPt4 – 6 Fig. 463 3.63 90M5

NdInPt4 – 8 Fig. 463 3.78 90M5

SmInPt4 Fig. 463 non Curie-Weiss behaviour 90M5

EuInPt4 66 53 Fig. 464 7.56 90M5

GdInPt4 16 20 Fig. 465 8.03 90M5

TbInPt4 5 Fig. 466 10.13 90M5

DyInPt4 4 Fig. 466 10.83 90M5

Page 217: 2 Magnetic properties of rare earth elements, alloys and ...

200 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

TmInPt4 0 Fig. 466 7.85 90M5

R/MM' = 0.1818

Sm4Si9Ir13 1.47 space group Pnmm 95V1

Gd4Si9Ir13 0.19 4.5? Figs. 467, 468

8.09 space group Pnmm 95V1

Tb4Si9Ir13 – 7.57 4.3 Figs. 469, 470

9.83 χm vs. H: Fig. 471, space group Pnmm 95V1

Dy4Si9Ir13 1.15 4.0 10.66 space group Pnmm 95V1

Ho4Si9Ir13 1.24 1.6 10.22 space group Pnmm 95V1

Er4Si9Ir13 1.40 2.2 9.64 space group Pnmm 95V1

Yb4Si9Ir13 – 6.63 0.5 4.09 space group Pnmm 95V1

R/MM' = 0.176

Ce3Ru4Ge13 Fig. 194 96G2

Ce3Pt23Ge11 0.5 2.51 σ vs. H and T: Fig. 472 98T2

Ce3Ir4Sn13 Figs. 473 - 475

2.45 heavy-fermion compound, three-step phase transitions at 0.6, 2.10 and 2.18 K, the phase between 0.6 and 2.1 K is paramagnetic-like and the phase below 0.6 is antiferromagnetic-like suggested Figs. 473, 474, magnetic phase diagram Fig. 475

94T2

Eu3Rh4Sn13 12 8.15 susceptibility above TN showed Curie Weiss behaviour, 151Eu and 119Sn Mössbauer effect over the temperature range 4.2 K to 300 K have been investigated

94T2

Page 218: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

201

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Ho3Ru4Ge13 Figs. 51, 53 σ vs. H: Fig. 52 96S1

Ho3Os4Ge13 Figs. 54, 56 σ vs. H: Fig. 55 96S1

Yb3Rh4Sn13 Fig. 476 σ vs. H: Fig. 477 97S4

R/MM' = 0.166

La2Rh3Al9 ρ and S vs. T: Fig. 478 97B4

Ce2Rh3Al9 – 12.5 Fig. 479 0.98 R/R(300K) vs. T: Fig. 480, ρ and S vs. T: Fig. 478

97B4

Ce2Ir3Al9 – 18.9 Fig. 479 0.68 R/R(300K) vs. T: Fig. 480 97B4

Ce2Rh3Al9 6 Fig. 481 ρ vs. T: Fig. 482, S vs. T: Fig. 483 98B2

Ce2Ir3Al9 Fig. 481 ρ vs. T: Fig. 482, S vs. T: Fig. 483 98B2

Ce2Rh3Ga9 – 11.7 Fig. 479 1.1 R/R(300K) vs. T: Fig. 480 98B2

Ce2Ir3Ga9 Fig. 479 R/R(300K) vs. T: Fig. 480 97B4

Ce2Rh3Ga9 Fig. 481 ρ vs. T: Fig. 482, S vs. T: Fig. 483 98B2

Ce2Ir3Ga9 Fig. 481 pCe vs. H: Fig. 484, ρ vs. T: Fig. 482, S vs. T: Fig. 483

98B2

R/MM' = 0.115

La3Pd20Si6 Fig. 485 no magnetic phase transition observed 97K1

LaxCe3– xSi6Pd20 Kondo compounds, Cm vs. T and x : Figs. 487, 488, 489, 490, Sm vs. T and x: Fig. 491

97K1

Ce3Pd20Si6 – 6 2.0 at 500 Oe, σm vs. T: Fig. 492 at 4 kOe, σm vs. T: Fig. 493

97T2

Page 219: 2 Magnetic properties of rare earth elements, alloys and ...

202 2.5 R

are earth elements and 4d or 5d elem

ents [R

ef. p. 348

Landolt-B

örnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Ce3Pd20Si6 – 21 Fig. 485 2.62 magnetic phase transition at Tm = 0.15 K 96N1

Pr3Pd20Si6 – 1.97 Figs. 485, 494

3.50 magnetic phase transition at Tm = 0.05 K 97K1

Nd3Pd20Si6 – 2.37 Fig. 485 3.55 two magnetic phase transitions at Tm = 0.68 and 2.4 K: Figs. 495, 501

97K1

Sm3Pd20Si6 Fig. 485 two magnetic phase transitions at Tm = 1.5 and 4.7 K: Figs. 496, 501

97K1

Eu3Pd20Si6 Fig. 485 no magnetic phase transition observed 97K1

Gd3Pd20Si6 1.66 Fig. 486 8.02 two magnetic phase transitions at Tm = 3.6 and 18.2 K: Figs. 497, 501

97K1

Tb3Pd20Si6 2.69 Fig. 486 9.59 two magnetic phase transitions at Tm = 4 and 10.2 K: Figs. 498, 501

97K1

Dy3Pd20Si6 – 3.35 Figs. 486, 500

10.8 two magnetic phase transitions at Tm = 1.75 and 5.7 K: Figs. 500, 501

97K1

Ho3Pd20Si6 – 1.83 Fig. 486 10.7 two magnetic phase transitions at Tm = 0.47 and 1.95 K: Figs. 499, 501

97K1

Er3Pd20Si6 – 1.72 Figs. 486, 502

9.53 magnetic phase transition at Tm = 0.35 K 97K1

Tm3Pd20Si6 1.65 Figs. 486, 503

7.39 magnetic phase transition at Tm = 1.3 K: Fig. 503 97K1

Yb3Pd20Si6 – 0.335 Figs. 486, 504

3.96 magnetic phase transition at Tm = 0.77 K: Fig. 504

97K1

Ce3Pd20Ge6 13 Fig. 505 1.5 at 500 Oe, σm vs. T: Fig. 492, 96N1 1.6 at 4 kOe, σm vs. T: Fig. 493

Page 220: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 348]

2.5 Rare earth elem

ents and 4d or 5d elements

203

Landolt-Börnstein

New

Series III/32D

Compound Θ [K]

TC [K]

TN [K]

χ ps [µB/R]

peff [µB/R]

Remarks Ref.

Ce3Ge6Pd20 Fig. 506 single crystal, possible quadrupolar ordering of the Γ8 quartet crystalline - field ground state of Ce ion in a Kondo-lattice compound, ρ vs. T: Fig. 507, Cp vs. T and H: Figs. 508, 509

96N1, 97K3

R/MM' < 0.1

Y7.28Re12Al61.38 Fig. 510 Pauli paramagnet,structure type P6mcm, the idealized formula Ln8Re12Al60 has the highest Ln content, the highest Al content occurs in the formula Ln7Re12Al62

Y7+xRe12Al61+y Fig. 510 Pauli paramagnetic 97T3

Gd7.23Re12Al61.70 – 7 5 Fig. 510 7.86 97T3

Tb7+xRe12Al61+y 27 Fig. 510 49.16 9.86 metamagnetic 97T3

Dy7.50Re12Al61.17 15 14 Fig. 510 44.55 10.03 97T3

Ho7.32Re12Al61.48 5 10 Fig. 510 43.92 10.50 97T3

Ho7+xRe12Al61+y 97T3

Er7+xRe12Al61+y 5 8 Fig. 510 48.45 9.79 97T3

Lu7.61+xRe12Al61.02 97T3

YbGa7.75Pd3.25 Fig. 40 space group Pm3m, for x ≤ 3 temperature independent Pauli paramagnets

97G1

YFe10.8Re1.2 460 σ vs. T: Fig. 511, σ vs. H: Figs. 512, 513 90J1

TbFe10.8Re1.2 475 σ vs. H: Fig. 512 90J1

HoFe10.8Re1.2 448 σ vs. H: Fig. 512 90J1

Page 221: 2 Magnetic properties of rare earth elements, alloys and ...

References

88A1 Amato, A., Jaccard, D., Sierro, J., Lapierre, F., Haen, P., Lejay, P.: J. Magn. Magn. Mater. 76-77(1988) 263

88B1 Bohm, A., Caspary, R., Habel, U., Pawlak, L., Zuber, A., Steglich, F.: J. Magn. Magn. Mater. 76-77 (1988) 150

88D1 Djerbi, R., Haen, P., Lapierre, F., Lehmann, P., Kappler, jr., P.: J. Magn. Magn. Mater. 76-77 (1988) 260

88D2 Djerbi, R., Haen, P., Lapierre, F., Mignot, J.-M.: J. Magn. Magn. Mater. 76-77 (1988) 265 88D3 Djerbi, R., Haen, P., Lapierre, F., Mignot, J.-M., Fert, A., Hamzic, A., Kappler, J.P.: J. Magn.

Magn. Mater. 76-77 (1988) 265 88H1 Haen, P., Lapierre, F., Kappler, J.P., Lejay, P., Flouquet, J., Meyer, A.: J. Magn. Magn. Mater.

76-77 (1988) 143 88K1 Kasaya, M., Tani, T., Iga, F., Kasuya, T.: J. Magn. Magn. Mater. 76-77 (1988) 278 88L1 Lacerda, A., de Visser, A., Puech, L., Lejay, P., Haen, P.: J. Magn. Magn. Mater. 76-77 (1988)

138 88M1 Mignot, J.-M., Flouquet, J., Haen, P., Lapierre, L., Puech, L., Voiron, J.: J. Magn. Magn.

Mater. 76- 77 (1988) 97 88Q1 Quezel, S., Burllet, P., Jacoud, J.L., Regnault, L.P., Rossat-Mignod, J., Vettier, C., Lejay, P.,

Flouquet, J.: J. Magn. Magn. Mater.: 76-77 (1988) 403 90B1 Bruls, G., Weber, D., Hampel, G., Wolf, B., Kouroudis, I., Luthi, B.: Physica B 163 (1990) 41 90C1 Celemczuk, R., Bonjour, E., Rossat-Mignod, J., Chavalier, B.: J. Magn. Magn. Mater. 90-91

(1990) 477 90F1 Fujii, H., Nagasawa, M., Kawanaka, H., Inoue, T., Takabatake, T.: Physica B 165-166 (1990)

435 90F2 Fukuhara. T., Sakamoto, I., Sato, H.: Physica B 165-166 (1990) 443 90G1 Godart, C., Gupta, L., C., Tomy, C., V., Patil, S., Nagarajan, R., Beaurepaire, E.: Physica B 163

(1990) 163 90H1 Haen, P., Voiron, J., Lapierre, F., Flouquet, J., Lejay, P.: Physica B 163 (1990) 519 90J1 Jurczyk, M.: J. Magn. Magn. Mater. 89 (1990) L5 90K1 Kohler, R., Strobel, B., Kammerer, C., Grauel, A., Gottwick, U., Goring, E., Hohr, A., Sparn,

G., Geibel, C., Horn, S.: J. Magn. Magn. Mater. 90-91 (1990) 428 90K2 Kaczmarska. K., Kwapulinska, E.: J. Magn. Magn. Mater. 89 (1990) L267 90K3 Kotsanidis, P., A., Yakinthos, J., K., Gamari-Seale, E.: J. Magn. Magn. Mater. 87 (1990) 199 90M1 Malik, S.K., Adroja, D.T., Pdadalia, B.D., Vijayaraghavan, R.: Physica B 163 (1990) 89 90M3 Mignot, J.-L., Jacoud, J.-L., Regnault, L.-P., Rossat-Mignod, J., Lejay, P., Boutrouille, Ph.,

Hennion, B., Petitgrand, D.: Physica B 163 (1990) 611 90M5 Malik, S.K., Vijayaraghan, R., Adroja, D.T., Padalia, B.D., Edelstein, A.S.: J. Magn. Magn.

Mater. 92 (1990) 80 90N1 Nagarajan, R., Sampathkumaran, E., Vijayaraghavan, R.: Physica B 163 (1990) 591 90P1 Paulsen, C., Lacerda, A., Tholence, J.L., Flouquet, J.: Physica B 165-166 (1990) 433 90P2 Paulsen, C., Lacerda, A., de Visser, A., Bakker, K., Puech, L., Tholence, J.L.: J. Magn. Magn.

Mater. 90-91 (1990) 408 90R1 Regnault, L.P., Jacoud, J.L., Rossat-Mignod, J., Vettier, C., Lejay, P., Flouquet, J.: J. Magn.

Magn. Mater. 90-91 (1990) 398 90S1 Sakurai, J., Yamaguchi, Y., Nishigori, S., Suzuki, T., Fujita, T.: J. Magn. Magn. Mater. 90-91

(1990) 422 90S2 Sakurai, J., Yamaguchi, Y., Mibu, K., Shinjo: J. Magn. Magn. Mater. 84 (1990) 157 90S3 Sampathkumaran, E.V., Nakazawa, Y., Ishikawa, Y., Vijayaraghavan, R.: Physica B 163

(1990) 365 90S4 Steeman, R.A., Endstra, T., Mentink, S.A.M., Friikkee, E., Menovsky, A.A., Nieuwenhuys,

G.J., Mydosh, J.A.: Physica B 163 (1990) 597 90S5 Schobinger-Papamantellos, P., de Mooij, D.B., Buschow, K.H.J.: J. Less-Common Met. 163

(1990) 319 91B1 Bazela, W., Leciejewicz, J., Szytula, A., Zygmunt, A.: J. Magn. Magn. Mater. 96 (1991) 114 91G1 Gignoux, D., Morin, M., Schmitt, D.: J. Magn. Magn. Mater. 102 (1991) 33 91K1 Kasaya, M., Tani, T., Suzuki, H., Ohoyama, K., Kohugi, M.: J. Phys. Soc. Jpn. 60 (1991) 254291S1 Sanchez, J.P., Tomala, K., Łątka, K.: J. Magn. Magn. Mater. 99 (1991) 95 92B1 Besnus, M.J., Essaihi, A., Fischer, G., Hamdaoui, N., Meyer, A.: J. Magn. Magn. Mater. 104-

107 (1992) 1387

Page 222: 2 Magnetic properties of rare earth elements, alloys and ...

92D1 Dakin, S., Rapson, G., Rainford, B.D.: J. Magn. Magn. Mater. 108 (1992) 117 92D2 de Visser, A., Wyder, U., Schmitt, D., Zerguine, M.: J. Magn. Magn. Mater. 108 (1992) 59 92G1 Geibel, C., Kammerer, C., Seidel, B., Bredl, C.D., Grauel, A., Steglich, F.: J. Magn. Magn.

Mater. 108 (1992) 207 92H1 Haen, P., Lapierre, F., Lejay, P., Voiron, J.: J. Magn. Magn. Mater. 116 (1992) 108 92J1 Jacobs, T.H., Buschow, K.H.J., Zhou, G.F., Liu, J.P., Li, X., de Boer, F.R.: J. Magn. Magn.

Mater. 104-107 (1992) 1275 92K2 Kotsanidis, P., Yakinthos, J.K., Semittelou, I., Roudaut, E.: J. Magn. Magn. Mater. 116 (1992)

95 92L1 Lapierre, F., Haen, P.: J. Magn. Magn. Mater. 108 (1992) 167 92P1 Pinto, R.P., Amado, M.M., Salgueiro Silva, M., Braga, M.E., Sousa, J.B., Chavalier, B.,

Etourneau, J.: J. Magn. Magn. Mater. 104-107 (1992) 1235 92R1 Roy, S.B., Coles, B.R.: J. Magn. Magn. Mater. 108 (1992) 43 92R2 Routsi, Ch.D., Yakinthos, J.K., Gamari-Seale.: J. Magn. Magn. Mater. 117 (1992) 79 92S2 Sakakibara ,T., Sekine, C., Amitsuka, H., Miyako Y.: J. Magn. Magn. Mater. 108 (1992)193 92S3 Shigeoka, T., Iwata, N., Fujii, H.: J. Magn. Magn. Mater. 104-107 (1992) 1229 92S4 Szytula, A., Radwanski, R.J., de Boer, F.R.: J. Magn. Magn. Mater. 104-107 (1992) 1237 92S5 Sakurai, J., Kawamura, R., Taniguchi, T., Nishigori, S., Ikeda, S., Goshima, H., Suzuki, T.,

Fujita, T.: J. Magn. Magn. Mater. 104-107 (1992) 1415 93B1 Bruck, E., Nakotte, H., Bakker, K., de Boer, F.R., de Chatel, P.F.: J. Alloys Comp. 200 (1993)

79 93B2 Blazina, Z., Westwood, S.M.: J. Alloys Comp. 201 (1993) 151 93C1 Cordier, G., Friedrich, T., Henseleit, R., Grauel, A., Tegel, U., Schank, Ch., Geibel, Ch.: J.

Alloys Comp. 201 (1993) 197 93D1 Das, I., Sampathkumaran, E.V., Chari, S., Gopalakrishnan, K.V.: J. Alloys Comp. 202 (1993)

L7 93G1 Ghosh, K., Ramakrishnan, S., Malik, S.K., Chandra, G.: J. Alloys Comp. 202 (1993) 211 93G2 Ghosh, K., Ramakrishnan, S., Nigan, A.K., Chandra, G.: J. Appl. Phys. 73 (1993) 6637 93I1 Ivanov. V., Vinokurowa, L., Szytula, A.: J. Alloys Comp. 201 (1993)109 93M1 Mulder, F.M., Thiel, R.C., Buschow, K.H.J.: J. Alloys Comp. 202 (1993) 29 93S1 Sanchez, J.P., Blaise, A., Ressouche. E., Malamann, B., Venturini, G., Tomala, K., Kmiec, R.:

J. Magn. Magn. Mater. 128 (1993) 295 93W2 Welter, R., Venturini G., Malaman, B.: J. Alloys Comp. 202 (1993) 165 94A1 Aoki, H., Uji, S., Terashima, T., Takashita, M., Onuki, Y.: Physica B 201(1994) 231 94A2 Adroja, D.T., Rainford, B.D.: J. Magn. Magn. Mater. 135 (1994) 333 94A3 Adroja, D.T., Rainford, B.D., Malik, S.K.: Physica B 194-196 (1994) 169 94A4 Aliev, F.G., Gorelenko, Yu.K., Pryadun, V.V., Vieira, S., Villar, R., Paredes, J.: Physica B

194-196 (1994) 171 94A5 Andre, G., Bouree, F., Bombik, A., Oles, A., Sikora, W., Kolenda, M., Szytula, A., Pacyna, A.,

Zygmunt, A.: Acta Phys. Pol. 85 (1994) 275 94B1 Bando, U., Takabatake, T., Tanaka, H., Iwasaki, H., Fujii, H., Malik, S.K.: Physica B 194-196

(1994) 1179 94B3 Burlet, P., Regnault, L.P., Rossat-Mignod, J., Vettier, C., Flouquet, J.: J. Magn. Magn. Mater.

129 (1994) 10 94B4 Blaise, A., Kmiec, R., Malaman, B., Ressouche, E., Sanchez, J., P., Tomala, K., Venturini, G.:

J. Magn. Magn. Mater. 135 (1994) 171 94F1 Fijiwara, K, Yamanashi, Y., Kumagai, K.: Physica B 199-200 (1994) 107 94G1 Garnier, A., Gignoux, D., Schmitt, D., Shigeoka, F.Y., Zhang: J. Magn. Magn. Mater. 140-144

(1994) 897 94G2 Godart, C., Flandorfer, H., Fogl, P.: Physica B 199-200 (1994) 512 94G4 Gignoux, D., Schmitt, D.: J. Magn. Magn. Mater. 129 (1994) 53 94H1 Hu, Z., Yelon, W.B.: J. Appl. Phys. 76 (1994) 6162 94K1 Kitazawa, H., Matsushita, A., Matsumoto, T., Suzuki, T.: Physica B 199-200 (1994) 28 94S1 Salgueiro da Silva, M., Sousa, J.B., Chevalier, B., Etourneau, J.: J. Appl. Phys. 76 (1994) 634494S2 Szytula, A., Ivanov, V., Vinokurova, L.: Acta Phys. Pol. 85 (1994) 94S3 Schäfer, W., Jansen, E., Will, G., Kosanidis, P.A., Yakinthos, J.K., Tietze-Jaensch.: J. Alloys

Comp. 209 (1994) 225 94T1 Tomala, K., Sanchez, J.P., Malaman, B., Venturini, G., Blaise, A., Kmiec, R.: J. Magn. Magn.

Mater. 131 (1994) 345 94T2 Takayanagi, S., Sato, H., Fakuhara, T., Wada, N.: Physica B 199-200 (1994) 49 95A1 Andre, G., Bouree, F., Guillot, M., Kolenda, M., Oles, A., Sikora, W., Szytula, A., Zygmunt,

A.: J. Magn. Magn. Mater. 140-144 (1995) 879

Page 223: 2 Magnetic properties of rare earth elements, alloys and ...

95B2 Besnus, M.J., Braghta, A., Haen, P., Kappler, J.P., Meyer, A.: Physica B 206-207 (1995) 295 95B3 Bazela, W., Kolenda, M., Leciejewicz, J., Stuesser, N., Szytula, A., Zygmunt, A.: J. Magn.

Magn. Mater. 140-144 (1995) 881 95D1 Diehl, J., Davideit, H., Klimm, S., Tegel, U., Geibel, C., Steglich, F., Horn, S.: Physica B 206-

207 (1995) 344 95D2 Das, I., Sampathkumaran, E.V., Rajarajan, A.K.: J. Alloys Comp. 218 (1995) L11 95F1 Fujiwara, K., Yamanashi, Y., Kumagai, K.: Physica B 206-207 (1995) 228 95G1 Gordon, R.A., Ijiri, Y., Spencer, C.M., DiSalvo, F.J.: J. Alloys Comp. 224 (1995) 101 95G2 Guillot, M., Szytula, A., Tomkowicz, Z., Zach, R.: J. Alloys Comp. 226 (1995) 131 95G3 Garnier, A., Gignoux, D., Iwata, N., Schmitt, D., Shigeoka, T., Zhang, F.Y.: J. Magn. Magn.

Mater. 140-144 (1995) 899 95H1 Hauser, R., Bauer, E., Galatanu, A., Indinger, A., Maikus, M., Kirchmayr, H., Gignoux, D.,

Schmitt, D.: Physica B 206-207 (1995) 231 95I1 Ito, T., Ohkubo, K., Hirasawa, T., Takeuchi, J., Hiromitsu, I., Kurisu, M.: J. Magn. Magn.

Mater. 140-144 (1995) 873 95I2 Ivanov, V., Vinokurova, L., Szytula, A.: J. Alloys Comp.218 (1995) L19 95K1 Kawarazaki, S., Kobashi, Y., Fernandez-Baca, J.A., Murayama, S., Onuki, Y., Miyako, Y.:

Physica B 206-207 (1995) 298 95K2 Kusumoto, T., Takagi, S., Suzuki, H.: Physica B 206-207 (1995) 301 95L1 Le Bihan, T., Noel, H.: J. Alloys Comp. 227 (1995) 154 95M1 Meyer, A., Besuns, M.J., Haen, P., Kappler, J.P., Mathis, G.: Physica B 206-207 (1995) 304 95M2 Mydlarz, T., Talik, E., Szade, J., Heimann, J.: J. Alloys, Comp. 219 (1995) 225 95P1 Park, J.-G., Haen, P., Lapierre, F., Lejay, P., Verniere, A., Voiron, J.: Physica B 206-207

(1995) 285 95S1 Sakakibara, T., Tayama, T., Mitamura, H., Matsuhira, K., Amitsuka, H.: Physica B 206-207

(1995) 249 95S2 Sakurai, J., Kegai, K., Kuwai, T., Isikawa, Y., Nisimura, K., Mori, K.: J. Magn. Magn. Mater.

140-144 (1995) 875 95S3 Sekine, C., Sakamoto, H., Muryayama, S., Hoshi, K., Sakakibara, T.: Physica B 206-207

(1995) 291 95S4 Schank, C., Olesch, G., Kohler, J., Tegel, U., Klinger, U., Diehl, J., Klimm, S., Sparn, G.,

Horn, S., Geibel, C., Steglich, F.: J. Magn. Magn. Mater. 140-144 (1995) 1237 95S5 Shigeoka, T., Iwata, N., Garnier, A., Gignoux, D., Schmitt, D., Zhang, F.Y.: J. Magn. Magn.

Mater. 140-144 (1995) 901 95T1 Tautz, F.S., Julian, S.R., McMulian, G.J., Lonzarich, G.G.: Physica B 206-207 (1995) 29 95T3 Takeuchi, T., Taniguchi, T., Kudoh, D., Miyako, Y.: Physica B 206-207 (1995) 398 95U1 Uwatoko, Y., Ishii, T., Oomi, G., Malik, S.K.: Physica B 206-207 (1995) 199 95U2 Uwatoko, Y., Oomi, G., Graf, T., Thompson,J.D., Canifield, P.C., Borges, H.A., Godart, C.,

Gupta, L.C.: Physica B 206-207 (1995) 236 95V1 Vernier, A., Lejay, P., Bordet, P., Chenavas, J., Tholence, J.L., Boucherle, J.X., Keller, N.: J.

Alloys Comp. 218 (1995) 197 96B1 Bazela, W., Zygmunt, A., Szytula, A., Ressouche, E., Leciejewicz, J., Sikora, W.: J. Alloys

Comp. 243 (1996) 106 96B2 Besnus, M.J., Haen, P., Mallmann, F., Kappler, J.P., Meyer, A.: Physica B 223-224 (1996) 32296F1 Fourgeot, F., Gravereau, P., Chavelier, B., Fournes, L., Etournes, J.: J. Alloys Comp. 238

(1996) 102 96G1 Garnier, A., Gignoux, D., Schmitt., D., Shigeoka, T.: J. Magn. Magn. Mater. 157-158 (1996)

389 96G2 Gschneidner, jr., K.A., Pecharsky, V.K.: Physica B 223-224 (1996) 131 96I1 Ijiri, Y., DiSalvo, F.J.: J. Alloys Comp. 233 (1996) 69 96I2 Ivanov, V., Jaworska, T., Vinokurova, L., Mydlarz, T., Szytula, A.: J. Alloys Comp. 234

(1996) 235 96I3 Ivanov, V., Vinokurova, L., Mydlarz, T., Szytula, A.: J. Alloys Comp. 230 (1996) L5 96J2 Jaworska-Golab, T., Guillot, M., Kolenda, M., Ressouche, E., Szytula, A.: J. Magn. Magn.

Mater. 164 (1996) 371 96K1 Kochetkov, Yu.V., Nikiforov, V.N., Klestov, S.A., Morozkin, A.V.: J. Magn. Magn. Mater.

157-158 (1996) 665 96K2 Kaczorowski, D., Rogl, P., Hiebl, K.: Phys.Rev. B 54 (1996) 9891 96K3 Kolb, R., Mielke, A., Scheidt, E.W., Stewart, G.R.: J. Alloys Comp. 239 (1996) 124 96K4 Kotsanidis, P.A., Jakinthos, J.K., Schafer, W., Gamari-Seale, Hel.: J. Alloys Comp. 235 (1996)

188 96K5 Kasaya, M., Ito, M., Ono, A., Sakai, O.: Physica B 223-224 (1996) 336

Page 224: 2 Magnetic properties of rare earth elements, alloys and ...

96K6 Kambe, S., Raymond, S., Regnault, L-P., Flouquet, J., Lejay, P., Haen, P.: J. Phys. Soc. Jpn. 65(1996) 3294

96L1 Ludoph, B., Süllow, S., Becker, B., Neuwenhuys, G.J., Menovsky, A.A., Mydosh, J.A.: Physica B 223-224 (1996) 351

96M1 Malik, R., Sampathkumaran, E.V.: J. Magn. Magn. Mater. 164 (1996) L13 96M2 Marumoto, K., Takeuchi, T., Miyako, Y.: Phys.Rev. B 54 (1996) 12194 96M3 Movshovich, R., Graf, T., Mandrus, D., Hundley, M.F., Thompson, J.D., Fisher, R.A., Phillips,

N.E., Smith, J.L.: Physica B 223-224 (1996) 126 96N1 Nikiforov, V.N., Koksharov, Yu.A., Mirkovic, J., Kochetkov, Yu.V.: J. Magn. Magn. Mater.

163 (1996) 184 96O1 Oomi, G., Uwatoko, Y., Sampathkumaran, E.V., Ishikawa, M.: Physica B 223-224 (1996) 303 96P1 Patil, N.G., Ghosh, K., Ramakrishnan, S.: Physica B 223-224 (1996) 392 96R1 Ramakrishnan, S., Ghosh, K.: Physica B 223-224 (1996) 154 96S1 Sologub, O., Hiebl, K., Rogl, P., Noel, H.: J. Alloys Comp. 245 (1996) L13 96S2 Szytula, A., Kolenda, M., Leciejewicz, J., Stuesser, N.: J. Magn. Magn. Mater. 164 (1996) 37796T1 Takeuchi, T., Miyako, Y.: J. Phys Soc. Jpn. 65 (1996) 3242 96W1 Wada, H., Mitsuda, A., Shiga, M.: J. Phys. Soc. Jpn. 65 (1996) 3471 97A1 Adroja, D.T., Rainford, B.D., Houshiar, M.: J. Alloys Comp. 268 (1997) 1 97B2 Burghardt, T., Hallmann, E., Eichler, A.: Physica B 230-232 (1997) 214 97B3 Blanco, J.A., Garnier, A., Gignoux, D., Schmitt, D.: J. Alloys Comp. 275-277 (1997) 565 97B4 Buschinger, B., Geibel, C., Weiden, M., Dietrich, C., Cordier, G., Olesch, G., Kohler, J.: J.

Alloys Comp. 260 (1997) 44 97B5 Bazela, W., Baran, S., Leciejewicz, J., Szytula, A., Ding, Y.: J. Cond. Matter 9 (1997) 2267 97C1 Chevalier, B., Fooyrgeot, F., Laffargue, D., Etourneau, J., Bouree, F., Roisnel, T.: Physica B

230-232 (1997) 195 97G1 Grin,Yu.N., Hiebl, K., Rogl, P., Godart, C., Alleno, E.: J. Alloys Comp. 252 (1997) 88 97G2 Grosche, F.M., Julian, S.R., Mathur, N.D., Carter, F.V., Lonzarich, G.G.: Physica B 237-238

(1997) 197 97K1 Kitagawa, J., Takeda, N., Ishikawa, W.: J. Alloys Comp. 256 (1997) 48 97K2 Kitazawa, H., Nimori, S., Tang, J., Iga, F., Donni, A., Matsumoto, T., Kido, G.: Physica B

237-238 (1997) 212 97K3 Kitakawa, J., Takeda, N., Ishikawa, M., Ishiguro, A., Komatsubara, T.: Physica B 230-232

(1997) 139 97K4 Katoh, K., Tababatake, T., Minami, A., Oguro, I., Sawa, H.: J Alloys Comp. 261 (1997) 32 97L1 Lapierre, F., Mallmann, F., Holtmeier, S., Kambe, S., Haen, P.: Physica B 230-232 (1997) 12097M1 Malik, R., Sampathkumaran, E.V., Paulose, P.L.: Physica B 230-232 (1997) 169 97P1 Patil, N.G., Ramakrishnan, S.: Physica B 237-238 (1997) 597 97S4 Sato, H., Aoki, Y., Kobayashi, Y., Sato, H.R., Nishigaki, T., Sugswara, H., Hedo, M., Inada,

Y., Onuki, Y.: Physica B 230-232 (1997) 402 97S5 Shigeoka ,T., Nishi, M., Kakurai, K.: Physica B 237-238 (1997) 572 97T1 Tung, L.D., Franse, J.J.M., Buschow, K.H.J., Brommer, P.E., Thuy, N.P.: J. Alloys Comp. 260

(1997) 35 97T2 Takeda, N., Kitagawa, J., Ishikawa, M.: Physica B 230-232 (1997) 145 97T3 Thiede, V.M.T., Gerdes, M.H., Rodewald, U.Ch., Jeitschko, W.: J. Alloys Comp. 261 (1997)

54 97T4 Tang, J., Kitazawa, H., Matsushita, A., Matsumoto, T.: Physica B 230-232 (1997) 208 97T5 Trovvarelli, O., Gomez-Berisso, M., Pedrazzini, P., Bosse, D., Geibel, C., Sereni, J.G.,

Steglich, F.: J. Alloys Comp. 275-277 (1997) 569 98B2 Buschinger, B., Trovarrelli, O., Weiden, M., Geibel, C., Steglich, F.: J. Alloys Comp. 275-277

(1998) 633 98B3 Bazela, W., Stusser, N., Szytula, A., Zygmunt, A.: J. Alloys Comp. 275-277 (1998) 578 98C2 Chavalier, B., Fourgeot, F., Laffargue, D., Pottgen, R., Etourneau, J.: J. Alloys Comp. 275-277

(1998) 537 98H1 Hideki Abe, Hideaki Kitazawa, Hiroyuki Suzuki, Giyuu Kido, Takehiko Matsumoto.: J. Magn.

Magn. Mater. 177-181 (1998) 479 98I1 Ito, T., Nishigori, S., Hiromitsu, I., Kurisu, M.: J. Magn. Magn. Mater. 177-181 (1998) 1079 98K1 Kawae, T., Sakita, H., Hitaka, M., Takeda, K., Sigeoka, T., Iwata, N.: J. Magn. Magn. Mater.

177-181 (1998) 795 98K2 Kuwai, T., Takagi, H., Ito, H., Isikawa, Y., Sakurai, J., Nishimura, K., Paulsen, C.C.: J. Magn.

Magn. Mater. 177-181 (1998) 399 98L1 Laffarggue, D., Roisnel, T., Chevalier, B., Bouree, F.: J. Alloys Comp. 262-263 (1998) 219

Page 225: 2 Magnetic properties of rare earth elements, alloys and ...

98M1 Mulder, F.M., Thiel, R.C., Tung, F.D., Franse, J.J.M., Buschow, K.H.J.: J. Alloys Comp. 264 (1998) 43

98M2 Marumoto, K., Takayama, F., Miyako, Y.: J. Magn. Magn. Mater. 177-181 (1998) 353 98N1 Nishigori, S., Hirooka, Y., Ito, T.: J. Magn. Magn. Mater. 177-181 (1998) 137 98S1 Sekine, C., Tayama, T., Sakakibara, T., Murayama, S., Shirotani, I., Onuki, Y.: J. Magn.

Magn. Mater. 177-181 (1998) 411 98T1 Takeuchi, T., Kohyama, J.M., Kawarazaki, S., Sato, M., Miyako, Y.: 177-181 (1998) 1081 98T2 Troc, R., Kaczorowski, D., Cichorek, T., Andraka, B., Pietri, R., Seropegin, Yu.D., Gribanov,

A.V.: J. Alloys Comp. 262-263 (1998) 211 98T3 Taniguchi, T., Tabata, Y., Tanabe, H., Miyako, Y.: J. Magn. Magn. Mater. 177-181 (1998) 419

Page 226: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 1

2.5.3 Figures

Inte

nsity

(rel

ativ

e)

Binding energy [eV]Eb

10

8

6

4

2

030 25 20 15 10 5 0

Gd5d

Rh

Gd Rh3

Gd4f

Gd5p

Fig. 1. Gd3Rh. XPS valence band of single crystal (thicker line) and pure Rh and Gd [95T5].

Temperature [K]T

Resis

tivity

[

m]

µΩ⋅

Gd Rh3

Gd Ir3

2.5

2.0

1.5

1.0

0.5

0 100 200 300

Fig. 2. Gd3Rh, Gd3Ir. Temperature dependence of ρ [95T5].

Temperature [K]T

Susc

eptib

ility

[ cm

mol

]m

31−

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

m−1

T = 112 KN

H = 250 Oe

m

3

2

1

00 200 400 600 800

20

15

10

5

0

Gd Rh3

Fig. 3. Gd3Rh. Temperature dependence of χm and χm

–1 at H = 250 Oe [95T2].

Temperature [K]T

Susc

eptib

ility

[ cm

mol

]m

31−

Inv.

susc

eptib

ilit y

[mol

cm]

m3−

−1

m−1

T = 325 KC

H = 200 Oe

m

0 200 400 600 800

Gd Pd350

40

30

20

10

0

20

10

0

Fig. 4. Gd3Pd. Temperature dependence of χm and χm

–1 at 200 Oe [95T2].

Page 227: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Resis

tivity

[

m]

µΩ⋅

Gd Pd3

2.5

2.0

1.5

1.0

0.5

0 100 200 300

3.0

Fig. 5. Gd3Pd. Temperature dependence of ρ [95T2].

Inte

nsity

(rel

ativ

e)Binding energy [eV]Eb

10

8

6

4

2

030 25 20 15 10 5 0

Gd5d

Ir

Gd Ir3

Gd4f

Gd5p

Fig. 6. Gd3Ir. XPS valence band of single crystal (thicker line) and pure Ir and Gd [95T5].

Temperature [K]T

Susc

eptib

ility

[ cm

mol

]m

31−

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

m−1T = 155 KC

H = 250 Oe

m

12

8

4

00 150 300 600 750

20

15

10

5

0

Gd Ir3

450

Fig. 7. Gd3Ir. Temperature dependence of χm and χm

–1 at 250 Oe [95T2].

Temperature [K]T

Susc

eptib

ility

[ cm

mol

]ac

31−

Susc

eptib

ility

[ cm

mol

]ac

31−

2.0

1.5

1.0

0.5

00 2 4 6 8 10

5

4

3

2

1

0

Ce Ru7 3

Ce Pd7 3

Ce Pt7 3

Fig. 8. Ce7Ru3,, Ce7Pd3, Ce7Pt3. Low temperature de-pendence of χac for antiferromagnets, except for Ce7Ru3 [95T4].

Page 228: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 3

Temperature [K]T0 2 4 6 8 10

Ce Ru7 3

Ce Pd7 3

Heat

capa

city

/[J

mol

K]

CT

el1

2−

10

8

6

4

2

0

Fig. 9. Ce7Ru3, Ce7Pd3. Electronic contribution in a Cel/T vs. T plot. Cel(T) = Cp(T)Cph(T) [95T4].

Temperature [K]T

Susc

eptib

ility

[ cm

mol

]ac

31−

Susc

eptib

ility

[ cm

mol

]ac

31−

0 2 4 6 8 10

Ce Ir7 3 Ce Rh7 3

0

3

6

9

12

15

16

12

8

4

0

Fig. 10. Ce7Rh3, Ce7Ir3. Low temperature dependence of χac for ferromagnets [95T4].

Temperature [K]T0 2 4 6 8 10

Ce Ir7 3

Ce Rh7 3

Ce Pt7 3

10

8

6

4

2

0

8

6

4

2

0

Heat

capa

city

/[J

mol

K]

CT

el1

2−

Heat

capa

city

/[J

mol

K]

CT

el1

2−

Fig. 11. Ce7Rh3, Ce7Ir3, Ce7Pt3. Electronic contribu-tion in a Cel/T vs. T plot (see Fig. 9) [95T4].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

Ce Rh7 3

15

12

9

6

3

0 10 20 30 40 50

Fig. 12. Ce7Rh3. Temperature dependence of χm

–1

[92S1].

Page 229: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Inv.

susc

eptib

ility

[mol

Ce

cm]

m3−

−1

600

400

200

0 50 100 150 200 250 300

Ce Rh5 3

Fig. 13. Ce5Rh3. Temperature dependence of χm

–1 [92K1].

Temperature [K]T

Susc

eptib

ility

[10

cm( m

ol C

e )

]m

23

1−

Ce Rh5 3

15

10

5

0 5.0 10.02.5 7.5

Fig. 14. Ce5Rh3. Low temperature dependence of χm [92K1].

Ce Rh5 3

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[/C

e]p m

1.0

0.8

0.6

0.4

0.2

0 5 10 15 20

T = 1.4 K

4.2 K

Fig. 15. Ce5Rh3. Magnetic field dependence of pm at 1.4 and 4.2 K [92K1].

Ce Rh5 3

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[/C

e]p m

0.6

0.4

0.2

0

T = 1.4 K

4.2 K

1 2 3

Fig. 16. Ce5Rh3. Low magnetic field dependence of pm at 1.4 and 4.2 K [92K1].

Page 230: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 5

Temperature [K]T

Heat

capa

city

[J(m

olCe

)K

]C

−−

11

Ce Rh5 3

1 T2 T

6

8

4

2

0 2 4 6 8

µ0 = 0H

Fig. 17. Ce5Rh3. Low temperature specific heat for 0, 1 and 2 T [92K1].

Temperature [K]T

Heat

capa

city

[J(m

olCe

)K

]C m

11

−−

Ce Pt6

5

4

3

2

1

0 50 100 150 200 250 300

1

2 = 260 K

= 145 K

Fig. 18. CePt. Magnetic contribution to the specific heat. Solid line-theoretical calculation with ∆1 =145 K and ∆2 = 260 K [95B1].

Temperature [K]T

Tem

pera

ture

[K]

T

Mag

netic

fiel

d[T

]0

Heat

capa

city

[Jm

olK

]C m

11

−−

Pd content x

Ce (Ru Pd ) Si1-x x 2 2HM (2K)

HC (2K)

TN

TNTCmax

8

6

4

2

00 0.1 0.2 0.3

0

2

4

4

2

2

2

2

2

01 102 4 6 8

a b

x = 0.03

0.05

0.07

0.10

0.15

Fig. 19. Ce(Ru1–xPdx)2Si2. Phase diagram. TN is de-fined by the kink in Cm and the maximum in ∂χ/∂T.

Two critical fields HC and HM, defined by the maxi-mum in ∂M/∂H at 2 K, are shown [95S3].

Page 231: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ility

[ cm

mol

]m

31−

Gd Pd3 4

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 50 100 150 200 250 300

0.8

0.7

0.6

0.5

0.40 10 20 30 40 50

T ( K )[ c

mm

ol]

m3

1−

Fig. 20. Gd3Pd4. Temperature depend-ence of χm at low and high temperature [92T1].

70

50

40

30

20

10

60

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5Temperature [K]T

Hype

rfine

fiel

d[T

]0

hfHµ

Yb Pd3 4

Fig. 21. Yb3Pd4. Temperature dependence of hyper-fine field as measured by 170Yb Mössbauer spectros-copy. Dashed line: mean-field S = ½ law with TN = 3.2 K [94B2].

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m4

31

−−

Susc

eptib

ility

[10

cmm

ol]

m4

31

−−

0 100 200 300 400 500 600

12

11

10

9

8

7

6

5

7

6

5

4

3

2

1

0

LaRh2

CeRh2

Fig. 22. LaRh2, CeRh2. Temperature dependence of χm [95O1]. Open circles: [Barberis].

Page 232: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 7

Temperature [K]T

Susc

eptib

ility

[ 10

]ac

4−

2.7

2.6

2.5

2.4

2.30 20 40 60 80 100

CeRu2

Fig. 23. CeRu2. Temperature dependence of χac [96H1].

Temperature [K]T

Susc

eptib

ility

[ 10

]V

−5

3.0

2.5

2.0

1.5

1.00 50 100 150 200 250 300

H II [100]µ0 H =0.1 T

CeRu2

Fig. 24. CeRu2. Temperature dependence of χV . H || [100] and µ0H = 0.1 T [97S2].

CeRu2

Magnetic field [T]0 Hµ

Mag

netiz

atio

n

[G cm

g]

31−

Resis

tanc

e[m

]R

Ω

0.05

0

− 0.05

− 0.10

0.06

0.05

0.04

0.03

0.02

0.01

00.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Fig. 25. CeRu2. Magnetic field de-pendence of bulk σ and resistance R where J = 13 A cm–2 at 4.5 K. The dashed line is a linear fit to the re-versible normal state paramagnetic magnetization with extrapolation to zero [97D1].

Page 233: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.5 Rare earth elements and 4d or 5d elements

CeRu2

Magnetic field [T]0 Hµ

Mag

netiz

atio

n

[G cm

g]

31−

0

0 1 2

Fig. 26. CeRu2. Magnetic field dependence of σ with anomaly indicated [97D1].

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m3

31

−−

5

4

3

2

1

0 100 200 300 400

CeOs2

C 14

C 15

Fig. 27. CeOs2. Temperature dependence of χm for C14 and C15 phases, respectively [97S1].

Temperature [K]T

Heat

capa

city

/[J

mol

K]

CT

−−

12

2.5

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6 7 8

x = 00.1250.25

x = 0.375x = 0.5LoPt2

0.4

0.3

0.2

0.1

00 100 200 300

T 2 2[ K ]

/[J

mol

K]

CT

−−

12

Ce (Pt Ir )1-x x 2

Fig. 28. Ce(Pt1–xIrx)2. Temperature dependence of C/T for different x [97B1].

Page 234: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 9

Temperature [K]T

Heat

capa

city

/[J

mol

K]

CT

−−

12

2.5

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6 7 8

x = 00.1250.25

0.4

0.3

0.2

0.10 100 200 300

T 2 2[ K ]

/[J

mol

K]

CT

−−

12

Ce (Pt Rh )1-x x 2

0.5

x = 0.3750.50.40.44

Fig. 29. Ce(Pt1–xRhx)2. Temperature dependence of C/T for different x [97B1].

Temperature [K]T

Heat

capa

city

/[J

mol

K]

CT

−−

12

2.5

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6 7

x = 10.940.75

0.3

0.2

0.1

010.0 12.5 15.0 17.5

T [ K ]

/[J

(mol

Ce)

K]

CT

el1

2−

(Ce Pt )Ptx 1-x 2

Fig. 30. (CexPt1–x)Pt2. Temperature de-pendence of C/T for different x [97B1].

Page 235: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.5 Rare earth elements and 4d or 5d elements

Ce Gd Rh1-x x 2

Mag

netic

mom

ent

[p s

Bµ/f.

u.]

8

6

4

2

0 0.2 0.4 0.6 0.8 1.0Gd content x

Fig. 31. Ce1–xGdxRh2. Concentration dependence of ps [90T1].

Ce Gd Rh1-x x 2

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Gd content x

Redu

ced

mag

netic

mom

ent

/p

pCe

0

Prob

abili

ty(

,x)

Pn

n = 2 n = 3 n = 4

Fig. 32. Ce1–xGdxRh2. Concentration dependence of the mean reduced moment for Ce, <p> = pCe/p0 (p0 = 2.14 µB for Ce+3) and the probability P(n,x) of finding n nearest neighbour Gd atoms to a given Ce site [90T1].

Temperature [K]T

Resis

tivity

[

cm]

µΩ⋅

120

80

40

0 150 300 450

Pr Ru 2

60

40

20

00

0

20 40 60

TC[cm

]µΩ

[K]T

Fig. 33. PrRu2. Temperature dependence of ρ. Inset: low-temperature region [90D1].

160

120

80

100

140

180

0 0.05 0.10 0.15 0.20 0.25M content x

Curie

tem

pera

ture

[K]

T C

M = SiGeSnPdGaIn

Gd (Al M )1-x x 2

Fig. 34. Gd(Al1–xMx)2. Curie temperature vs. concentra-tion for M = Si, Ge, Sn, Pd, Ga, In from electrical resis-tivity [94C1].

Page 236: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 11

Temperature [K]T

Inv.

susc

eptib

ility

(rela

tive)

ac−1

3

2

1

0−2 −1 0 1 2

TmIr2

Fig. 35. TmIr2 . Temperature dependence of χac

–1 in arbitrary units [85W1].

Temperature [K]T

Inv.

susc

eptib

ility

(rela

tive)

ac−1

6

4

2

0−1 0 1 2

YbIr2

3

Fig. 36. YbIr2. Temperature dependence of χac

–1 in arbitrary units [85W1].

Temperature [K]T

Susc

eptib

ility

[ cm

mol

]m

31−

0.03

0.02

0.01

0 100 200 300

Ce Pt Al4

Ce Pt5

Fig. 37. CePt4Al ,CePt5. Temperature dependence of χm [93B2].

Ce Pt Al2 3

Ce Pt Al3 2

Ce Pt Al4

Ce Pt5

Magnetic field [T]0 Hµ

Mag

netiz

atio

n

[G cm

g]

31−

−5.5 −2.5 0 2.5 5.5

0.4

0.2

0

−0.2

− 0.4

Fig. 38. CePt5, CePt4Al, CePt3Al2, CePt2Al3. Magnetic field dependence of σ at 16 K [93B2].

Page 237: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

350

300

250

200

150

100

50

0 40 80 120 160 200

Ce Pt Al5-x x

x = 00.512

Fig. 39. CePt5–xAlx Temperature dependence of χm

–1 at various x [97S3].

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]g

53−

−1

Yb Ga Pd7.75 3.25

10.0

7.5

5.0

2.5

0 100 200 300

Fig. 40. YbGa7.75Pd3.25. Temperature dependence of χg

–1 [97G1].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

43

1−

5

4

3

2

1

0 100 200 300

Ce Pd2 2In

Fig. 41. Ce2Pd2In. Temperature dependence of χg [95G1].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

43

1−

0

32

16

8

24

40

10 20 30 40 50

Ce Pd2 2In

Fig. 42. Ce2Pd2In. Low temperature dependence of χg [95G1].

Page 238: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 13

Temperature [K]T

Ce Pd2 2In

Inv.

susc

eptib

ility

[10

g cm

]g

43−

−1

12

10

8

6

4

2

0 100 200 300 35025015050

Fig. 43. Ce2Pd2In. Temperature dependence of χg

–1 [95G1].

Susc

eptib

ility

[10

cmg

]g

63

1−

Susc

eptib

ility

[10

cmg

]g

63

1−

50

40

30

20

10

00 0.1 0.2 0.3 0.4 0.5

10000

8000

6000

4000

2000

0

, Ce Pd Sn2 2Ce Pd In2 2

Inverse magnetic field [Oe ]H − −1 1

Fig. 44. Ce2Pd2In, Ce2Pd2Sn. Magnetic field depend-ence of χg at 4.2 K and for Ce2Pd2Sn also at 308 K [95G1].

Susc

eptib

ility

[10

cmg

]g

63

1−

Ce Ni In2 2

Ce Pd In2 2

Temperature [K]T

20

15

10

5

0 50 100 150 200 250 300 350

Ce (Pd Ni ) In2 1 x x 2−

x = 0.250.5

0.625

0.75

Fig. 45. Ce2(Pd1–x Nix)2In. Temperature dependence of χg for various concentrations [96I1].

Ce Ni In2 2

Ce Pd In2 2

Temperature [K]T

0 50 100 150 200 250 300

Ce (Pd Ni ) In2 1 x x 2−

0.25

0.5

0.625

x =0.75

Inv.

susc

eptib

ility

[10

g cm

]g

33−

−1

300

250

200

150

100

50

Fig. 46. Ce2(Pd1–x Nix)2In. Temperature dependence of χg

–1 for various concentrations [96I1].

Page 239: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.5 Rare earth elements and 4d or 5d elements

Ce Pd In2 2

Temperature [K]T0 50 100 150 200 250 300

Inv.

susc

eptib

ility

[ mol

Ce

cm]

m3−

−1

300

200

100

400

0 10 20 30 40 50

8

16

24

32

H [kOe]

T = 1.7 K[G cm

g]

31−

Fig. 47. Ce2Pd2In. Temperature dependence of χm

–1. Inset: magnetic field dependence of σ at 1.7 K [96K2].

Ce Pd In2 2

Temperature [K]T

[G cm

g]

31−

Mag

netiz

atio

n

[G cm

g]

31−

15

10

5

0 2 4 6 8 10

H = 500 Oe

100 Oe

50 Oe

2.0

1.5

1.0

0.5

03.0 3.5 4.0 4.5 5.0 5.5

T = 4.5 KN

T = 4.0 KC

[K]T

Fig. 48. Ce2Pd2In. Temperature dependence of σ at different H. Inset: σ in the vicinity of the magnetic phase transitions [96K2].

Ce Rh In2 2

Ce Ni In2 2

Temperature [K]T

Susc

eptib

ility

[10

cm( m

ol C

e )

]m

43

1−

15

12

9

6

3

0 200 400 600 800 1000

4

6

8

10

12

0 0.1 0.2 0.3

( / )T Tsf2

[10

cmm

ol]

−−

43

1

Ce Rh In2 2

Ce Ni In2 2

co

rr

Fig. 49. Ce2Ni2In, Ce2Rh2In. Temperature dependence of χm. Inset: corrected susceptibility [96K2].

Ce Pt In2 2

Temperature [K]T

[10

cm(m

olCe

)]

m2

31

−−

Inv.

susc

eptib

ility

[mol

Ce

cm]

m3−

−1

400

300

200

100

0 50 100 150 200 250 300

14

10

6

2

0

4

8

12

10 20 30 40 50T [K]

Fig. 50. Ce2Pt2In. Temperature dependence of χm and χm

–1 [96K2].

Page 240: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 15

Temperature [K]T0 100 300200 500400

−1In

v.su

scep

tibili

ty[1

0g

cm]

g3

3−

25

20

15

10

5

Ho - Ru - GeHo Ru Ge3 4 13Ho Ru Ge2 2

Ho Ru Ge2 3 5Ho Ru GeHo Ru Ge2 2Ho Ru Ge3 2 3

Fig. 51. Ho3Ru4Ge13, HoRu2Ge2, Ho2Ru3Ge5, HoRu-Ge, Ho2RuGe2, Ho3Ru2Ge3. Temperature dependence of χg

–1 [96S1].

Ho Ru Ge3 4 13Ho Ru Ge2 2

Ho Ru Ge2 3 5Ho Ru GeHo Ru Ge2 2Ho Ru Ge3 2 3

150

100

50

0 1 2 3Magnetic field [T]µ0 H

Mag

netiz

atio

n

[A m

kg]

21−

T = 5 K

Fig. 52. Ho3Ru4Ge13, HoRu2Ge2, Ho2Ru3Ge5, HoRu-Ge, Ho2RuGe2, Ho3Ru2Ge3. Magnetization vs. external field at T = 5 K [96S1].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]ac

33

1−

Ho Ru Ge3 4 13Ho Ru Ge2 2

Ho Ru Ge2 3 5Ho Ru GeHo Ru Ge2 2Ho Ru Ge3 2 3

0 12.5 25.0 37.5 50.0

6

5

4

3

2

1

Fig. 53. Ho3Ru4Ge13, HoRu2Ge2, Ho2Ru3Ge5, HoRu-Ge, Ho2RuGe2, Ho3Ru2Ge3. Temperature dependence of χ

ac [96S1].

0

−1In

v.su

scep

tibili

ty[1

0g

cm]

g3

3−

25

20

15

10

5

Temperature [K]T100 300200 500400

30

Ho Os Ge3 4 13

Ho Os Ge5 4 10

Ho Ir GeHo Os Ge2 2

Fig. 54. Ho3Os4Ge13, Ho5Os4Ge10, Ho2OsGe2, HoIrGe. Temperature dependence of χ–1

ac. Solid lines are calcu-lated [96S1].

Page 241: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.5 Rare earth elements and 4d or 5d elements

150

100

50

0 1 2 3Magnetic field [T]µ0 H

Mag

netiz

atio

n

[A m

kg]

21−

T = 5 K

Ho Os Ge3 4 13

Ho Os Ge5 4 10

Ho Ir GeHo Os Ge2 2

Fig. 55. Ho3Os4Ge13, Ho5Os4Ge10, Ho2OsGe2, HoIrGe. Magnetic field dependence of σ at 5 K [96S1].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]ac

33

1−

0 12.5 25.0 37.5 50.0

6

5

4

3

2

1

Ho Os Ge3 4 13

Ho Os Ge5 4 10

Ho Ir GeHo Os Ge2 2

Fig. 56. Ho3Os4Ge13, Ho5Os4Ge10, Ho2OsGe2, HoIr-Ge. Temperature dependence of χ

ac [96S1].

Temperature [K]T

µ 0.01 T0H =

Ce Pd Sn2 2+x 1-x

Mag

netic

mom

ent

[ 10

]p m

2B

−µ

/Ce x = 0.06

0.21

2.5

2.0

1.5

1.0

0.5

02 4 6 8 10

Fig. 57. Ce2Pd2+xSn1–x. Temperature dependence of pm at 0.01 T for x = 0.06 and 0.21 [97C1].

Temperature [K]T

Ce Pd Sn2 2+x 1-x

x = 0.060.21

Inv.

susc

eptib

ility

[mol

Ce

cm]

−−3

1m

400

300

200

100

0

0

100

200

300

400

0 100 200 300

Fig. 58. Ce2Pd2+xSn1–x. Temperature dependence of χm

–1 (for clarity the origin is shifted vertically). Solid lines are calculated [96F1].

Page 242: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 17 M

agne

tic m

omen

t[

]p m

Bµ/C

e

Magnetic field [10 T]µ01H −

Ce Pd Sn2 2+x 1-xx = 0.06

0.21

= 4 KT

0.3

0.2

0.1

0 0.5 1.0 1.5 2.0

Fig. 60. Ce2Pd2+xSn1–x. Magnetic field dependence of pm at 4 K [96F1].

Mag

netic

mom

ent

[]

p mBµ

/Ce

Magnetic field [ T]µ0 H

Ce Pd Sn2 2+x 1-xx = 0.06

0.21

= 2 KT

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Fig. 61. Ce2Pd2+xSn1–x. Magnetic field dependence of pm at 2 K [96F1].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

43

1−

0

5

4

3

2

1

Ce Pd Sn2 2

100 200 30050 150 250

Fig. 62. Ce2Pd2Sn. Temperature dependence of χg [95G1].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

43

1−

Ce Pd Sn2 2

32

16

0 20 40 60

8

24

Fig. 63. Ce2Pd2Sn. Low temperature dependence of χg [95G1].

Page 243: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T0 100 200 30050 150 250

Ce Pd Sn2 2

Susc

eptib

ility

[10

g cm

g]

g4

3−−1

12

10

8

6

4

2

Fig. 64. Ce2Pd2Sn. Temperature dependence of χg

–1 [95G1].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

63

1−

0 100 200 30050 150 250

Ce Pd Pb2 2

210

140

70

35

105

175

Fig. 65. Ce2Pd2Pb. Temperature dependence of χg [95G1].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

63

1−

Ce Pd Pb2 2

210

150

90

60

30

120

180

0 10 20 30 40 50

Fig. 66. Ce2Pd2Pb. Low temperature dependence of χg [95G1].

Temperature [K]T0 100 200 30050 150 250

Inv.

susc

eptib

ility

[10

g cm

]g

43−

−1

12

8

4

Ce Pd Pb2 2

16

Fig. 67. Ce2Pd2Pb Temperature dependence of χg

–1 [95G1].

Page 244: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 19

Temperature [K]T0

Mag

netic

mom

ent

[ 10

]p m

2B

−µ

/Ce

Ce Pt Sn2 2

4

3

2

1

2 4 6 8 10

T = 2.5 K

T = 6.5 K

Fig. 68. Ce2Pt2Sn. Temperature dependence of pm at 0.025 T [97C1].

R Pd Sn

R Pd Sn2 2.02 0.98

R = Er Ho Dy Tb Gd

0 3 6 9 12 15 18de Gennes factor G

30

6

12

18

24

Neel

tem

pera

ture

[K]

T N´

Fig. 69. R2Pd2.02Sn0.98 and RPdSn. Néel temperature vs. de Gennes factor [98C2].

Temperature [K]T

Susc

eptib

ility

[ cm

(mol

Tb)

]m

31−

0.35

0.30

0.25

0.20

0.15

0.100 5 10 15 20 25 30 35

Tb Pd Sn2 2.05 0.95

Fig. 70. Tb2Pd2.05Sn0.95. Temperature dependence of χm per mol Tb [98L1].

Tb Pd Sn2 2.05 0.95

Fig. 71. Tb2Pd2.05Sn0.95. Schematic representation of the commensurate [k = (0 0 ½)] non-collinear magnetic structure (magnetic unit cell a×a×2c) [98L1].

Page 245: 2 Magnetic properties of rare earth elements, alloys and ...

References

85W1 Willis, J.O., Smith, J.L., Fisk, Z.: J. Magn. Magn. Mater. 47-48 (1985) 581 90D1 de V du Plessis, P.: Physica B 163 (1990) 603 90T1 Tari, A.: Physica B 165-166 (1990) 193 92K1 Kappler, J.P., Schmerber, G., Sereni, J.G.: J. Magn. Magn. Mater. 115 (1992) 241 92S1 Sereni, J.G., Trovarelli, O., Schmerber, G., Kappler, J.P.: J. Magn. Magn. Mater. 108 (1992)

183 92T1 Tanoue, S., Gschneidner, jr., K.A., McCallum, R.W.: J. Magn. Magn. Mater. 103 (1992) 129 93B2 Blazina, Z., Westwood, S.M.: J. Alloys Comp. 201 (1993) 151 94B2 Bonville, P., Hodges, J.A., Imbert, P., Thuery., P.: J. Magn. Magn. Mater. 136 (1994) 238 94C1 Chelkowska, G.: J. Alloys Comp. 209 (1994) 337 95B1 Burriel, R., Castro, M., Blanco, J. A., Espeso, J.I., Rodriguez Fernandez, J., Gomez-Sal, J.C.,

Lester, C., de Podesta, M., McEwen, K.A.: Physica B 206-207 (1995) 264 95G1 Gordon, R.A., Ijiri, Y., Spencer, C.M., DiSalvo, F.J.: J. Alloys Comp. 224 (1995) 101 95O1 Ozawa, M.,Yoshizawa, M., Sugawara, H., Onuki, Y.: Physica B 206-207 (1995) 267 95S3 Sekine, C., Sakamoto, H., Muryayama, S., Hoshi, K., Sakakibara, T.: Physica B 206-207

(1995) 291 95T2 Talik, E., Slebarski, A.: J. Alloys Comp. 223 (1995) 87 95T4 Trovarelli, O., Sereni, J.G., Schmerber, G., Kappler, J.P.: Physica B 206-207 (1995) 243 95T5 Talik, E., Neumann, M.: J. Magn. Magn. Mater. 140-144 (1995) 795 96F1 Fourgeot, F., Gravereau, P., Chavelier, B., Fournes, L., Etournes, J.: J. Alloys Comp. 238

(1996) 102 96H1 Huxley, A.D., Dalmas, P., de Reotier, P.D., Yaouanc, A., Caplan, D., Couach, M., Lejay, P.,

Gubbens, P.C.M., Mulders, A.M.: Phys. Rev. B 54 (1996) 9666 96I1 Ijiri, Y., DiSalvo, F.J.: J. Alloys Comp. 233 (1996) 69 96K2 Kaczorowski, D., Rogl, P., Hiebl, K.: Phys.Rev. B 54 (1996) 9891 96S1 Sologub, O., Hiebl, K., Rogl, P., Noel, H.: J. Alloys Comp. 245 (1996) L13 97B1 von Blanckenhagen, G.F., Lenkewitz, M., Stewart, G.R.: J. Alloys Comp. 261 (1997) 37 97C1 Chevalier, B., Fooyrgeot, F., Laffargue, D., Etourneau, J., Bouree, F., Roisnel, T.: Physica B

230-232 (1997) 195 97D1 Dilley, N.R., Herrmann, J., Han, S.H., Maple, M.B.: Physica B 230-232 (1997) 332 97G1 Grin,Yu.N., Hiebl, K., Rogl, P., Godart, C., Alleno, E.: J. Alloys Comp. 252 (1997) 88 97S1 Shugawara, H., Sato, H., Aoki, Y., Sato, H.: J. Phys. Soc. Jpn. 66 (1997) 174 97S2 Suzuki, T., Goshima, T., Sakita, S., Fujita, T., Hedo, M., Inada, Y., Yamamoto, E., Haga, Y.,

Onuki, Y.: Physica B 230-232 (1997) 176 97S3 Sagmeister, E., Bauer, E., Gratz, E., Michor, H., Hilscher, G.: Physica B 230-232 (1997) 148 98C2 Chavalier, B., Fourgeot, F., Laffargue, D., Pottgen, R., Etourneau, J.: J. Alloys Comp. 275-277

(1998) 537 98L1 Laffarggue, D., Roisnel, T., Chevalier, B., Bouree, F.: J. Alloys Comp. 262-263 (1998) 219

Page 246: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 1

Temperature [K]T

µ = 0.5 T0H

Inv.

susc

eptib

ility

[ mol

R cm

]m

3−−1

30

20

10

0 100 200 300

Tb Pd Sn2 2.02 0.98

Er Pd Sn2 2.02 0.98

Fig. 72. Er2Pd2.02Sn0.98, Tb2Pd2.02Sn0.98. Temperature dependence of χm

–1 at 0.5 T [98C2].

Temperature [K]T

Er Pd Sn2 2.05 0.95

Susc

eptib

ility

[ cm

(mol

R)

]m

31−

µ = 0.025 T0H

Tb Pd Sn2 2.05 0.95

0.8

0.6

0.4

0.2

0 10 20 30 40

Fig. 73. Er2Pd2.05Sn0.95, Tb2Pd2.05Sn0.95. Temperature dependence of χm at 0.025 T [98C2].

Temperature [K]T

Norm

alize

d re

sistiv

ity

()/

(260

K)

T

Tb Pd Sn2 2.05 0.95

1.0

0.8

0.6

0.40 100 200 300

Fig. 74. Tb2Pd2.05Sn0.95. Temperature dependence of ρ(T)/ρ(260 K) [98C2].

Mag

netic

mom

ent

[]

p mBµ

/ R

Magnetic field [T]µ0 H

Er Pd Sn2 2.02 0.98

Tb Pd Sn2 2.02 0.98

T = 2 K

6

4

2

0 1 2 3 4 5

Fig. 75. Er2Pd2.02Sn0.98, Tb2Pd2.02Sn0.98. Magnetic field dependence of pm at 2 K [98C2].

Page 247: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

TN

6 T

10 T

14 T

YPdAl

CePdAlµ = 00 H3.0

2.5

2.0

1.5

1.0

0.5

01 10 102

Resis

tivity

[m

cm]

Ω⋅

2 4 6 8 2 4 6 8 2 4

Fig. 76. YPdAl, CePdAl. Temperature dependence of the electrical resistivity at several H [94K1].

YPdAl

CePdAl

Temperature [K]T

Heat

capa

city

[ Jm

olK

]C

−−

11

50

40

30

20

10

00 10 20 30 40 50 60 70 80

TN = 2.7 KCePdAl2.0

1.5

1.0

0.5

00 5 10 15 20

[ K ]T 2 2

CT/

[ Jm

olK

]−

−1

2

Fig. 77. YPdAl, CePdAl. Temperature dependence of the specific heat between 1.5 and 80 K. The inset shows C/T vs. T2 for CePdAl [94K1].

130

125

120

115

1100.90 0.95 1.00 1.05 1.10

Ce Os Si

R ion size [Å ]3+ r

Unit

cell

volu

me

[ Å]

V3

R Ru Si

R Ru Ge

Fig. 78. CeOsSi, RRuGe (R ≡ La-Sm), RRuSi (R ≡ La-Sm, Gd) Unit cell volume vs. R3+ ion size [93W2].

Page 248: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 3

Temperature [K]T

Susc

eptib

ility

[cm

g]

g3

1−

8

6

4

2

0 100 200 300

Sm Ru Ge

Nd Ru Ge

Pr Ru Ge

Fig. 79. PrRuGe, NdRuGe, SmRuGe. Temperature dependence of χg [93W2].

Temperature [K]T100 200 300

−1In

v.su

scep

tibili

ty[ g

cm

]g

3

0−100

600

500

400

300

200

100

0

Ce Os Si

Ce Ru Ge

Ce Ru Si

Fig. 80. CeRuGe, CeRuSi, CeOsSi. Temperature dependence of χg

–1 [93W2].

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

0.4

0.3

0.2

0.1

01 10 102

2 4 6 8 2 4 6 8 2

Ce Ru Snx

x= 2.91

2.85

x = 3.0

Fig. 81. CeRuSnx. Temperature depend-ence of χm for different x [90F2].

Page 249: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.5 Rare earth elements and 4d or 5d elements

Ce Ru Snxx = 2.85

2.91

3.0

0.8

0.6

0.4

0.2

0 2 4 6Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p mBµ

/Ce

T = 2K

Fig. 82. CeRuSnx. Magnetic field dependence of pm at 2 K for different x [90F2].

Temperature [K]T0 100 200 300

500

400

300

200

100

T = PdCe T Ni Sn0.15 0.85

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Rh

Ru

Ce Ni Sn

Fig. 83. CeNiSn, CeT0.15Ni0.85Sn (T = Pd, Ru, Rh). Tem-perature dependence of χm

–1 [97A1].

Temperature [K]T

Mag

netiz

atio

n

[10

G cm

g]

−−

23

1

Mag

netiz

atio

n

[10

G cm

g]

−−

23

1

10

8

6

4

20 20 40 60 80 100

24

22

20

18

16

14

12

10

U Ru Si2 2

Ce Ce Ru Si0.75 0.25 2 2

La U Ru Si0.2 0.8 2 2

Fig. 84. Ce0.25U0.75Ru2Si2. Temperature dependence of σ [92R1].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

T = 10 KN

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

0 100 200 300

0.04

0.03

0.02

0.01

0

500

400

300

200

100

0

Ce Rh Ge

= 19 K−

p= 2.25 µ

eff

B

Fig. 85. CeRhGe. Temperature dependence of χm

–1 and pm [96B1].

Page 250: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 5

Temperature [K]TIn

v.su

scep

tibili

ty[m

ol cm

]−

−31

m

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

0 100 200 300

0.16

0.12

0.08

0.04

0

200

150

100

50

0

Nd Rh Ge

= 10 K−

T = 14 KN

p= 3.73 µ

eff

B

Fig. 86. NdRhGe. Temperature dependence of χm

–1 and pm [96B1].

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

Magnetic field [kOe]H

0.20

0.15

0.10

0.05

00 2 4 6

0.8

0.6

0.4

0.2

0

Ce Rh Ge

Nd Rh Ge

Hcr = 2.5 kOe

Fig. 87. CeRhGe, NdRhGe. Magnetic field dependence of pm at 4.2 K [96B1].

Ce Rh Ge Nd Rh Ge

c

b

a

+−

−−

−−

−−

−−

+

+

+

++

++ +

+

S2

S3

S3S4

S4

S2

S1

S’2

y = /1 4

y = /3 4

Fig. 88. CeRhGe, NdRhGe. Magnetic structure (the plus and minus indicate the direction of magnetic moments along and opposite to the b axis, respectively) [96B1].

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m3

31

−−

4

3

2

1

0 50 100 150 200 250 300

Ce Rh In

Fig. 89. CeRhIn. Temperature dependence of χm [90M1].

Page 251: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ility

[10

mm

ol]

m9

31

−−

0 100 200 300

200

150

100

50

Ce Rh Pd In1-x x

Ce Pd Inx = 0.95

0.900.850.800.600.400.20

Ce Rh In

Fig. 90. CeRh1–xPdxIn. Temperature dependence of χm. The lines are guide of eyes [93B1].

Temperature [K]T0 100 200 300

Ce Rh Pd In1-x x

Ce Pd In

x = 0.20.40.60.8

Ce Rh In

Inv.

susc

eptib

ility

[10

mol

m]

m6

3−−1

50

40

30

20

10

Fig. 91. CeRh1–xPdxIn. Temperature dependence of χm

–1 at several x [93B1].

Page 252: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 7

Ce Pd Inx = 0.95

0.900.850.800.600.400.20

Ce Rh In

Ce Rh Pd In1-x x

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

1.2

1.0

0.8

0.6

0.4

0.2

0 10 20 30 40

Fig. 92. CeRh1–xPdxIn. Magnetic field dependence of pm at several x [93B1].

x = 0.95

0.90

0.85

0.80

0.60

Ce Rh Pd In1-x x

Ce Pd In

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

1.2

0.8

0.4

0

0

0

0

0

0 10 20 30 40

Fig. 93. CeRh1–xPdxIn. Magnetic field dependence of pm with increasing Pd concentration on powder free to be oriented in the field (triangles), and on powder fixed in random orientation by frozen alcohol (circles) [93B1].

Page 253: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Heat

capa

city

/[J

mol

K]

CT

p−

−1

2

Ce Pd Inx = 0.95

0.900.850.800.600.400.20

Ce Rh In

Ce Rh Pd In1-x x

2.0

1.5

1.0

0.5

0 1 2 3 4 5

Fig. 94. CeRh1–xPdxIn. Specific heat capacity Cp/T vs. T at low temperature [93B1].

Temperature [K]T

Ce Rh Pd In1-x x

1.3

1.2

1.1

1.0

0.9

0.8

0.70 1 2 3 4

Norm

alize

d re

sistiv

ity

()/

(300

K)

T

0.95

0.90

0.80

0.85x = 0.80

Ce Rh In

Fig. 95. CePdxRh1–xIn. Temperature dependence of the electrical resistivity for x ≥ 0.6 normalized to the room temperature value [93B1].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

Nd Rh Sn

Pr Rh Sn

Ce Rh Sn

H = 1 kOe

70

60

50

40

30

20

10

00 40 80 120

0

160

120

80

40

160

Fig. 96. CeRhSn, PrRhSn, NdRhSn. Temperature de-pendence of χm

–1 at 1 kOe [92R2].

Page 254: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 9

Magnetic field [kOe]H

12

10

8

6

4

2

00 4 8 12 16 20

200

160

120

80

40

0

Mag

netiz

atio

n

[10

G cm

mol

]−

−3

31

m

Mag

netiz

atio

n

[10

G cm

mol

]−

−3

31

m

Ce Rh SnPr Rh SnNd Rh Sn

T = 4.6 K

T = 103 K

T = 30 K

×110−

Fig. 97. CeRhSn, PrRhSn, NdRhSn. Magnetic field dependence of σm at different temperatures [92R2].

Temperature [K]T

Inv.

susc

eptib

ility

[ mol

cm

]m

3−−1

0 100 200 300

300

250

200

150

100

50

50 150 250

Ce Pd Ga

Fig. 98. CePdGa. Temperature dependence of χm

–1 [94A3].

Temperature [K]T

Inv.

susc

eptib

ility

[ mol

cm

]m

3−−1

0 100 200 30050 150 250 350

6

4

2

Ce Pd In

a

c

Fig. 99. CePdIn. Temperature dependence of χm

–1 along a and c axes [90F1].

Temperature [K]T

Susc

eptib

ility

(rela

tive)

m

Susc

eptib

ility

(rela

tive)

m

Ce Pd In

a

c8.3

8.2

8.1

1.50 1.75 2.00 2.25 2.50

9.8

9.7

9.6

Fig. 100. CePdIn. Low temperature dependence of χm

along the a and c axes [90F1].

Page 255: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m3

31

−−

Inv.

susc

eptib

ility

[mol

cm

]m

3−−1

Ce Pd Sn25

20

15

10

5

00 50 100 150 200 250 300 350

500

400

300

200

100

0

Fig. 101. CePdSn. Temperature dependence of χm and χm

–1 [88K1].

c

b

a

b

a

a b

2,3

1,4

32

14

Fig. 102. (a) CePdSn, (b) DyPdSn. Magnetic struc-tures [94A5].

Temperature [K]T

Ce Pd Sn( 0 , 0.473 , 0)

3000

2500

2000

1500

1000

500

0 2 4 6 8 10 12

Coun

ts p

er 5

s

Fig. 103. CePdSn. Temperature dependence of peak intensity of the (0,0.473,0) satellite [92K2].

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

33

1−

2.0

1.5

1.0

0.5

0 100 200 300

HoPdSn

TbPdSn

GdPdSn

PrPdSnCePdSn

Fig. 104. RPdSn , R = Ce, Pr, Gd, Tb, Ho. Tempera-ture dependence of χg [90S2].

Page 256: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 11

Temperature [K]T

Inv.

susc

eptib

ility

[10

mol

cm]

−−

23

1m

Inv.

susc

eptib

ility

[10

mol

cm]

−−

23

1m

00

100 200 300

5

4

3

2

1

6

5

4

3

2

0

Ce Ni Sn

Ce Pd Ni Sn0.15 0.85

Ce Pt Ni Sn0.15 0.85

Fig. 105. CeNiSn, CePd0.15Ni0.85Sn, CePt0.15Ni0.85Sn. Temperature dependence of χm

–1 [94A2].

Ce ( Ni Pd ) Sn1-x x

8

6

4

2

0 0.25 0.50 0.75 1.00Pd content x

Neel

tem

pera

ture

[K]

T N´

Fig. 106. Ce(Ni1–xPdx)Sn. Variation of the Néel tempera-ture with x. The solid line is drawn as visual guide. The dashed lines indicate the temperature ranges above which the magnetic order could not be observed.

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

Ce Pt Al

c

b

700

600

500

400

300

200

100

0 50 100 150 200 250 300

H aII

Fig. 107. CePtAl. Temperature dependence of χm

–1 for single crystal along each axis at 0.1 T [97K2].

Magnetic field [T]µ0 H

H aII

Ce Pt Al

Mag

netic

mom

ent

[]

p mBµ

/Ce

T = 5 K

c

b

2.0

1.5

1.0

0.5

0 5 10 15 20 25 30

Fig. 108. CePtAl. Magnetic field dependence of pm for each axis of the single crystal at 5 K [97K2].

Page 257: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

TN

Resis

tivity

[

cm]

µΩ⋅

Ce Pt Ga

1.5 GPa

2.0

1.0

0.80.6p = 0

400

350

300

0 20 40

Fig. 109. CePtGa. Temperature dependence of ρ at low temperature under various pressures [95U1].

4

2

2.0Pressure [GPa]p

Neel

tem

pera

ture

[K]

T N´

3

1

0 0.4 0.8 1.2 1.6

P

AF

Ce Pt Gad / d = 0.7 K GPaT pN1− −

Fig. 110. CePtGa. Pressure dependence of TN [95U1].

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [kOe]H

T = 5 KNd Pt Ga

Pr Pt Ga

Ce Pt Ga

20

10

0

−10

−20−30 −20 −10 0 10 20 30

Fig. 111. CePtGa, NdPtGa, PrPtGa. Magnetic field dependence of σ at 5 K [96K5].

Nd Pt Ga

Pr Pt Ga

Ce Pt Ga

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]g

33−

−1

150

120

90

60

30

00 50 100 150 200−50−100

H = 50 Oe

Fig. 112. CePtGa, NdPtGa, PrPtGa. Temperature de-pendence of χg

–1 at 50 Oe [96K5].

Page 258: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 13

H = 500 Oe

Temperature [K]T

Inv.

susc

eptib

ility

[10

mol

m]

m6

3−−1

Ce Pt Si

100

50.5

5.00

3.75

2.50

1.25

0 4 8 12

Fig. 113. CePtSi. Temperature dependence of χm

–1 for various H [90K1].

Susc

eptib

ility

[10

cmm

ol]

m3

31

−−

Spec

ific h

eat c

oeffi

cien

t[m

Jmol

K]

−−

12

Ni content x

m

25

23

20

18

15

13

10

8

5

3

00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

800

700

600

500

400

300

200

100

0

Ce Pt Ni Si1 x x−

Fig. 114. CePt1–xNixSi. Concentration dependence of χm and γ [96K3].

Ge content x

Ce Pt Si Ge1 x x−

0.265

0.260

0.255

2

1

00 0.2 0.4 0.6

1.5

1.0

0.5

CT/

(J m

olK

)−

−1

2V

[nm

]3

Neel

tem

pera

ture

[K]

T N´

V

C T/

TN

Fig. 115. CePtSi1–xGex. Concentration dependence of unit-cell volume, TN and C/T. Full circles indicate that C/T was obtained in the magnetically ordered regime [92G1].

Temperature [K]T

Ce Pd Ge20

15

10

5

0 100 200 300

Inv.

susc

eptib

ility

[10

g cm

]g

43−

−1

Fig. 116. CePdGe. Temperature dependence of χg

–1 [90S1].

Page 259: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Ce Pd Ge

Inv.

susc

eptib

ility

[10

g cm

]g

43−

−1

2.0

1.0

1.5

0.5

0 5 10 15

Fig. 117. CePdGe. Low temperature dependence of χg

–1 [90S1].

Temperature [K]T

Ce Pt Sn8

4

0

− 4

0

20

40

60

80

1 10 102

a

a

b

b

c

c

TM

TN

2 4 6 8 2 4 6 8 2

Ther

moe

lect

ric p

ower

[µV

K]

S−1

Resis

tivity

[cm

]µΩ

Fig. 118. CePtSn. Temperature dependence of ρ and S. Ordering temperatures TN and TM are indicated [94B1].

Temperature [K]T

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Ce Pt Sn350

300

250

200

150

100

500 50 100 150 200 250 300

Fig. 119. CePtSn. Temperature dependence of χm

–1 [94A2].

Ce Pt Sn

Resis

tivity

[cm

]µΩ

60

50

40

30

201 2 3 54 6

In ( )T

Fig. 120. CePtSn. Temperature dependence of ρ [94A2].

Page 260: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 15 M

agne

tic m

omen

t[

]p ef

fBµ

Latti

ce co

nsta

nts [

Å]

Ce Pt Ni1 x x− Sn

8.0

7.8

7.6

3.0

2.8

2.6

0 0.2 0.4 0.6 0.8 1.0Ni content x

−100

− 60

−140

4.7

4.5

c

a

b

a

b

Cu

rie te

mpe

ratu

re

[K]

Fig. 121. CePt1–xNixSn. Concentration dependence of (a) lattice constant, (b) peff and Θ [92S5].

Ni content x

Ce Pt Ni1 x x− Sn

10.0

7.5

5.0

2.5

0 0.2 0.4 0.6 0.8 1.0Pt Ni

TN

TO

Tran

sitio

n te

mpe

ratu

res

,[K

]T

TN

O

Fig. 122. CePt1–xNixSn. Concentration dependence of TN and second magnetic transition temperature T0 [92B1].

Mag

netic

susc

eptib

ility

[ cm

g]

g3

1−

Temperature [K]T

Sm Ru Si

Nd Ru Si

0.10

0.08

0.06

0.04

0.02

0 50 100 150 200 250 300

Pr Ru Si

Fig. 123. PrRuSi, NdRuSi, SmRuSi. Temperature de-pendence of χg [93W2].

Susc

eptib

ility

[ cm

g]

g3

1−

Temperature [K]T

80

60

40

20

040 60 80 100 120 140

Gd Ru Si

Fig. 124. GdRuSi, Temperature dependence of χg [93W2].

Page 261: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

H = 1 kOe

00 100 200 300 400

50

100

150

200

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

Pr Pd Si2 3

2

1

10 2015500

4

3

2

14.2 K

H [kOe]

5

T = 246 K

Pr Pd Si2 3

p mB

[/f.

u.]

µ

p m2

B[1

0/f.

u.]

−µ

Nd Pd Si2 3

10 201550H [kOe]

T = 4.2 KNd Pd Si2 3

p mB

[/f.

u.]

µ

14 K

24 K0.8

1.6

2.4

3.2

Fig. 125. Pr2PdSi3, Nd2PdSi3. Mag-netic field dependence of pm at con-stant temperatures and temperature dependence of χm

–1 at 1 kOe [90K3].

Temperature [K]T

p mB

[/ N

d]µ

Mag

netic

mom

ent

0 20 40 60 80 100

Nd Ru Si4

2

3

1

Fig. 126. NdRuSi. Temperature dependence of Nd magnetic moment [93W2].

Temperature [K]T

Resis

tivity

[

cm]

µΩ⋅

80

60

40

20

0 50 100 150 200

Sm Ru Ge2 2Sm Rh Ge

Sm Ru Si2 2

Sm Rh Si2 2

Fig. 128. SmRu2Si2, SmRh2Si2, SmRu2Ge2, SmRhGe. Temperature dependence of ρ [96K1].

For Fig. 127 see next page.

Page 262: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 17

Nd Ru Si

c

[110]

Nd

RuThCr Si slab2 2

ThCr Si slab2 2

R R slab−

Fig. 127. NdRuSi. Magnetic structure at 2 K [93W2].

For Fig. 128 see previous page.

Temperature [K]T

Sm Ru Ge2 2

Sm Ru Si2 2

300

200

100

0 50 100 150 200

Mag

netiz

atio

n

[G

cmm

ol]

31−

m

Fig. 129. SmRu2Si2, SmRu2Ge2. Temperature depend-ence of σm at 4 kOe [96K1].

Temperature [K]T

Sm Rh Ge

00 50 100 150 200

Mag

netiz

atio

n

[G

cmm

ol]

31−

m

Mag

netiz

atio

n

[G

cmm

ol]

31−

m

Sm Rh Si2 2

12

8

4

4.0

3.5

3.0

2.5

Fig. 130. SmRh2Si2, SmRhGe. Temperature depend-ence of σm at 4 kOe [96K1].

Sm Ru Ge2 2

Sm Ru Si2 2

Mag

netiz

atio

n

[G

cmm

ol]

31−

m

Magnetic field [T]0 Hµ

250

0

−250−6 0 6

Fig. 131. SmRu2Si2, SmRu2Ge2. Hysteresis loops [96K1].

p mB

[/f.

u.]

µM

agne

tic m

omen

t

Sm Pd In

Magnetic field [kOe]H

T = 4.5 K

a

c

0.3

0.2

0.1

0 20 40 60

Fig. 132. SmPdIn. Magnetic field dependence of pm at 4.5 K along the a and c axes [95I1].

Page 263: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.5 Rare earth elements and 4d or 5d elements p m

B[

/f.u.

Mag

netic

mom

ent a

c

Temperature [K]T

Sm Pd InH = 11kOe

Tc

0.3

0.2

0.1

0 20 40 60 80 100

Fig. 133. SmPdIn. Temperature dependence of pm at 11 kOe along the a and c axes [95I1].

Temperature [K]T

Sm Pd InH = 5 Oe

Tc

a

c

Susc

eptib

ility

(rela

tive)

ac

3

2

1

0 25 50 75 100

Fig. 134. SmPdIn. Temperature dependence of χac along the a and c axes [95I1].

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]g

53−

−1

Sm Pd In

H = 11kOeaIIcII

4

3

2

1

0 50 100 150 200 250 300

Fig. 135. SmPdIn. Temperature dependence of χg along the a and c axes at 11 kOe, dashed curve: theo-retical [95I1].

Sm Pd In

T = 77 K

a

c

Magnetic field [kOe]H

p mB

[/f.

u.]

µM

agne

tic m

omen

t

1.5

1.0

0.5

0 5 10 15

Fig. 136. SmPdIn. Magnetic field dependence of pm for H || a and H ||c [95I1].

Page 264: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 19

Tc

a

c

c

Expa

nsio

n co

effic

ient

[

10K

]−

−4

1

Resis

tivity

[

cm]

µΩ⋅

20

15

10

5

0

−1 −1

20

2

1

0

Sm Pd In

0 20 40 60 80 100Temperature [K]T

Fig. 137. SmPdIn. Temperature dependence of ρ along the c axis, thermal expansion coefficient along the a and c axes. Dashed curve: calculated for polycrystalline sample [95I1].

Tc

0 20 40 60 80 100Temperature [K]T

Sm Pd In

La Pd In

20

15

10

5Heat

capa

city

[cal

mol

K]

C p−

−1

1 Fig. 138. LaPdIn, SmPdIn. Temperature dependence of Cp. The dashed line is the magnetic portion [95I1].

Temperature [K]T

Sm Pd Sn

Sm Pt Sn

Sm Ni Sn

Resis

tivity

[

cm]

µΩ⋅

200

160

120

80

40

0 100 200 300

Fig. 139. SmTSn, T = Ni, Pd, Pt. Temperature de-pendence of ρ [95S2].

Temperature [K]T

Sm Pd Sn

Sm Pt Sn

Sm Ni Sn

Resis

tivity

[

cm]

µΩ⋅

30

20

10

0 5 10 15 20

Fig. 140. SmTSn, T = Ni, Pd, Pt. Temperature de-pendence of ρ at low temperature [95S2].

Page 265: 2 Magnetic properties of rare earth elements, alloys and ...

References

88K1 Kasaya, M., Tani, T., Iga, F., Kasuya, T.: J. Magn. Magn. Mater. 76-77 (1988) 278 90F1 Fujii, H., Nagasawa, M., Kawanaka, H., Inoue, T., Takabatake, T.: Physica B 165-166 (1990)

435 90F2 Fukuhara. T., Sakamoto, I., Sato, H.: Physica B 165-166 (1990) 443 90K1 Kohler, R., Strobel, B., Kammerer, C., Grauel, A., Gottwick, U., Goring, E., Hohr, A., Sparn,

G., Geibel, C., Horn, S.: J. Magn. Magn. Mater. 90-91 (1990) 428 90K3 Kotsanidis, P., A., Yakinthos, J., K., Gamari-Seale, E.: J. Magn. Magn. Mater. 87 (1990) 199 90M1 Malik, S.K., Adroja, D.T., Pdadalia, B.D., Vijayaraghavan, R.: Physica B 163 (1990) 89 90S1 Sakurai, J., Yamaguchi, Y., Nishigori, S., Suzuki, T., Fujita, T.: J. Magn. Magn. Mater. 90-91

(1990) 422 90S2 Sakurai, J., Yamaguchi, Y., Mibu, K., Shinjo: J. Magn. Magn. Mater. 84 (1990) 157 92B1 Besnus, M.J., Essaihi, A., Fischer, G., Hamdaoui, N., Meyer, A.: J. Magn. Magn. Mater. 104-

107 (1992) 1387 92G1 Geibel, C., Kammerer, C., Seidel, B., Bredl, C.D., Grauel, A., Steglich, F.: J. Magn. Magn.

Mater. 108 (1992) 207 92K2 Kotsanidis, P., Yakinthos, J.K., Semittelou, I., Roudaut, E.: J. Magn. Magn. Mater. 116 (1992)

95 92R1 Roy, S.B., Coles, B.R.: J. Magn. Magn. Mater. 108 (1992) 43 92R2 Routsi, Ch.D., Yakinthos, J.K., Gamari-Seale.: J. Magn. Magn. Mater. 117 (1992) 79 92S5 Sakurai, J., Kawamura, R., Taniguchi, T., Nishigori, S., Ikeda, S., Goshima, H., Suzuki, T.,

Fujita, T.: J. Magn. Magn. Mater. 104-107 (1992) 1415 93B1 Bruck, E., Nakotte, H., Bakker, K., de Boer, F.R., de Chatel, P.F.: J. Alloys Comp. 200 (1993)

79 93W2 Welter, R., Venturini G., Malaman, B.: J. Alloys Comp. 202 (1993) 165 94A2 Adroja, D.T., Rainford, B.D.: J. Magn. Magn. Mater. 135 (1994) 333 94A3 Adroja, D.T., Rainford, B.D., Malik, S.K.: Physica B 194-196 (1994) 169 94A5 Andre, G., Bouree, F., Bombik, A., Oles, A., Sikora, W., Kolenda, M., Szytula, A., Pacyna, A.,

Zygmunt, A.: Acta Phys. Pol. 85 (1994) 275 94B1 Bando, U., Takabatake, T., Tanaka, H., Iwasaki, H., Fujii, H., Malik, S.K.: Physica B 194-196

(1994) 1179 94K1 Kitazawa, H., Matsushita, A., Matsumoto, T., Suzuki, T.: Physica B 199-200 (1994) 28 95I1 Ito, T., Ohkubo, K., Hirasawa, T., Takeuchi, J., Hiromitsu, I., Kurisu, M.: J. Magn. Magn.

Mater. 140-144 (1995) 873 95S2 Sakurai, J., Kegai, K., Kuwai, T., Isikawa, Y., Nisimura, K., Mori, K.: J. Magn. Magn. Mater.

140-144 (1995) 875 95U1 Uwatoko, Y., Ishii, T., Oomi, G., Malik, S.K.: Physica B 206-207 (1995) 199 96B1 Bazela, W., Zygmunt, A., Szytula, A., Ressouche, E., Leciejewicz, J., Sikora, W.: J. Alloys

Comp. 243 (1996) 106 96K1 Kochetkov, Yu.V., Nikiforov, V.N., Klestov, S.A., Morozkin, A.V.: J. Magn. Magn. Mater.

157-158 (1996) 665 96K3 Kolb, R., Mielke, A., Scheidt, E.W., Stewart, G.R.: J. Alloys Comp. 239 (1996) 124 96K5 Kasaya, M., Ito, M., Ono, A., Sakai, O.: Physica B 223-224 (1996) 336 97A1 Adroja, D.T., Rainford, B.D., Houshiar, M.: J. Alloys Comp. 268 (1997) 1 97K2 Kitazawa, H., Nimori, S., Tang, J., Iga, F., Donni, A., Matsumoto, T., Kido, G.: Physica B

237-238 (1997) 212 98C2 Chavalier, B., Fourgeot, F., Laffargue, D., Pottgen, R., Etourneau, J.: J. Alloys Comp. 275-277

(1998) 537

Page 266: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 1

Temperature [K]T

Sm Pd SnSm Pt Sn

Sm Ni Sn

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

1200

1000

800

600

400

200

0 100 200 300

Fig. 141. SmTSn, T = Ni, Pd, Pt . Temperature depend-ence of χm

–1 [95S2].

Temperature [K]T

Sm Pt Sn

Sm Ni Sn

Sm Pd Sn

Susc

eptib

ility

[10

cmm

ol]

m3

31

−−

10

8

6

4

20 5 10 15 20

Fig. 142. SmTSn, T = Ni, Pd, Pt. Low temperature dependence of χm [95S2].

Temperature [K]T0 5 10 15 20

Sm Pt Sn

Sm Ni Sn

Sm Pd Sn

20

15

10

5

0

Heat

capa

city

[Jm

olK

]C

−−

11

Fig. 143. SmTSn. T = Ni, Pd, Pt. Temperature de-pendence of specific heat [95S2].

Temperature [K]T

Heat

capa

city

[Jm

olK

]C

−−

11

Sm Pt Sn

6

5

4

3

22.0 2.5 3.0

Fig. 144. SmPtSn. Low temperature dependence of specific heat [95S2].

Page 267: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.5 Rare earth elements and 4d or 5d elements

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p mBµ

/Eu

8

6

4

2

0 2 4 6

H aII

Eu Pd In T = 4.5 K

68

1012

20K

Fig. 145. EuPdIn. Magnetic field dependence of pm along the a axis for several temperatures [98I1].

Magnetic field [T]µ0 H

H cII

Eu Pd In

Mag

netic

mom

ent

[]

p mBµ

/Eu

8

6

4

2

0 2 4 6

6

81012

20K

T = 4.5 K

Fig. 146. EuPdIn. Magnetic field dependence of pm along the c axis for several temperatures [98I1].

Temperature [K]T

Mag

netic

fiel

d[T

]µ 0

H

H cII

H bII

H aIIF

AF

P

F

P

AF

F

P

AF

0 5 10 15

6

4

2

0

6

4

2

0

6

4

2

0

H*

Hc2

Hc2

Hc2

Hc1

Hc1

Hc1

Eu Pd In

Fig. 147. EuPdIn. Magnetic phase diagram along the a, b and c axis determined by the critical fields of magnetization [98I1].

Page 268: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 3

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]g

33−

−1

Inv.

susc

eptib

ility

[10

g cm

]g

33−

−1

0 50 100 150 200−50 250

8

6

4

2

0

20

16

12

8

4

0

H = 50 Oe

H =1 kOe

Gd Pt Ga

Dy Pt GaTb Pt Ga

Tm Pt Ga

⎨⎧

Fig. 148. GdPtGa, TbPtGa, DyPtGa, TmPtGa. Tem-perature dependence of χg

–1 at 50 Oe for Gd and 1 kOe for Tb, Dy and Tm compounds [96K4].

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [kOe]H

20

10

0

−10

−20

−30−30 −20 −10 0 10 20 30

Gd Pt Ga

30T = 5 K Dy Pt Ga

Tm Pt Ga

Tb Pt Ga Fig. 149. GdPtGa, TbPtGa, DyPtGa, TmPtGa. Mag-netic field dependence of σ at 5 K [96K4].

Temperature [K]T

Dy Pt Ga

Gd Pt Ga

Tb Pt Ga

Tm Pt Ga

Susc

eptib

ility

[10

cm]

g3

3−

g−1

Susc

eptib

ility

[10

cm]

g3

3−

g−1

4

3

2

1

0

8

6

4

2

00 10 20 30 40 50 60 70

Fig. 150. GdPtGa, TbPtGa, DyPtGa, TmPtGa. Tem-perature dependence of χg [96K4].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

16

12

8

4

0 100 200 300

Gd Pd Si2 3

Tb Pd Si2 3

Dy Pd Si2 3

H = 1 kOe

T = 4.2 K

8

4

0 10 20

p mB

[µ/ f

.u.]

Dy Pd Si2 3

Gd Pd Si2 3

Tb Pd Si2 3

H = [kOe]

Fig. 151. Gd2PdSi3, Tb2PdSi3, Dy2PdSi3. Magnetic field dependence of pm at 4.2 K (inset), and tempera-ture dependence of χm

–1 at 1 kOe [90K3].

Page 269: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ilitie

s‘,

‘’(re

lativ

e)

= 10 mTµ0 H

H aII

H aII

Ts f

T f

50 mT

100 mT

FCZFC

400

300

200

100

0

0 20 40 60 80 100

Mag

netiz

atio

n/µ

[A m

mol

]m

02

1H

−T

−1

‘’

Tb Pd In

a

b

Fig. 152. TbPdIn. Temperature dependence of (a) χ', χ'' at H || a and (b) σm at different H || a [98N1].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

0 100 200 300

Tb Pd Sn

50 150 250

25

20

15

10

5

Fig. 153. TbPdSn. Temperature dependence of χm

–1 [94A5].

Temperature [K]T

Tb Pd Sn

Mag

netiz

atio

n

(rela

tive)

H = 100 Oe

50 Oe

0 10 20 30 40 50 60

50

40

30

20

10

Fig. 154. TbPdSn. Temperature dependence of σ at 50 and 100 Oe [94A5].

Page 270: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 5

Tb Pd Sn

2.5

2.0

1.5

0.5

0

1.0

10 20 30 40 50Magnetic field [kOe]H

Mag

netic

mom

ent

[µ/f.

u.]

p mB

Fig. 155. TbPdSn. Magnetic field dependence of pFU [94A5].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

0100 200 300

Susc

eptib

ility

[cm

mol

]m

31−

Tb Pd Sn

25

20

15

10

5

0 50 150 250

4

3

2

1

0

0.4

0.3

0.2

0 20 40T [K]

[cm

mol

]m

31−

1m−

Fig. 156. TbPdSn. Temperature dependence of χm and χm

–1 [95G2].

Temperature

[K]T

Tb Pd Sn

Magnetic field [kOe]H

Mag

netic

mom

ent

[µ/ f

.u. ]

p mB

8

6

4

2

0

5

10

15

150 200 250 300

T = 4.2 K

8

12

16

Fig. 157. TbPdSn. Magnetic field dependence of pm at different temperatures [95G2].

Tb Pt Ga

a

b

c

Fig. 158. TbPtGa. Antiferromagnetic unit cell, the ar-rows indicate the ordered Tb moments; nonmagnetic Pt and Ga atoms are shown by medium and small circles, respectively [94S3].

Page 271: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.5 Rare earth elements and 4d or 5d elements

Tb Pt Sn

a

aS1

S2

S3

Fig. 159. TbPtSn. Schematic representation of the Tb3+ magnetic moment distribution in a layer, the moment directions in the adjacent layers below and above are the reverse; the magnetic unit cell is doubled along the c direction, the moments make an angle of 56° with the c axis [96S2].

Temperature [K]T

Tb Pt Sn

Mag

netic

mom

ent

[]

p sBµ

/f.u

.

10.0

7.5

5.0

2.5

0 5 10 15

Fig. 160. TbPtSn. Temperature dependence of mag-netization from neutron diffractiom [96S2].

Temperature [K]T

Susc

eptib

ilitie

s‘,

‘’(re

lativ

e)

= 10 mTµ0 H

H cII

H cII

H aII

H aII

FCZFC

Mag

netiz

atio

n[A

mm

ol]

m2

1−

‘’

‘’

Dy Pd In2.0

1.5

1.0

0.5

0

0 10 20 30 40 50

a

b

Fig. 161. DyPdIn. Temperature dependence of (a) χ', χ'' and (b) σm at H || a and c [98N1].

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]g

33−

−1

25

20

15

10

5

0 100 200 300 400 500

Ho Pd Ge2 2Ho Pd Ge3 4 4Ho Pd GeHo Pt Ge2 2Ho Pt GeHo Au Ge

Fig. 162. HoPd2Ge2, Ho3Pd4Ge4, HoPdGe, HoPt2Ge2, HoPtGe. Temperature dependence of χg

–1. Solid lines: calculated [96S1].

Page 272: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 7

Ho Pd Ge2 2Ho Pd Ge3 4 4Ho Pd GeHo Pt Ge2 2Ho Pt GeHo Au Ge

Magnetic field [T]µ0 H

Mag

netiz

atio

n

[A m

kg]

21−

T = 5 K

100

75

50

25

0 1 2 3

Fig. 163. HoPd2Ge2, Ho3Pd4Ge4, HoPdGe, HoPt2Ge2, HoPtGe. Temperature dependence of σ at 5 K [96S1].

Ho Pd Ge2 2Ho Pd Ge3 4 4Ho Pd GeHo Pt Ge2 2Ho Pt GeHo Au Ge

Temperature [K]T

Susc

eptib

ility

‘ [10

cmg

]−

−3

31

5

4

3

2

1

0 25.012.5 50.037.5

Fig. 164. HoPd2Ge2, Ho3Pd4Ge4, HoPdGe, HoPt2Ge2, HoPtGe. Temperature dependence of χ' [96S1].

Temperature [K]T

Susc

eptib

ility

[10

g cm

]3

3−g−1

8

6

4

2

0 50 100 150 200

H = 1 kOe

Er Pt Ga

Ho Pt Ga

Fig. 165. HoPtGa, ErPtGa. Temperature dependence of χg

–1 at H = 1 kOe [96K4].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

0 100 200 300

Tm Pd Si2 3

Er Pd Si2 3

Ho Pd Si2 3

H = 1 kOe

24

20

16

12

8

4

0

H = [kOe]0 10 20

T = 4.2 K

8

4

p mB

[µ/ f

.u.]

12

16

Fig. 166. Ho2PdSi3, Er2PdSi3, Tm2PdSi3. Magnetic field dependence of pm at 4.2 K (inset) and tempera-ture dependence of χm

–1 at 1 kOe [90K3].

Page 273: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.5 Rare earth elements and 4d or 5d elements

Temperature[K]

TMagnetic field [kOe]H

Mag

netic

mom

ent

[µ/ f

.u. ]

p mB

8

6

4

2

200100 150

T = 1.5 KEr Pd Sn

10

500

4

3

2

2 K

4.2 K

Fig. 167. ErPdSn. Magnetic field dependence of pm at different temperatures [95A1].

Mag

netic

mom

ent

(rela

tive)

p m

Temperature [K]T

Er Pd Sn

TN

100 Oe

H = 200 Oe

16

12

8

4

0

20

4 8 12 16

Fig. 168. ErPdSn. Temperature dependence of pm at low temperatures and low magnetic fields. TN = 5.2 K [95A1].

Temperature [K]T

Susc

eptib

ility

[10

mm

ol]

m9

31

−−

Yb Pd Al

50

40

30

200 100 200 300 35025015050

Fig. 169. YbPdAl. Temperature dependence of χm [93C1].

Page 274: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 9

Yb Pd Al

Temperature [K]T

Norm

alize

d re

sistiv

ity

()/

(300

K )

T

1.25

1.00

0.75

0.50

0.25

0 100 200 300

Fig. 170. YbPdAl. Temperature dependence of ρ [93C1].

Temperature [K]T

Susc

eptib

ility

[10

mm

ol]

m5

31

−−

3.0

2.5

2.0

1.5

1.0

0.51 2 3 4 5 6 7 8

µ 0 H = 0.5 T

0.4

0.3

0.005

Yb Pt Al

Fig. 172. YbPtAl. Temperature dependence of χm at µ0H = 0.005 T, 0.3 T, 0.4 T, and 0.5 T [95D1].

Temperature [K]T

[K]T

Resis

tivity

[

cm]

µΩ⋅

[cm

]µΩ

150

100

50

0 50 100 150 200 250 300

Lu Ni Al

Yb Ni Al

Yb Pt Al

100

0 2 4 6 8 10

Yb Ni Al

Yb Pt Al

Fig. 171. YbNiAl, YbPtAl, LuNiAl. Temperature dependence of the resistiv-ity. Inset: low-temperature region [95D1].

Page 275: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.5 Rare earth elements and 4d or 5d elements

Yb Pt Al

Mag

netiz

atio

n

[10

G cm

mol

]3

31−

Magnetic field [T]µ0 H

T = 2.0 K

Resis

tivity

[cm

]µΩ

⋅xx

15

10

5

00 1 2 3 54 6 7

40

35

30

25

20

15

10

5

Fig. 173. YbPtAl. DC Magnetization and electrical resistivity vs. H at 2.0 K [95D1].

Temperature [K]T

Susc

eptib

ility

[10

mm

ol]

m5

31

−− Yb Pt Al

Yb Ni Al

1.00

0.50

0

0.25

0.75

1.25

0 5 10 15 20 25

( 3)⋅m

[K]T

Yb Ni Al

Yb Pt Al

[cm

]µΩ

150

100

50

01 10 100

Fig. 174. YbNiAl, YbPtAl. Tempera-ture dependence of χm. The values for YbNiAl are multiplied by a factor of three [95S4].

Temperature [K]T

[K]T

1.0

0.8

0.6

0.4

0.2

00 100 200 300

150

100

50

0

Yb Pt SnH = 10 kOe

H = 1 kOe

m3

1/

[cm

mol

]H

m/H

H/

[ mol

cm]

m3−

1.0

0.5

00 2 4 6

Fig. 175. YbPtSn. Temperature dependence of σm/H and H/σm, vs. T at H = 10 kOe [97K4].

Page 276: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 11

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

1000

800

600

400

200

0 100 200 300

x = 0.8

0.5

0.2

Ce Pd Si2 3

(Y Ce ) Pd Six 1 x 2 3−

Fig. 176. (YxCe1–x)2PdSi3. Temperature dependence of χm

–1 for various x [96M1].

Ce Pd Si2 3

(Y Ce ) Pd Six 1 x 2 3−

Magnetic field [kOe]HM

agne

tic m

omen

t[

]p m

Bµ/f.

u.

1.6

1.2

0.8

0.4

0 20 40 60

x = 0.5

x = 0.2

T = 4.5 K

Fig. 177. (YxCe1–x)2PdSi3. Magnetic field dependence of pm for various x at 4.5 K [96M1

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]m

33

1−

−He

atca

paci

ty/

[mJ

mol

K]

CT

−−

12

Resis

tivity

[

cm]

µΩ⋅

0 4 8 12

51

48

45

4

3

2

1

30

20

10

a

b

c

Y Pd Si2 3

Fig. 178. Y2PdSi3. Temperature dependence of (a) ρ, (b) χm at 50 kOe, and (c) C/T [96M1].

Temperature [K]T

Susc

eptib

ility

(rela

tive)

ac

0

− 4

− 8

2

1

0

−13

2

10 5 10 15 20 25

H = 0

1 kOe

2 kOe

Dy Sc Ir Si1.5 3.5 4 10

Fig. 179. Dy1.5Sc3.5Ir4Si10. Temperature dependence of ac χac at H = 0, 1 kOe, and 2 kOe dc magnetic field [93G2].

Page 277: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ility

(rela

tive)

ac

− 10

− 20

−5

H = 0

0.5 kOe

1.0 kOe

Dy Sc Ir Si1.75 3.25 4 10

0

10

10

5

0

10

5

00 2 4 6 8 10

Fig. 180. Dy1.75Sc3.25Ir4Si10. Temperature dependence of ac χac at H = 0, 0.5 kOe, and 1 kOe dc magnetic field [93G2].

Temperature [K]TSu

scep

tibili

ty[c

mm

ol]

m3

1−

4

3

2

1

0 50 100 150 200 250 300

Dy Os Ge5 4 10

Dy Os Ge3 4 10Y2

Fig. 181. Dy3Y2Os4Ge10, Dy5Os4Ge10. Temperature dependence of χm. The solid lines are fits to the crystal-field model [96R1].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

500

400

300

200

100

0 50 100 150 200 250 300

Ce Pd Al2

Fig. 182. CePd2Al. Temperature dependence of χm

–1 [95D2].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

Ce Pd Al2

30

20

10

15

25

0 2.5 5.0 7.5 10.0

Fig. 183. CePd2Al. Low-temperature dependence of χm

–1 [95D2].

Page 278: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 13

Ce Pd Al2

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/Ce

0.8

0.4

0.6

0.2

0 20 40 60

T = 2 K

5 K

Fig. 184. CePd2Al. Magnetic field dependence of pm at 2 and 5 K [95D2].

Temperature [K]T

Heat

capa

city

[Jm

olK

]C

−−

11

8

6

4

2

0 4 8 12 16 20

Ce Pd Al2

Fig. 185. CePd2Al. Temperature dependence of heat capacity [95D2].

Néel

tem

pera

ture

[K]

T N

Pressure [GPa]p

Ce Pd Al2 3

Ce Pd (Al Ga )2 0.99 0.01 3

Ce Pd (Al Ga )2 0.95 0.05 3

3.20

3.00

2.80

2.60

2.400 0.5 1.0 1.5 2.0

Fig. 186. CePd2(Al1–xGax)3. Pressure dependence of TN. The arrows show the position of pressure pmax giving the maximum TN [97T4].

Norm

alize

d Né

el te

mpe

ratu

re/

TT

NN,

max

Ce Pd (Al Ga )2 0.99 0.01 3

Ce Pd (Al Ga )2 0.95 0.05 3

1.2

1.1

0.9

0.8

0.7

0.6

0.50.8 1.0Normalized coupling strength / ( )J J TN,max

Fig. 187. CePd2(Al1–xGax)3. Magnetic transition tem-perature TN vs. coupling strength normalized to their values where TN exhibits a maximum value [97T4]. Circles show data from [94C2].

Page 279: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

400

300

200

100

0 50 100 150 200 250 300

Ce Pd Ga2

Fig. 188. CePd2Ga. Temperature dependence of χm

–1 [93D1].

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

T = 2 K

5 K

Magnetic field [T]µ0 H

Ce Pd Ga2

1.2

0.8

0.4

0 1 2 3 4 5

Fig. 189. CePd2Ga. Magnetic field dependence of pm [93D1].

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

0.10

0.08

0.06

0.08

0.06

0.04

0.08

0.06

0.040 2 4 6 8 10

3

2

1

2

1

2

1

Resis

tanc

e(re

lativ

e)R

R

R

R

Ce Pd Ga2

Ce Y Pd Ga0.9 0.1 2

Ce Y Pd Ga0.8 0.2 2

Fig. 190. Ce1–xYxPd2Ga. Temperature dependence of χm below 10 K. The respective electrical resistance R is also plotted in an arbitrary scale [93D1].

Temperature [K]T0 120 240 300

Resis

tivity

[

cm]

µΩ⋅

60 180

240

180

120

60

Ce Pd Ni Sn0.04 0.96Ce Pd Ni Sn0.2 0.8

Ce Pd Sn

Fig. 191. CePdxNi1–xSn. Temperature dependence of ρ for x = 0.04, 0.2, 1.0 [88K1].

Page 280: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 15

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m1

31

−−

1.0

0.8

0.6

0.4

0.2

0 100 200 300

Ce Pt Si 2

Ce ion3+

c

c

a

a

b

b

0 100 200 300T [K]

800

600

400

200

Inv.

susc

eptib

ility

[mol

cm]

−−

1 m3

Fig. 192. CePtSi2. Temperature de-pendence of χm and χm

–1 along the a, b and c axis. Solid line represents χm(T) for Ce3+ free ion [96K5].

Temperature [K]T

Ce Pt Si 2

Ce3+c

a

b

Inv.

susc

eptib

ility

[mol

cm]

−−

1 m3

1000

0

200

400

600

800

100 200 300

Fig. 193. CePtSi2. Temperature dependence of χm

–1 calculated taking into account crystalline-field effect (TK ≈ 10 K) [96K5].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

Ce

cm]

−−

1 m3

1000

0

200

400

600

800

100 200 30050 150 250

Ce Ni In5 6 11Ce Sn2 5Ce Pt Ge2Ce Ru Ge3Ce Ru Ge3 4 13

Fig. 194. Ce5Ni6In11, Ce2Sn5, CePtGe2, Ce RuGe3, Ce3Ru4Ge13. Temperature dependence of χm

–1 [96G2].

Page 281: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

[K]T

Inv.

susc

eptib

ility

[mol

cm]

−−

1 m3

0 100 200 300

Gd Mo Si2 3

18

16

14

12

10

8

6

4

2

50 150 250

40

30

20

10

0 5 10 15 20 25 30H [ kOe ]

H = 2 kOe

[ G cm

g]

31−

2.0

1.5

1.0

0.5

0 4 8 12 16 20

m3

1[ c

mm

ol]

T = 5 K

Fig. 195. Gd2Mo3Si4. Temperature dependence of χm

–1 at 2 kOe. Insets: χm vs. T and σ vs. H [95L1].

Temperature [K]T

[K]T

Inv.

susc

eptib

ility

[mol

cm]

−−

1 m3

0 100 200 300

14

12

10

8

6

4

2

50 150 250

0 5 10 15 20 25 30H [ kOe ]

H = 2 kOe

[ G cm

g]

31−

0

m3

1[ c

mm

ol]

T = 5 K

H = 1 kOe

5 10 15 20 25

1.501.25

1.00

0.75

0.50

0.25

70605040302010

Tb Mo Si2 3 4

Fig. 196. Tb2Mo3Si4. Temperature de-pendence of χm

–1 at 2 kOe. Insets: χm vs. T and σ vs. H [95L1].

Temperature [K]T

[K]T

Inv.

susc

eptib

ility

[mol

cm]

−−

1 m3

0 100 200 300

12

10

8

6

4

2

50 150 250

H [ kOe ]

H = 1 kOe

[ G cm

g]

31−

m3

1[ c

mm

ol]

T = 5 K

Dy Mo Si2 3 4

80

60

40

20

0 5 10 15 20 25 30

5

4

3

2

1

0 5 10 15 20

Fig. 197. Dy2Mo3Si4. Temperature de-pendence of χm

–1 at 1 kOe. Insets: χm vs. T and σ vs. H [95L1].

Page 282: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 17

Temperature [K]T

[K]T

Inv.

susc

eptib

ility

[mol

cm]

−−

1 m3

0 100 200 300

12

10

8

6

4

2

50 150 250

H [ kOe ]

H = 1 kOe

[ G cm

g]

31−

m3

1[ c

mm

ol]

T = 5 K

Ho Mo Si2 3 4

80

60

40

20

0 5 10 15 20 25 30

12

14

10

8

60 1 2 3 4 5 6 7 8

H = 2 kOe

Fig. 198. Ho2Mo3Si4. Temperature dependence of χm

–1 at 1 kOe. Insets: χm vs. T and σ vs. H [95L1].

Temperature [K]T

[K]T

Inv.

susc

eptib

ility

[mol

cm]

−−

1 m3

0 100 200 300

12

10

8

6

4

2

50 150 250

H [ kOe ]

H = 1 kOe

[ G cm

g]

31−

m3

1[ c

mm

ol]

T = 5 K

Er Mo Si2 3 4

60

40

20

0 2 4 6 8 10 12

5

4

3

2

1

0 5 10 15 20

Fig. 199. ErGd2Mo3Si4. Temperature dependence of χm

–1 at 1 kOe. Insets: χm vs. T and σ vs. H [95L1].

Temperature [K]T

[K]T

Inv.

susc

eptib

ility

[mol

cm]

−−

1 m3

0 100 200 30050 150 250

H [ kOe ]

H = 1 kOe

[ G cm

g]

31−

T = 5 K

Tm Mo Si2 3 4

60

40

20

0

0 5 10 15 20

24

20

16

12

8

4

5 10 15 20 25 30

m3

1[ c

mm

ol]

3.0

2.5

2.01.5

1.0

0.5

Fig. 200. Tm2Mo3Si4. Temperature dependence of χm

–1 at 1 kOe. Insets: χm vs. T and σ vs. H [95L1].

Page 283: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ility

[10

cmg

]g

33

1−

Tb Mo Si2 3 4

6

5

4

3

2

1

0 10 20 30 40

1

2

Fig. 201. Tb2Mo3Si4. Temperature dependence of χg. Sample 1 annealed in vacuum at 800 K during 240 h and sample 2 at 1400 K for 1 h, respectively

Temperature [K]T

Tb Mo Si2 3 4

123

3.0

2.5

2.0

1.5

1.0

0.5

00.5 1.5 2.52.0 3.01.0

Heat

capa

city

[Jm

olK

]C

−−

11

Fig. 202. Tb2Mo3Si4. Temperature dependence of heat capacity. Sample 1 and 2 as in Fig. 201, sample 3 not annealed [94A4].

Temperature [K]T

R Pt Ga3 2.2 8.8

Inv.

susc

eptib

ility

[10

g cm

]g

33−

−1

25

20

15

10

5

0 100 200 300 400 500 600

R = Er

Tb

Dy

Fig. 203. R3Pt2.2Ga8.8. R = Tb, Dy, Er. Temperature dependence of χg

–1. Solid lines: calculated [94G4].

Temperature [K]T

R Pt Ga3 2.2 8.8

R = Dy

Tb

Susc

eptib

ility

[cm

mol

]m

31−

1.5

1.0

0.5

0 10 20 30 40 50

µ =0.1 T0 H

Fig. 204. R3Pt2.2Ga8.8. R = Tb, Dy. Temperature de-pendence of χm at 0.1 T [94G4].

Page 284: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 19

Magnetic field [T]µ0 H

Mag

netiz

atio

n

[A m

kg]

21−

T = 5 K

Dy Pt Ga3 2.2 8.8

50

40

30

20

10

0 1 2 3 4 5

Fig. 205. Dy3Pt2.2Ga8.8. Magnetic field dependence of σ at 5 K [94G4].

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]g

33−

−1

0 100 200 300 400 500 600

Tm Pt Ga3 2.2 8.8

Ho Pt Ga3 2.2 8.8

50

40

30

20

10

Fig. 206. R3Pt2.2Ga8.8. R = Ho, Tm. Temperature de-pendence of χg

–1. Solid lines: calculated [94G4].

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]g

43−

−1

0 100 200 300

Yb Pt Ga3 2 9

50

100

75

25

Fig. 207. Yb3Pt2Ga9. Temperature dependence of χg

–1 [94G4.].

Temperature [K]T

Ho Pt Ga3 2.2 8.8

Susc

eptib

ility

[cm

mol

]m

31−

1

0 10 20 30 40 50

µ =0.1 T0 H

2

Fig. 208. Ho3Pt2.2Ga8.8. Temperature dependence of χm at 0.1 T. Solid line: calculated [94G4].

Page 285: 2 Magnetic properties of rare earth elements, alloys and ...

References

88K1 Kasaya, M., Tani, T., Iga, F., Kasuya, T.: J. Magn. Magn. Mater. 76-77 (1988) 278 90K3 Kotsanidis, P., A., Yakinthos, J., K., Gamari-Seale, E.: J. Magn. Magn. Mater. 87 (1990) 199 93C1 Cordier, G., Friedrich, T., Henseleit, R., Grauel, A., Tegel, U., Schank, Ch., Geibel, Ch.: J.

Alloys Comp. 201 (1993) 197 93D1 Das, I., Sampathkumaran, E.V., Chari, S., Gopalakrishnan, K.V.: J. Alloys Comp. 202 (1993)

L7 93G2 Ghosh, K., Ramakrishnan, S., Nigan, A.K., Chandra, G.: J. Appl. Phys. 73 (1993) 6637 94A4 Aliev, F.G., Gorelenko, Yu.K., Pryadun, V.V., Vieira, S., Villar, R., Paredes, J.: Physica B

194-196 (1994) 171 94A5 Andre, G., Bouree, F., Bombik, A., Oles, A., Sikora, W., Kolenda, M., Szytula, A., Pacyna, A.,

Zygmunt, A.: Acta Phys. Pol. 85 (1994) 275 94C2 Cornelius, A.L., Schilling, J.S.: Phys. Rev. B 49 (1994) 3955 94G4 Gignoux, D., Schmitt, D.: J. Magn. Magn. Mater. 129 (1994) 53 94S3 Schäfer, W., Jansen, E., Will, G., Kosanidis, P.A., Yakinthos, J.K., Tietze-Jaensch.: J. Alloys

Comp. 209 (1994) 225 95A1 Andre, G., Bouree, F., Guillot, M., Kolenda, M., Oles, A., Sikora, W., Szytula, A., Zygmunt,

A.: J. Magn. Magn. Mater. 140-144 (1995) 879 95D1 Diehl, J., Davideit, H., Klimm, S., Tegel, U., Geibel, C., Steglich, F., Horn, S.: Physica B 206-

207 (1995) 344 95D2 Das, I., Sampathkumaran, E.V., Rajarajan, A.K.: J. Alloys Comp. 218 (1995) L11 95G2 Guillot, M., Szytula, A., Tomkowicz, Z., Zach, R.: J. Alloys Comp. 226 (1995) 131 95L1 Le Bihan, T., Noel, H.: J. Alloys Comp. 227 (1995) 154 95S2 Sakurai, J., Kegai, K., Kuwai, T., Isikawa, Y., Nisimura, K., Mori, K.: J. Magn. Magn. Mater.

140-144 (1995) 875 95S4 Schank, C., Olesch, G., Kohler, J., Tegel, U., Klinger, U., Diehl, J., Klimm, S., Sparn, G.,

Horn, S., Geibel, C., Steglich, F.: J. Magn. Magn. Mater. 140-144 (1995) 1237 96G2 Gschneidner, jr., K.A., Pecharsky, V.K.: Physica B 223-224 (1996) 131 96K4 Kotsanidis, P.A., Jakinthos, J.K., Schafer, W., Gamari-Seale, Hel.: J. Alloys Comp. 235 (1996)

188 96K5 Kasaya, M., Ito, M., Ono, A., Sakai, O.: Physica B 223-224 (1996) 336 96M1 Malik, R., Sampathkumaran, E.V.: J. Magn. Magn. Mater. 164 (1996) L13 96R1 Ramakrishnan, S., Ghosh, K.: Physica B 223-224 (1996) 154 96S1 Sologub, O., Hiebl, K., Rogl, P., Noel, H.: J. Alloys Comp. 245 (1996) L13 96S2 Szytula, A., Kolenda, M., Leciejewicz, J., Stuesser, N.: J. Magn. Magn. Mater. 164 (1996) 37797K4 Katoh, K., Tababatake, T., Minami, A., Oguro, I., Sawa, H.: J Alloys Comp. 261 (1997) 32 97T4 Tang, J., Kitazawa, H., Matsushita, A., Matsumoto, T.: Physica B 230-232 (1997) 208 98I1 Ito, T., Nishigori, S., Hiromitsu, I., Kurisu, M.: J. Magn. Magn. Mater. 177-181 (1998) 1079 98N1 Nishigori, S., Hirooka, Y., Ito, T.: J. Magn. Magn. Mater. 177-181 (1998) 137

Page 286: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 1

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

H cII

H c

T

0.14

0.12

0.10

0.08

0.06

0.04

0.02

1 10 100

x = 0.9

0.7

0.5

0.20.15

0.05

0.90 0

(Y La ) Ce Ru Si0.37 0.63 x 1-x 2 2

0.1

Fig. 209. (Y0.37La0.63)xCe1–xRu2Si2. Temperature dependence of χm for different x [95M2].

Magnetic field [T]µ0 H

T = 1.5 KH cII

Mag

netic

mom

ent

[p m

Bµ/ C

e]

x = 00.05

0.150.50.9

(Y La ) Ce Ru Si0.37 0.63 x 1-x 2 2

1.5

1.0

0.5

0 5 10 15 20 25

Fig. 210. (Y0.37La0.63)xCe1–xRu2Si2. Mag-netization vs. H for different x and H || c at 1.5 K [95M2].

Temperature [K]T

Susc

eptib

ility

[cm

m(ol

Ce)

]m

31−

n = 20

x = 0.9

x =0

n = 10

n = 100

(Y La ) Ce Ru Si0.37 0.63 x 1-x 2 2

imp

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

01 10 102

2 4 6 8 2 24 6 8

Fig. 211. (Y0.37La0.63)xCe1–xRu2Si2. Simulation of χ(T) for random lattice Kondo system, data for x = 0 and x = 0.9. For comparison see Fig. 209. χimp: Kondo impurity susceptibility, n: density of the Ce ions in a region of the simulations [95M2].

Page 287: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.5 Rare earth elements and 4d or 5d elements

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[p m

Bµ/ C

e]

x = 0.25

(Y La ) Ce Ru Si0.35 0.65 1-x x 2 2

0.1

1

0.8

0.6

0.4

0.2

0 5 10 15 20

0.5

0.9

0.75

Fig. 212. (Y0.35La0.65)1–xCexRu2Si2. Magnetization vs. H for different x [95M1].

Magnetic field [T]µ0 H

(Y La ) Ce Ru Si0.35 0.65 1-x x 2 2

x = 0.75

0.9

1

1 3 5 7 9 11 13

0.09

0.07

0.06

0.05

0.04

0.03

0.02

Susc

eptib

ility

[ µCe

T]

pH

m0

B1

1−

Fig. 213. (Y0.35La0.65)1–xCexRu2Si2. Differential sus-ceptibility ∂pm/∂H vs. H for different x [95M1].

Temperature [K]T

Heat

capa

city

[J( m

olCe

)K

]C m

11

−−

(Y La ) Ce Ru Si0.35 0.65 1-x x 2 2x = 1

0.5

0.1

2.5

2.0

1.5

1.0

0.5

0 2 4 6 8 10 12

Fig. 214. (Y0.35La0.65)1–xCexRu2Si2. Tem-perature dependence of the 4f-derived specific heat Cm [95M1].

Page 288: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 3

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[p m

Bµ/ C

e]

x = 0.7

La Ce Ru Six 1-x 2 2

0 5 10 15 20

0.95

0.2

0.13 0.05

Ce Ru Si2 2

Y Ce Ru Si0.05 0.95 2 2

Y Ce Ru Si0.1 0.9 2 2

2.0

1.5

1.0

0.5

Fig. 215. YyCe1–yRu2Si2, LaxCe1–xRu2Si2. Magnetic field dependence of pm in the paramagnetic region for several concen-trations and H || c at 4.2 K, except for y = 0.05, x = 0 and 0.05 at 1.4 K, and for x = 0.2 at 6 K [88H1].

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[p m

Bµ/ C

e]

x = 0.8

La Ce Ru Six 1-x 2 2

0

Ce Ru Si2 2

2.0

1.5

1.0

0.5

0.130.1

0.50.3

2.5 5.0 7.5

Fig. 216. LaxCe1–xRu2Si2. Magnetic field dependence of pm below TN (≈ 1.4 K). The continuous line represents pm(H || c) for x = 0 at 1.4 K [88H1].

Temperature [K]T

102

10

1

10 − 1

1 10 102

T N

27Al

Ce Pd Al2 3

La Pd Al2 3Rela

xatio

n ra

te 1

/[s

]T 1

1−

2 2 24 4 46 68 8

Fig. 217. LaPd2Al3, CePd2Al3. NMR, temperature dependence of 1/T1 for 27Al [94F1].

Page 289: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

[cm

mol

]ac

31−

[cm

mol

]ac

31−

Susc

eptib

ility

[cm

mol

]m

31−

0.4

0.3

0.2

0.1

00 50 100 150 200 250 300

0

0.1

0.2

Nd Rh Si2 3 5

La Rh Si2 3 5

5

0

-5

-10

-15

-20

0.2

0.10 2.5 5.0 7.5 10.0

T [K]

Fig. 218. La2Rh3Si5, Nd2Rh3Si5. Temperature depend-ence of χm and low temperature χac [96P1].

Magnetic field [T]B

Mag

netic

mom

ent

[p m

Bµ/ f

.u.]

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

1.2

1.0

0.8

0.6

0.4

0.2

0

1.2

1.0

0.8

0.6

0.4

0.2

00 2 4 6 8

x = 0.05

x = 0.1

x = 0.2

T = 1.4 K

T = 4.2 K

T = 6.0 K

La Ce Ru Six 1-x 2 2

Fig. 219. LaxCe1–xRu2Si2. Magnetic field dependence of pm along the c axis at 1.4 K, 4.2 K and 6.0 K for x = 0.05, 0.10 and 0.20, respectively, along the c axis [88L1].

Magnetic field [T]B

0 2 4 6 8

x = 0.05

x = 0.1

x = 0.2

T = 1.4 K

T = 4.2 K

T = 6.0 K

La Ce Ru Six 1-x 2 2

Mag

neto

stric

tion

/[1

0]

∆l l

−5

12

9

6

3

0

9

6

3

0

9

6

3

Fig. 220. LaxCe1–xRu2Si2. Magnetic field dependence of magnetostriction along the c axis at 1.4 K , 4.2 K and 6.0 K for x = 0.05, 0.10 and 0.20, respectively, along the c axis [88L1].

Page 290: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 5

0

x = 0.05

x = 0.1

x = 0.2

T = 1.4 K

T = 4.2 K

T = 6.0 K

La Ce Ru Six 1-x 2 2

Mag

neto

stric

tion

/[1

0]

∆l l

−5

12

9

6

3

0

9

6

3

0

9

6

3

2 4 6⌠⌡B Md

Fig. 221. LaxCe1–xRu2Si2. ∫BdM dependence of mag-netostriction at 1.4 K, 4.2 K and 6.0 K for x = 0.05, 0.10 and 0.20, respectively, along the c axis [88L1].

0

x = 0.05

x = 0.1

x = 0.2

T = 1.4 K

T = 4.2 K

T = 6.0 K

La Ce Ru Six 1-x 2 2

Mag

neto

stric

tion

/[1

0]

∆l l

−5

12

9

6

3

0

9

6

3

0

9

6

3

0.5 1.0 1.5M

2B2

[ µ ] Fig. 222. LaxCe1–xRu2Si2. M2[µB

2] dependence of magnetostriction at 1.4 K, 4.2 K and 6.0 K for x = 0.05, 0.10 and 0.20, respectively, along the c axis [88L1].

Page 291: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.5 Rare earth elements and 4d or 5d elements

La Ce Ru Six 1-x 2 2

Temperature [K]T

TN

Resis

tivity

[

cm]

µΩ⋅

x = 0.3

0.2

0.15

0.13

0.05

0.1

Ce Ru Si2 2

La Ru Si2 2

20

10

0

26

31

23

18

22

17

10

5

00 5 10 15 20

Fig. 223. LaxCe1–xRu2Si2. Temperature dependence of ρ at different x. Notice the change of scales. Néel temperatures are indicated by arrows [88D1].

La Ce Ru Six 1-x 2 2

Temperature [K]T

TN

Resis

tivity

[

cm]

µΩ⋅

x = 0.5

0 5 10 15 20

16

12

9

4.5

4

1.5

1

16

12

9

4

3.5

0.7

0.9

0.95

Fig. 224. LaxCe1–xRu2Si2. Temperature dependence of ρ at different x. Notice the change of scales. Néel temperatures are indicated by arrows [88D1].

Mag

neto

resis

tivity

[cm

]µΩ

⋅m

T = 15 K

7

4.2

1.7 K

20.5

20.0

14.0

13.5

10.5

10.0

7.0

6.0

5.00 2 4 6 8

Magnetic field [ T ]µ0 H

La Ce Ru Si0.05 0.95 2 2

Fig. 225. La0.05Ce0.95Ru2Si2. Magnetic field depend-ence of ρm. Note the change of scale for each curve. For the lowest temperatures, the arrows indicate the metamagnetic field value deduced from magnetization measurements (Fig. 215) [88D2].

Page 292: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 7 M

agne

tore

sistiv

ity

[

cm]

µΩ⋅

m

T = 8.5 K

0 2 4 6 8Magnetic field [ T ]µ0 H

La Ce Ru Si0.13 0.87 2 2

Hc

Ha

18

14

10

6.5

22

18

14

10

1.86 K

4.2 K

Fig. 226. La0.13Ce0.87Ru2Si2. Magnetic field depend-ence of ρm for 1.86 K. The two transition fields are indicated by vertical arrows [88D2].

Mag

neto

resis

tivity

[cm

]µΩ

⋅m

Magnetic field [ T ]µ0 H

La Ce Ru Si0.2 0.8 2 2

Hc

Hb

Ha

22

20

18

16

150 1 2 3

0

0.5

1.0

Mag

netic

mom

ent

[p m

Bµ/f.

u.]

Fig. 227. La0.2Ge0.8Ru2Si2. Magnetic field dependence of ρm and pm at 1.7 K in increasing (open symbols) and decreasing (solid symbols) H. Hysteresis is observed at Ha and between Hc and Hb [88D2].

Temperature [K]T

TN

La Ce Ru Six 1-x 2 2

Hall

coef

ficie

nt[1

0cm

C]

R H3

31

−−

Ce Ru Si2 20.13

0.5

0.7

0.9

x = 0.2

7

6

5

4

3

2

1

01 10 10 2

2 4 6 8 2 24 6 8

Fig. 228. LaxCe1–xRu2Si2. Temperature dependence of RH at different x. The vertical arrows indicate TN [88D3].

Hall

resis

tanc

e[

]R

µΩ

Magnetic field [ T ]µ0 H

Hc

HM

Ha

80

60

40

20

0 2 4 6 8

La Ce Ru Si0.2 0.8 2 2

La Ce Ru Si0.05 0.95 2 2

Fig. 229. La0.2Ce0.8Ru2Si2, La0.05Ce0.95 Ru2Si2. Mag-netic field dependence of Hall resistance. The arrows show the transition field values derived from magneti-zation measurements [88D3].

Page 293: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.5 Rare earth elements and 4d or 5d elements

8

6

4

2

0 0.1 0.2 0.3 0.4La content x

Neel

tem

pera

ture

[K]

T N´

La Ce Ru Six 1-x 2 2

Fig. 230. LaxCe1–xRu2Si2. Concentration dependence of TN. Different symbols refer to different measure-ments [90H1].

Mag

netic

fiel

d[T

]µ 0

H

Hc

HM

Ha

La Ce Ru Six 1-x 2 2 x = 0.05

x = 0.13

x = 0.1

x = 0.1

7

6

5

4

3

2

1

0 2 4 6 8 10 12Temperature T [K]

Fig. 232. LaxCe1–xRu2Si2. Magnetic phase diagram [90H1].

La Ce Ru Si0.13 0.87 2 2

La Ce Ru Si0.05 0.95 2 2

La Ce Ru Si0.1 0.9 2 2

Magnetic field [T]µ0 H

Susc

eptib

ility

[ µCe

T]

pH

m0

B1

1−

1.0

0.5

0

0.4

0.3

0.2

0.20

0.13

0.130.150.170.150.150.14

0.1250.115

0.2

0.1

0 1 2 3 4 5 6 7

T = 2.5 K

T = 1.5 K

1.8

2.0

2.3

2.6

6

10

Fig. 231. LaxCe1–xRu2Si2. Magnetic field dependence of ∂pm/∂H at different temperatures and concentrations [90H1].

La Ce Ru Six 1-x 2 2

La content x

Neel

tem

pera

ture

[K]

T N´

Mom

ent a

mpl

itude

[µ/ C

e]m

B

1.2

1.0

0.8

0.6

0.4

0.2

00 0.05 0.10 0.15 0.20

10

8

6

4

2

0

Fig. 233. LaxCe1–xRu2Si2. Concentration dependence of TN and moment amplitude from neutron diffraction. The ordering up to x = 0.90, is incommensurate with the wavevector k = (0.309, 0, 0) [94B3].

Page 294: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 9

La1-x Cex Ru2 Si2

Temperature [K]T

Inv.

susc

eptib

ility

[ mol

cm]

II3−

−1

x = 0.10.50.70.9

Ce Ru Si2 2

400

300

200

100

0

0

0

0

00 50 100 150 200 250 300

Fig. 234. (La1–xCex)Ru2Si2. Temperature dependence of χ||

–1 for some Ce concentrations [92H1].

La1-x Cex Ru2 Si2

Temperature [K]T

x = 0.1

0.5

0.7

0.9

Ce Ru Si2 2

0 50 100 150 200 250 300

800

600

400

200

400

500

400

800

600

800

Inv.

susc

eptib

ility

[ m

ol cm

−3−1 T

]

Fig. 235. (La1–xCex)Ru2Si2. Tempera-ture dependence of χ⊥

–1 for some Ce concentrations [92H1].

Temperature [K]T

0.7

0.9

Ce Ru Si2 2

La1-x Cex Ru2 Si2

0.1

x = 0.5

100

80

60

40

20

0 10 20 30 40 50

Susc

eptib

ility

ratio

/II

T

Fig. 236. (La1–xCex)Ru2Si2. Temperature dependence of the anisotropy ratio χ||/χ⊥ for some Ce concentrations [92H1].

Page 295: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.5 Rare earth elements and 4d or 5d elements M

omen

t am

plitu

de[

p mBµ

/ Ce]

0 1 2 3 4 5 6Temperature [K]T

1.0

0.5

0.10

1.5

La Ce Ru Six 1-x 2 2x = 0.08 (1- , 1,0)k

0.1 (1,1- ,0)k0.13 (0, ,0)k0.2 ( ,0,0)k0.2 (3 ,0,0)k

Fig. 237. La1–xCexRu2Si2. Temperature dependence of pm amplitude of elastic neutron scattering [88Q1].

Mag

netic

fiel

d[T

]µ 0

H

Hb

Ha

La Ce Ru Si0.2 0.8 2 2

k = ( / , / ,0)1 3 1 3

k = [0.309,0,0]

4

3

2

1

0 1 2 3 4 5 6Temperature [K]T

k 1 = (0.309,0,0)k 2 = (0.309,0.309,0)

TT

HH

k = 0

k = 0

HcHb =+

+

Ha-

-

P

I

II

III

Fig. 240. La0.2Ce0.8Ru2Si2. Magnetic phase diagram. The hatched areas represent regions of hysteresis [90M3].

Magnetic field [ T ]µ0 H

T = 1.65 K

T = 1.65 K

T = 3.5 K Hc

HcHb

Ha

Ha

La Ce Ru Si0.3 0.7 2 23000

2000

1000

0

1500

1000

500

0

1500

1000

500

00 1 2 3

k 31 3 1 3= ( / , / ,0)

k 1 = (0.31,0,0)

k 1 = (0.31,0,0)

Neut

ron

inte

nsity

[cou

nts /

min

]

Fig. 239. La0.3Ce0.7Ru2Si2. Magnetic field dependence of the magnetic reflections [1.69,0,0] (circles) and [1/3,1/3,0] (triangles) at 1.65 and 3.5 K. The inverted triangles repre-sent data for the orthogonal magnetic domain which have been scaled to the latter. Closed symbols: increas-ing field; open symbols: decreasing field [90M].

Page 296: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 11

La Ce Ru Si0.2 0.8 2 2

Neel

tem

pera

ture

[K]

T N´

Mom

ent a

mpl

itude

[µ/ C

e]m

B

5

10

00 1 2 3 4 5 6 7

1.0

0.5

0

Pressure [k bar]p Fig. 241. La0.2Ce0.8Ru2Si2. Pressure dependence of TN and neutron scattering moment amplitude [90R1].

La Ce Ru Si0.2 0.8 2 2

Temperature [K]T

2200

2000

1800

1100

1000

900

800

700

600

0 1 2 3 4 5 6 7 8 9 10

400

300

200B. G.

Coun

ts p

er 1

0 m

in

Coun

ts p

er 3

0 m

in

Q = (0.69,1- ,0)q

Q = (0.715,0.98,0)

q = 0.02q = 0.03q = 0.04q = 0.05

Fig. 242. La0.2Ce0.8Ru2Si2. Temperature dependence of magnetic correlations around Q = (110) – k1, where k1 is the incommensurate wavevector [90R1].

For Fig. 243 see next page.

La Ce Ru Si0.05 0.95 2 2 0 Hµ = 2.00T

3.004.525.09

5.16

5.36

5.605.956.466.988.00

30

20

10

0

−10

−20

−30

− 400 0.2 0.4 0.6 0.8 1.0 1.2

Temperature [ K ]T 2 2

p m3

B[1

0in

uni

ts o

f µ/ C

e]−

Fig. 245. La0.05Ce0.95Ru2Si2. Change of magnetization vs. T2 for H || c at several magnetic fields [90P2, 89H1].

Page 297: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.5 Rare earth elements and 4d or 5d elements

La Ce Ru Si0.2 0.8 2 2

1000

800

600

400

200

Coun

ts p

er 1

0 m

in

Q = (0.69,1,0)Q = (0.69,0.96,0)

15000

10000

5000

00 10 20 30 40 50

Magnetic field [kOe]H

T = 3.2 K

Inte

grat

ed in

tens

ity

B. G.

Fig. 243. La0.2Ce0.8Ru2Si2. Magnetic field dependence of magnetic intensities for neutron scattering vectors at 3.2 K. B.G.: background [90R1].

La content x

Neel

tem

pera

ture

[K]

T N´

10

8

6

4

2

0

La Ce Pd Six 1-x 2 2

0.2 0.4 0.6 0.8 1.0

12

Fig. 246. LaxCe1–xPd2Si2. Concentration dependence of TN obtained from resistivity (solid circles), suscep-tibility (crosses), and specific heat (open circles) investigations [90S3].

For Fig. 245 see previous page.

Temperature [K]T

Mag

netiz

atio

n

[G cm

mol

]3

1−

[G cm

mol

]3

1−Ce Ga Six 2-x

x = 0.7

Ce Ga Si

1.1

3000

1000

2000

4000

02 4 6 8 10 12 14 16

70

50

30

10

2 4 6 8 10 12 14

1.1

x = 1.2

T [K]

Fig. 247. CeGaxSi2–x. Temperature dependence of σm at 50 Oe [90M2].

Page 298: 2 Magnetic properties of rare earth elements, alloys and ...

References

88A1 Amato, A., Jaccard, D., Sierro, J., Lapierre, F., Haen, P., Lejay, P.: J. Magn. Magn. Mater. 76-77(1988) 263

88D1 Djerbi, R., Haen, P., Lapierre, F., Lehmann, P., Kappler, jr., P.: J. Magn. Magn. Mater. 76-77 (1988) 260

88D2 Djerbi, R., Haen, P., Lapierre, F., Mignot, J.-M.: J. Magn. Magn. Mater. 76-77 (1988) 265 88D3 Djerbi, R., Haen, P., Lapierre, F., Mignot, J.-M., Fert, A., Hamzic, A., Kappler, J.P.: J. Magn.

Magn. Mater. 76-77 (1988) 265 88H1 Haen, P., Lapierre, F., Kappler, J.P., Lejay, P., Flouquet, J., Meyer, A.: J. Magn. Magn. Mater.

76-77 (1988) 143 88L1 Lacerda, A., de Visser, A., Puech, L., Lejay, P., Haen, P.: J. Magn. Magn. Mater. 76-77 (1988)

138 88Q1 Quezel, S., Burllet, P., Jacoud, J.L., Regnault, L.P., Rossat-Mignod, J., Vettier, C., Lejay, P.,

Flouquet, J.: J. Magn. Magn. Mater.: 76-77 (1988) 403 89H1 Haen, P., Kappler, J.P., Lapierre, F., Lehmann, P., Lejay, P., Flouquet, J., Meyer, A.: J. Phys.

(Paris) 49 (1989) C8-757 90B1 Bruls, G., Weber, D., Hampel, G., Wolf, B., Kouroudis, I., Luthi, B.: Physica B 163 (1990) 41 90C1 Celemczuk, R., Bonjour, E., Rossat-Mignod, J., Chavalier, B.: J. Magn. Magn. Mater. 90-91

(1990) 477 90H1 Haen, P., Voiron, J., Lapierre, F., Flouquet, J., Lejay, P.: Physica B 163 (1990) 519 90M1 Malik, S.K., Adroja, D.T., Pdadalia, B.D., Vijayaraghavan, R.: Physica B 163 (1990) 89 90M2 Moshchalkov, V.V., Petrenko, O.V., Zalyalutdinov, M.K.: Physica B 163 (1990) 395 90M3 Mignot, J.-L., Jacoud, J.-L., Regnault, L.-P., Rossat-Mignod, J., Lejay, P., Boutrouille, Ph.,

Hennion, B., Petitgrand, D.: Physica B 163 (1990) 611 90P1 Paulsen, C., Lacerda, A., Tholence, J.L., Flouquet, J.: Physica B 165-166 (1990) 433 90P2 Paulsen, C., Lacerda, A., de Visser, A., Bakker, K., Puech, L., Tholence, J.L.: J. Magn. Magn.

Mater. 90-91 (1990) 408 90R1 Regnault, L.P., Jacoud, J.L., Rossat-Mignod, J., Vettier, C., Lejay, P., Flouquet, J.: J. Magn.

Magn. Mater. 90-91 (1990) 398 90S3 Sampathkumaran, E.V., Nakazawa, Y., Ishikawa, Y., Vijayaraghavan, R.: Physica B 163

(1990) 365 90S4 Steeman, R.A., Endstra, T., Mentink, S.A.M., Friikkee, E., Menovsky, A.A., Nieuwenhuys,

G.J., Mydosh, J.A.: Physica B 163 (1990) 597 92B1 Besnus, M.J., Essaihi, A., Fischer, G., Hamdaoui, N., Meyer, A.: J. Magn. Magn. Mater. 104-

107 (1992) 1387 92H1 Haen, P., Lapierre, F., Lejay, P., Voiron, J.: J. Magn. Magn. Mater. 116 (1992) 108 92L1 Lapierre, F., Haen, P.: J. Magn. Magn. Mater. 108 (1992) 167 94B3 Burlet, P., Regnault, L.P., Rossat-Mignod, J., Vettier, C., Flouquet, J.: J. Magn. Magn. Mater.

129 (1994) 10 94F1 Fijiwara, K, Yamanashi, Y., Kumagai, K.: Physica B 199-200 (1994) 107 95M1 Meyer, A., Besuns, M.J., Haen, P., Kappler, J.P., Mathis, G.: Physica B 206-207 (1995) 304 95M2 Mydlarz, T., Talik, E., Szade, J., Heimann, J.: J. Alloys, Comp. 219 (1995) 225 95P1 Park, J.-G., Haen, P., Lapierre, F., Lejay, P., Verniere, A., Voiron, J.: Physica B 206-207

(1995) 285 95S1 Sakakibara, T., Tayama, T., Mitamura, H., Matsuhira, K., Amitsuka, H.: Physica B 206-207

(1995) 249 95T1 Tautz, F.S., Julian, S.R., McMulian, G.J., Lonzarich, G.G.: Physica B 206-207 (1995) 29 96M2 Marumoto, K., Takeuchi, T., Miyako, Y.: Phys.Rev. B 54 (1996) 12194 96P1 Patil, N.G., Ghosh, K., Ramakrishnan, S.: Physica B 223-224 (1996) 392 97L1 Lapierre, F., Mallmann, F., Holtmeier, S., Kambe, S., Haen, P.: Physica B 230-232 (1997) 12097M1 Malik, R., Sampathkumaran, E.V., Paulose, P.L.: Physica B 230-232 (1997) 169 98M2 Marumoto, K., Takayama, F., Miyako, Y.: J. Magn. Magn. Mater. 177-181 (1998) 353

Page 299: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 1

Mag

netic

fiel

ds[ k

Oe ]

H,H

Mc

Ce (Ru Rh ) Si1-x x 2 2

Hc

80

60

40

20

00

[K]T

HM (1.6 K)

(1.6 K)

0.1 0.2 0.3 0.4 0.5Rh content x

4

2

0

Neel

tem

pera

ture

[K]

T N´

2

2

2

2

0

x = 0.03

0.07

0.1

0.2

0.3

4

2

0

0

0

0

0

C m1

1[J

mol

K]

−−

1 10

Fig. 275. Ce(Ru1–xRhx)2Si2. Phase diagram for 0 ≤ x ≤ 0.5. Inset: low-temperature specific heat of selected samples [92S2].

For Fig. 276 see next page.

Page 300: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.5 Rare earth elements and 4d or 5d elements

Magnetic field [ kOe ]H

Mag

netic

mom

ent

[]

p mBµ

/ Ce

Ce Ru Rh Si1.8 0.2 2

T = 4.2 K

0.6

0.4

0.2

0.8

0 10 20 30 40 50 60

2.72.21.6

H cII

Fig. 277. CeRu1.8Rh0.2Si2. Magnetic field dependence of pm at temperatures below TN = 4.2 K [92S2].

I

II

IV

III

40

35

30

25

20

15

10

5

0 0.2 0.4 0.6 0.8 1.0Rh content x

Tem

pera

ture

[K]

T

Ce (Ru Rh ) Si1-x x 2 2

Fig. 278. Ce(Ru1–xRhx)2Si2. Magnetic phase diagram [95K1].

Mag

netic

fiel

d[ k

Oe ]

H

CeRu Rh Si1.8 0.2 2H cII

SQUID

VSMpulse

HM

Hc

AF

80

60

40

20

00 2 4 6 8

Temperature [K]T

[T]0 Hµ

T =1.4K

pauli para

2.02.53.03.64.2

0 2 4 6 8 10 12

∂∂

pH

m0

Fig. 276. CeRu1.8Rh0.2Si2. H - T phase dia-gram in H || c. Hc: critical field of the peak of ∂pm/∂H (inset) [92S2]. SQUID: supercon-ducting quantum interference device, VSM: vibrating sample magnetometer.

For Fig. 277 see previous page.

Page 301: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 3

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

Ce (Ru Rh ) Si1-x x 2 2

CEFx = 0.4

x = 0.3

0.06

0.05

0.04

0.03

0.02

0.01

01 10 1022 24 6 82 4 6 8

Fig. 279. Ce(Ru1–xRhx)2Si2. Temperature dependence of χm for x= 0.3 and 0.4. Solid line is obtained by the CEF model [98T3].

[K ]T 2 2

Magnetic field [T]0 Hµ

[T]

0H

µ

Ce Ru Rh Si1.7 0.3 2

T = 40 m K

0 1 2 3 4 5

3.5

6

H cII

pH

m0

[µCe

T]

B1

1−

−Su

scep

tibili

ty

0.6

0.5

0.4

0.3

0.2

0.1

0 2 4 6 8

3.5

3.4

3.3

3.2

3.1H Tc

2= 3.45 0.055−

Fig. 280. CeRu1.7Rh0.3Si2. Magnetic field dependence of differential susceptibility for H || c at different temperatures [98S1].

[K]T

Magnetic field [T]0 Hµ

[mT]

0H

µ

Mag

netic

mom

ent

[]

p mBµ

/ Ce

Ce Ru Rh Si1.7 0.3 2

T = 6 K3.5 K

1.4 K

40 mK

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 2 3 4 5

30

20

10

0 1 2 3 4

Fig. 281. CeRu1.7Rh0.3Si2. Magnetic field dependence of pm and temperature dependence of the field-width of hysteresis [98S1].

Temperature [K]T

Mag

netic

fiel

d[T

]0

H II c

Ce Ru Rh Si1.7 0.3 2

8

6

4

2

0 2 4 6 8 10

SDW

heavy fermi-liquid1st order

Tt2nd order

Fig. 282. CeRu1.7Rh0.3Si2. H-T phase diagram [98S1].

Page 302: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

[K]T

Susc

eptib

ility

[10

cmg

]g

43

1−

[10

cmg

]g

43

1−

Ce Ru Rh Si1.7 0.3 2

1.0

0.8

0.6

0.4

0.2

0 100 200 300

1.2

1.4

1.6

a

a

c

c1.0

0.8

0.6

0.4

0.2

0 10 20 30 40

1.2

1.4

1.6

Fig. 283. CeRu1.7Rh0.3Si2. Temperature dependence of χg with H || a and c [96T1].

Ce Ru Rh Si1.7 0.3 2

Magnetic field [T]0 HµM

agne

tic m

omen

t[

]p m

Bµ/ C

e

T = 1.8 K

HM

Hc

H cII1.0

0

0.2

0.4

0.6

0.8

0 2 4 60

2

4

6

8

10

pH

m0

[

µ

CeT

]B

11

−−

10−5

Fig. 284. CeRu1.7Rh0.3Si2. Magnetic field and field derivative along the c axis at 1.8 K [96T1].

Ce Ru Rh Si1.7 0.3 2

Magnetic field [T]0 Hµ

Mag

neto

stric

tion

/[1

0]

∆l l

−4

∆ l l c/ II

II a

H cII

T = 4.2 KT = 1.4 K

8

6

4

2

0 2 4 6 8

Fig. 285. CeRu1.7Rh0.3Si2. Magnetic field dependence of the magnetostriction along the a and c axes with H || c. Solid and dashed lines show the data at 1.4 and 4.2 K, respectively [96T1].

Ce Ru Rh Si1.5 0.5 2

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p mBµ

/ Ce

T = 1.5 K

0.14

0.12

0.10

0.08

0.06

0.04

0.02

00 4 8 12 16 20

1.5

1.0

0.5

0

pH

m0

[µCe

T]

B1

1−

Fig. 286. CeRu1.5Rh0.5Si2. Magnetic field dependence of magnetization of piece of single crystal (H || c) at 1.5 K and its derivative ∂pm/∂H vs. H [94H1].

Page 303: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 5

Temperature [ K ]T

Ce Ru Rh Si1.5 0.5 2

TN

Heat

capa

city

[Jm

olK

]C p

−−

11

Resis

tivity

[

cm]

µΩ⋅

2.0

1.5

1.0

0.50 2 4 6 8

60

50

40

30

20

Fig. 287. CeRu1.5Rh0.5Si2. Temperature dependence of a single crystal resistivity and polycrystal Cp [94H1].

Temperature [ K ]T

Susc

eptib

ility

[10

cmm

ol]

m2

31

−−

Ce Ru Rh Si1.5 0.5 2

10co

unts

per

6 m

in−3

Q = (1,0,0.5)

TN

8

6

4

2

01.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

4.5

4.1

4.2

4.3

4.4

4.0

Fig. 288. CeRu1.5Rh0.5Si2. χm and variations of the intensity of the (1,0,0.5) magnetic reflection vs. T [94H1].

Ce Ru Si Ge2 2-x x

x = 0.35

Mag

netic

mom

ent

[]

p CeB

µ

Ce Ru Si Ge2

Ce Ru Ge2 2

0.2

0.1

Temperature [ K ]T

2.0

1.5

1.0

0.5

0 4 8 12

Fig. 289. CeRu2Si2–xGex. Temperature dependence of pCe derived from powder neutron diffraction [92D1].

Ce Ru Si Ge2 2-x x

x = 0.2x = 0.1

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p CeB

µ

Ce Ru Si Ge2

2.0

1.5

1.0

0.5

0 4 8 12

Fig. 290. CeRu2Si2–xGex. Temperature dependence of pCe with H || c for single crystals with various concen-trations [92D1].

Page 304: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.5 Rare earth elements and 4d or 5d elements

Ce Ru ( Si Ge )2 1-x x 2

x = 0.8

0.2

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p mB

µ/ C

e

0.4

0.6

1.2

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8

Fig. 291. CeRu2(Si1–xGex)2. Magnetic field depend-ence of magnetization of random powders for differ-ent x [96B2].

Temperature [K]T

Ce Ru ( Si Ge )2 1-x x 2

6 7 8 9 10 11

0.3

0.2

0.1

Susc

eptib

ility

CeT

]B

11

−− x = 0.4

x = 0.2

Fig. 292. CeRu2(Si1–xGex)2. Temperature dependence of χ for different concentrations [96B2].

Temperature [K]T

CeRu Ge2 2

Susc

eptib

ility

[10

mm

ol]

m5

31

−−

10 150

5

10

Fig. 293. CeRu2Ge2. Temperature dependence of χm. Solid line is guide to the eye [88B1].

Temperature [K]T

CeRu Ge2 2T1

T2

p = 1 bar4.9 kbar10.5 kbar

Resis

tanc

e[m

]R

Ω

2.0

1.5

1.0

0.5

0 5 10 15

Fig. 294. CeRu2Ge2. Temperature dependence of resistance R at various pressures. Magnetic transition temperatures are indicated by arrows (see Fig. 296) [95U2].

Page 305: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 7

Temperature [K]T

CeRh Ge2 2 T1

T2

1.0

0.9

0.80 10 20 30

Norm

alize

d re

sista

nce

()/

(=

30K

)R

TR

T

p = 1 bar9.0 kbar17.820.9

Fig. 295. CeRh2Ge2. Temperature dependence of resistivity at various pressures [95U2].

Tem

pera

ture

[K]

T M

Pressure [kbar]p

CeRu Ge2 2

T1

T2

10

0 5 10 15

5

15

Fig. 296. CeRu2Ge2. Pressure dependence of magnetic transition temperatures from paramagnetic (T1) to incommensurate antiferromagnetic (T2) suggested, obtained from resistivity measurements [95U2].

Tem

pera

ture

[K]

T M

Pressure [kbar]p

CeRh Ge2 2

T1

T2

30

20

10

0 5 10 15 20 25

Fig. 297. CeRh2Ge2. Pressure dependence of magnetic transition temperature from paramagnetic (T1) to commensurate antiferromagnetism (T2) suggested, obtained from resistivity measurements [95U2].

Magnetic field [T]0 Hµ

Ce( Ru Pd ) Si1-x x 2 2

Mag

netic

mom

ent

[]

p mBµ

/ Ce

0.8

0.6

0.4

0.2

0 5 10 15 20

T = 4.2 K

Fig. 298. Ce(Ru1–xPdx)2Si2. Magnetic field dependence of magnetization at 4.2 K for x = 0.5 (solid triangles), 0.1 (+), 0.2 (×), 0.025 (solid circles), and x = 0 (solid squares) [95B2].

Page 306: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.5 Rare earth elements and 4d or 5d elements

Magnetic field [T]0 Hµ

Ce( Ru Pd ) Si1-x x 2 2

2.0

1.5

1.0

0.5

0 5 10 15

[ µCe

T]

pH

m0

B1

1−

Fig. 299. Ce(Ru1–xPdx)2Si2. Magnetic field depend-ence of differential susceptibility ∂pm/∂H scaled to the low-field values. x = 0.05 (solid triangles), 0.1 (+), 0.2 (×), 0.025 (solid circles), and x = 0 (solid squares) [95B2].

Néel

tem

pera

ture

[K]

T N

Ce( Ru Pd ) Si1-x x 2 2

Heat

coef

ficie

nt[m

Jmol

K]

−−

12

Pd content x

1000

800

600

400

200

00 0.5 1

10

8

6

4

2

0

Fig. 300. Ce(Ru1–xPdx)2Si2. Magnetic phase diagram. Solid circles: TN , open circles: extrapolated T→0-value of γ(T) = Cm(T)/T [95K2].

Ce( Ru Pd ) Si1-x x 2 2

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m3

31

−−

H cIIH cIIx = 0.02 ( )

0.10 ( )0.500.850.95

70

60

50

40

30

20

10

0 10 20 30 40 50

Fig. 301. Ce(Ru1–xPdx)2Si2. Temperature dependence of χm for x = 0.02 (H || c), x = 0.10 (H || c), x = 0.50, 0.85, 0.95 [95K2].

Temperature [K]T

x = 0.020.100.500.95

0 5 10 15

5

4

3

2

1Heat

capa

city

[Jm

olK

]C m

11

−−

Ce( Ru Pd ) Si1-x x 2 2

Fig. 302. Ce(Ru1–xPdx)2Si2. Temperature dependence of the magnetic part of the specific heat Cm for x = 0.02, 0.10, 0.50, and 0.95. Samples for x = ≥ 0.30 are polycrystals [95K2].

Page 307: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 9

Ce( Ru Pd ) Si1-x x 2 2T = 2K

x = 0.03

x = 0.07

Ce Ru Si2 2

0 2 4 6 8Magnetic field [T]0 Hµ

pH

m/

Fig. 303. Ce(Ru1–xPdx)2Si2. Magnetic field depend-ence of the differential susceptibility of single crystal (for phase diagram see Fig. 19) at 2 K [95S3].

Ce Ru Si2 2

T = 1.5K

Magnetic field [T]0 Hµ

H cII

p =0 2 kbar

HM

0.5

Mag

netic

mom

ent

[p m

Bµ/ C

e]

1.5

1.0

0.5

0 5 10 15 20

Fig. 304. CeRu2Si2. Magnetic field dependence of pm at 1.5 K and for H || c axis at various pressures [88M1.

Ce Ru Si2 2

T = 4.2K

Magnetic field [T]0 Hµ

p =0

0 5 10 15 20

3.1 3.6 4.60.9 kbar

2.0

7.5

6.5

5.5

4.5

3.5

2.5

Mag

neto

resis

tivity

[cm

]µΩ

⋅m

Fig. 305. CeRu2Si2. Magnetic field dependence of ρm at 4.2 K at various pressures (H || c, i ⊥ c) [88M1].

Ce Ru Si2 2

T = 1.2K

Magnetic field [T]0 Hµ

p = 0

0 5 10 15 20

3.15.2

0.9 kbar 2.0

3.5

2.5

Mag

neto

resis

tivity

[cm

]µΩ

⋅m

4.0

4.5

3.0

2.0

Fig. 306. CeRu2Si2. Magnetic field dependence of ρm at 1.2 K at various pressures (H || c, i ⊥ c) [88M1].

Page 308: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.5 Rare earth elements and 4d or 5d elements

CeRu Si2 2

T = 1.4K

Magnetic field [T]0 Hµ0 5 10 15 20

Mag

neto

stric

tion

/[1

0]

∆l l

−4

Mag

neto

stric

tion

/[1

0l l

−4

T]

−1µ 0

H

1.0

0.5

0

3

2

1

Fig. 307. CeRu2Si2. Magnetic field dependence of magnetostriction (H || c) at 1.4 K and its field deriva-tive. Solid lines are fits according to equation MsatΦ[H/Hs(P)] [88M1].

T [K]

Pressure [kbar]p

Néel

tem

pera

ture

[K]

T N

TN L

TN

40

20

00 10 20 30

Ce Pd Si2 2

Ce Pd Si2 2

CeRh Si2 2

Ce Rh Si2 2

0 50

(rela

tive)

Fig. 308. CeRh2Si2, CePd2Si2. Magnetic phase dia-grams [97G2].

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m3

31

−−

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

Ce Pd Si2 2

Ce Rh Si2 2

14

12

10

8

6

4

12

10

8

6

4

20 50 100 150 200 250 300

500

400

300

200

100

400

350

300

250

200

150

100

II aII c

II aII c

Fig. 309. CeRh2Si2, CePd2Si2. Tem-perature dependence of χm and χm

–1

of single crystal samples along the a and c axis. Solid curves indicate the calculated results [98H1].

Page 309: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 11

Temperature [K]T

Heat

capa

city

/[m

J mol

K]

CT

m1

2−

Entro

py[J

mol

K]

S−

−1

1

Ce Rh Si2 2p = 1 bar

500

400

300

200

100

00 10 20 30 40 50

8

6

4

2

0

Fig. 310. CeRh2Si2. Temperature dependence of Cm/T obtained by subtracting the specific heat of LaRh2Si2 from that of CeRh2Si2. The solid curve is the magnetic entropy vs. temperature. The dotted line corresponds to S = R ln2 [96M3].

Ce Rh Si2 2

Pressure [kbar]p

Norm

alize

d Né

el te

mpe

ratu

re(

Tp

N/

(0)

T N

1.0

0.8

0.6

0.4

0.2

0 5 10 15 20

)

Fig. 311. CeRh2Si2. Pressure dependence of the Néel temperature normalized to its value at ambient pres-sure [96M3]. Triangle: [86T1]

Temperature [K]T Temperature [K]T

Susc

eptib

ility

[10

mm

ol]

m9

31

−−

Susc

eptib

ility

[10

mm

ol]

m9

31

−−

Ce Pd Si2 2

Ce Rh Si2 2

H II textures

H II textures

H textures

T

x = 0.3 0.2

0.10.95

x = 0.7

0.9

0.8

120

100

80

60

40

0 20 40 60 80

160

150

140

130

120

110

1000 4 8 12 16

a b

Ce( Pd Rh ) Si1-x x 2 2

Fig. 312. Ce(Pd1–xRhx)2Si2. Evolution of the AF tran-sitions: Temperature dependence of: (a) χm for x ≤ 0.3, H parallel to the direction of the textures and (b)

χm for x ≥ 0.7, H perpendicular to the direction of the textures. The full line for CeRh2Si2 || for comparison [97T5].

Page 310: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ility

[10

mm

ol]

m9

31

−−

Ce Rh Si2 2

Ce( Pd Rh ) Si1-x x 2 2

H II textures

Ce Pd Si2 2x = 0.3

0.6

0.7

0.8

µ = 0.1 T0 H0.4

160

140

120

100

80

60

40

201 10 10 2

Fig. 313. Ce(Pd1–xRhx)2Si2. Temperature dependence of χm at 0.1 T for H parallel to the direction of the textures [97T5].

Susc

eptib

ility

[10

mm

ol]

m9

31

−−

Ce Rh Si2 2

Ce( Pd Rh ) Si1-x x 2 2

Ce Pd Si2 2

H textures

T

H textures

T

a

b

H II textures

H II textures

150

120

90

60

30150

120

90

60

300 0.2 0.4 0.6 0.8 1.0

Rh content x

Fig. 314. Ce(Pd1–xRhx)2Si2. Concentration dependence of χm || (full symbols) and χm ⊥ (open symbols) at 40 K (a) and 2 K (b) [97T5].

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

Ce Ni Al2 3

Ce Pd Al2 3

Ce( Pd Ni ) Al1-x x 2 3

0.10

0.08

0.06

0.04

0.02

0 20 40 60 80 100

x = 0.10.20.5

Fig. 315. Ce(Pd1–xNix)2Al3 . Temperature dependence of χm for different x [95F1].

Ce Pd Mn Si2-x x 2

4.5

4.0

3.5

3.0

2.5

2.0

400

350

300

250

200

150

100

50

00 2.01.00.5 1.5

Mn content x

Mag

netic

mom

ent

[]

p eff

Néel

tem

pera

ture

[K]

T N

Fig. 316. CePd2–xMnxSi2. Concentration dependence of the total paramagnetic moment and Néel temperature [94G2].

Page 311: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 13

Ce Pd Mn Si2-x x 2

4.5

4.0

3.5

3.0

2.5

2.0

0 2.01.00.5 1.5Mn content x

Mag

netic

mom

ent

[]

pµ B

1.5

1.0

0.5

0

3.3

3.2

3.1

3.0Va

lenc

e

peff

pCe

pMn

T = 10 K

T = 300 K

Fig. 317. CePd2–xMnxSi2. Concentration dependence of the valence at 10 and 300 K, and the total magnetic moment [94G2].

Ce Pd Mn Si2-x x 2

4.5

4.4

4.3

4.2

4.1

4.0

0 2.01.00.5 1.5Mn content x

3.9

Latti

ce p

aram

eter

s,

/2.5

[ A°]

ac

180

170

160

150

Unit

cell

vol

ume

[A°]

V3

V

a

b

Fig. 318. CePd2–xMnxSi2. Concentration dependence of the lattice parameter and the unit cell volume [94G2].

Pressure [kbar]p

Néel

tem

pera

ture

[K]

T N

Ce Pd Ge2 2

5.6

5.4

5.2

5.0

4.8

4.6

4.40 5 10 15 20 25

Fig. 319. CePd2Ge2. Pressure dependence of the Néel temperature [96O1].

CEF

Ce Pd Sn2 2

4

3

2

1

0 50 100 150 200Temperature [K]T

Heat

capa

city

[Jm

olK

]C m

11

−−

Fig. 321. CePd2Sn2. Temperature dependence of Cm. The solid curve shows the result from the calculations [98K2].

Page 312: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

Ce Pd Sn2 2

Ce Pd Sn2 2

Ce La Pd Sn0.7 0.3 2 2

1000

H = 100 Oe

500

0.4

0.3

0.2

0.1

00 1 2 3 4

87

86

85

84

83

82

810 1 2 3 4 5

[cm

]µΩ

[K]T

Fig. 320. CePd2Sn2, Ce0.7La0.3Pd2Sn2 Temperature dependence of χm [98K2].

Ce Pt Si2 2

Magnetic field [T]µ0 H

H II (100)

T = 1.5 K

Mag

netic

mom

ent

[]

p mBµ

/Ce

0.12

0.10

0.08

0.06

0.04

0.02

00 2 4 6 8

300 mK

0.025

0.020

0.015

0.010

0.005

pH

m0

[ µCe

T]

B1

1−

Fig. 323. CePt2Si2. Magnetization and differential suscep-tibility [95S1].

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m2

31

−−

Ce Rh Si2 3 5

Ce Rh Ge2 3 5

1.4

1.6

1.2

1.0

0.8

0.6

0.4

0.2

0 50 100 150 200 250 300

Fig. 324. Ce2Rh3Ge5, Ce2Rh3Si5. Temperature depend-ence of χm [90G1].

Page 313: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 15

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m2

31

−−

Ce Ir Si2 3 5

Ce Ir Ge2 3 5

1.4

1.6

1.2

1.0

0.8

0.6

0.4

0.2

0 50 100 150 200 250 300

Fig. 325. Ce2Ir3Ge5, Ce2Ir3Si5. Temperature depend-ence of χm [90G1].

Temperature [K]T

Susc

eptib

ility

[10

cmm

ol]

m2

31

−−

Ce Ir Ge2 3 5

1.3

1.2

1.1

1.0

0.90 5 10 15 20 25 30

Fig. 326. Ce2Ir3Ge5. Low temperature dependence of χm [90G1].

Temperature [K]T

Pr Ru Si2 2

Inv.

susc

eptib

ility

[10

g cm

]g

43−

−1

a

c

15

10

5

0 100 200 300

Fig. 327. PrRu2Si2. Temperature dependence of χg

–1 along the c and a axis. The solid lines are calculated with the CEF parameter B2

0 = – 14.3 K [92S3].

Mag

netic

mom

ent

[]

p mBµ

/f.u.

Magnetic field [T]µ0 H eff

T = 4.2 K

Pr Ru Si2 2

3

2

1

0 1 2 3 4 5 6

100 110

001⟨ ⟩

⟨ ⟩ ⟨ ⟩

Fig. 328. PrRu2Si2. Magnetic field dependence of pm along the main symmetry directions at 4.2 K on the single crystal [92S3].

Page 314: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Mag

netiz

atio

n

[G cm

g]

31−

Pr Ru Si2 2

H a= 0.92 kOe

a

c

25

20

15

10

5

0 10 20 30 40 50

Fig. 329. PrRu2Si2. Temperature dependence of σ along the c and a axis at 0.92 kOe on single crystal [92S3].

Temperature [K]T

Nd Ru Si2 2 H = 2 kOe

a

c

0 10 20 30 40 50

Susc

eptib

ility

[10

cmg

]g

23

1−

60

2.0

1.5

1.0

0.5TN

Fig. 330. NdRu2Si2. Temperature dependence of χg at H = 2 kOe, applied || to a and c axes on the single crystal [90S5].

Temperature [K]T

Nd Ru Si2 2

a

c

Inv.

susc

eptib

ility

[10

g cm

]g

43−

−1

8

6

4

2

0 100 200 300

Fig. 331. NdRu2Si2. Temperature dependence of χg

–1 at 2 kOe applied || to the a and c-axes on the single crystal. The broken line follows the Curie law [90S5].

Page 315: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 17 M

agne

tic m

omen

t[

]p m

Bµ/f.

u.

Magnetic field [kOe ]H a

T T= 4.2 K = 12 K

100 110

001

T = 16 K T = 29 K

Nd Ru Si2 2

0

0

020 2040 4060 60

4

4

3

3

2

2

1

1

a b

c d

⟨ ⟩

⟨ ⟩ ⟨ ⟩

Fig. 332. NdRu2Si2. Magnetic field dependence of pm along the c axis of the single crystal at 4.2 K (a),

12 K (b), 16 K (c) and 29 K (d) K. Magnetization in the c plane is only shown in (a) [90S5].

Temperature [K]T

Resis

tivity

d

/ dT

Resis

tivity

d

/ dT

[cm

K]

µΩ⋅

−1

[cm

K]

µΩ⋅

−1

Tb Ru Si2 2Nd Ru Si2 2TC

TN TN

0.8

0.4

0

0 20 40 60 80 0 30 60 90

0

0.4

0.8

Fig. 333. NdRu2Si2, TbRu2Si2. Tem-perature dependence of the derivative of the electrical resistivity [92P1].

Page 316: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Nd Ru Si2 2

10

8

6

4

2

05 10 15 20 25 30

AF

F

P

F I

Mag

netic

fiel

d[k

Oe]

H

Fig. 334. NdRu2Si2. H - T magnetic phase diagram. Circles: isothermals, squares: isofields [94S1].

Nd Ru Si2 2

Magnetic field [kOe]HM

agne

tic m

omen

t[

]p m

Bµ/f.

u.

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 5 10 15

T = 5.5 K10.514.517.518.519.020.021.522.5

Fig. 335. NdRu2Si2 . Isothermal magnetization vs. H at several temperatures [94S1].

Mag

netic

mom

ent

[]

p mBµ

/f.u.

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

H = 1 kOe2345.367810

Nd Ru Si2 2

10 15 20 25 30Temperature [K ]T

Fig. 336. NdRu2Si2. Temperature de-pendence of magnetization at several applied magnetic fields [94S1].

Nd Ru Ge2 2

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/f.u.

T = 1.5 K

[K]T

4

3

2

1

00 20 40 60 80

[001]

[kO

e]/f

mB

µ.u

.

1.6

1.2

0.8

0.4

00 5 10 15 20 25 30

T N

H = 960 Oe[001]

Fig. 337. NdRu2Ge2. Magnetic field dependence of pm at 1.5 K along the three symmetry axes. Along [001] the variation corresponds to the first magnetization curve in an increasing and a decreasing field. Inset: temperature dependence of χm at 960 Oe along the c axis [94G1].

Page 317: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 19

Magnetic field [kOe]Hi

Mag

netic

mom

ent

[]

p mBµ

/f.u. T = 5 K

[001]Nd Ru Ge2 2

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 1.0 2.0 3.0 4.0

13

15

16

Fig. 338. NdRu2Ge2. Internal field (applied field cor-rected for demagnetizing field effects) dependence of magnetization at different temperatures [94G1].

Mag

netic

fiel

d[k

Oe]

H i

Nd Ru Ge2 2

3.5

3.0

2.5

2.0

1.5

0.5

1.0

0 5 10 15 20 25Temperature [K]T

H cII

TN

C

C.F PI .Tt

Fig. 339. NdRu2Ge2. (H,T) phase diagram. C: tricriti-cal point. Full and dashed lines are first and second order transition, respectively. I.C. denotes the incom-mensurate or long-range commensurate propagation vector [94G1].

Temperature [K]T

Inv.

susc

eptib

ility

[kOe

f.u.

/ µ]

mB

−1

Nd Ru Ge2 2

1000

800

600

400

200

0 50 100 150 200 250 300

[100]

[110]

[001]

Fig. 340. NdRu2Ge2. Temperature dependence of χm

–1 along the c axis [94G1].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

50

40

30

20

10

0 100 200 300

Eu Pt Si2 2

400

Fig. 341. EuPt2Si2. Temperature dependence of χm

–1. Continuous line: fit to the Curie-Weiss behaviour [90N1].

Page 318: 2 Magnetic properties of rare earth elements, alloys and ...

20 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T0 10 20 30 40 50

Eu Pt Si2 2

Susc

eptib

ility

[cm

mol

]m

31−

0.10

0.12

0.14

0.16

0.18

0.20

Fig. 342. EuPt2Si2. Low-temperature dependence of χm [90N1].

Temperature [K]T

Eu Pd Si2 2

Mag

netic

fiel

d[T

]0

t

120

100

80

60

40

20

0 50 100 150 200

Fig. 344. EuPd2Si2. Temperature dependence of the metamagnetic transition field Ht in the increasing (open circles) and decreasing (solid circles) field process, respectively [96W1].

For Fig. 343 see next page.

Eu Pd Si2 2

Magnetic field [T]0 Hµ

T = 6 K

90

110130

140

0 20 40 60 80 100

pH

m/

Susc

eptib

ility

(re

lativ

e)

1000

750

500

250

Fig. 343. EuPd2Si2. Magnetic field dependence of ∂pm/∂H at various tem-peratures [96W1].

For Fig. 344 see previous page.

Page 319: 2 Magnetic properties of rare earth elements, alloys and ...

References

86T1 Thompson, J.D., Parks, R.D., Borges, H.: J. Magn. Magn. Mater. 54-57 (1986) 377 88B1 Bohm, A., Caspary, R., Habel, U., Pawlak, L., Zuber, A., Steglich, F.: J. Magn. Magn. Mater.

76-77 (1988) 150 88M1 Mignot, J.-M., Flouquet, J., Haen, P., Lapierre, L., Puech, L., Voiron, J.: J. Magn. Magn.

Mater. 76- 77 (1988) 97 90G1 Godart, C., Gupta, L., C., Tomy, C., V., Patil, S., Nagarajan, R., Beaurepaire, E.: Physica B 163

(1990) 163 90N1 Nagarajan, R., Sampathkumaran, E., Vijayaraghavan, R.: Physica B 163 (1990) 591 90S5 Schobinger-Papamantellos, P., de Mooij, D.B., Buschow, K.H.J.: J. Less-Common Met. 163

(1990) 319 92D1 Dakin, S., Rapson, G., Rainford, B.D.: J. Magn. Magn. Mater. 108 (1992) 117 92P1 Pinto, R.P., Amado, M.M., Salgueiro Silva, M., Braga, M.E., Sousa, J.B., Chavalier, B.,

Etourneau, J.: J. Magn. Magn. Mater. 104-107 (1992) 1235 92S2 Sakakibara ,T., Sekine, C., Amitsuka, H., Miyako Y.: J. Magn. Magn. Mater. 108 (1992)193 92S3 Shigeoka, T., Iwata, N., Fujii, H.: J. Magn. Magn. Mater. 104-107 (1992) 1229 94G1 Garnier, A., Gignoux, D., Schmitt, D., Shigeoka, F.Y., Zhang: J. Magn. Magn. Mater. 140-144

(1994) 897 94G2 Godart, C., Flandorfer, H., Fogl, P.: Physica B 199-200 (1994) 512 94H1 Hu, Z., Yelon, W.B.: J. Appl. Phys. 76 (1994) 6162 94S1 Salgueiro da Silva, M., Sousa, J.B., Chevalier, B., Etourneau, J.: J. Appl. Phys. 76 (1994) 634495B2 Besnus, M.J., Braghta, A., Haen, P., Kappler, J.P., Meyer, A.: Physica B 206-207 (1995) 295 95F1 Fujiwara, K., Yamanashi, Y., Kumagai, K.: Physica B 206-207 (1995) 228 95K1 Kawarazaki, S., Kobashi, Y., Fernandez-Baca, J.A., Murayama, S., Onuki, Y., Miyako, Y.:

Physica B 206-207 (1995) 298 95K2 Kusumoto, T., Takagi, S., Suzuki, H.: Physica B 206-207 (1995) 301 95S1 Sakakibara, T., Tayama, T., Mitamura, H., Matsuhira, K., Amitsuka, H.: Physica B 206-207

(1995) 249 95S3 Sekine, C., Sakamoto, H., Muryayama, S., Hoshi, K., Sakakibara, T.: Physica B 206-207

(1995) 291 95U2 Uwatoko, Y., Oomi, G., Graf, T., Thompson,J.D., Canifield, P.C., Borges, H.A., Godart, C.,

Gupta, L.C.: Physica B 206-207 (1995) 236 96B2 Besnus, M.J., Haen, P., Mallmann, F., Kappler, J.P., Meyer, A.: Physica B 223-224 (1996) 32296M3 Movshovich, R., Graf, T., Mandrus, D., Hundley, M.F., Thompson, J.D., Fisher, R.A., Phillips,

N.E., Smith, J.L.: Physica B 223-224 (1996) 126 96O1 Oomi, G., Uwatoko, Y., Sampathkumaran, E.V., Ishikawa, M.: Physica B 223-224 (1996) 303 96T1 Takeuchi, T., Miyako, Y.: J. Phys Soc. Jpn. 65 (1996) 3242 96W1 Wada, H., Mitsuda, A., Shiga, M.: J. Phys. Soc. Jpn. 65 (1996) 3471 97G2 Grosche, F.M., Julian, S.R., Mathur, N.D., Carter, F.V., Lonzarich, G.G.: Physica B 237-238

(1997) 197 97T5 Trovvarelli, O., Gomez-Berisso, M., Pedrazzini, P., Bosse, D., Geibel, C., Sereni, J.G.,

Steglich, F.: J. Alloys Comp. 275-277 (1997) 569 98H1 Hideki Abe, Hideaki Kitazawa, Hiroyuki Suzuki, Giyuu Kido, Takehiko Matsumoto.: J. Magn.

Magn. Mater. 177-181 (1998) 479 98K2 Kuwai, T., Takagi, H., Ito, H., Isikawa, Y., Sakurai, J., Nishimura, K., Paulsen, C.C.: J. Magn.

Magn. Mater. 177-181 (1998) 399 98S1 Sekine, C., Tayama, T., Sakakibara, T., Murayama, S., Shirotani, I., Onuki, Y.: J. Magn.

Magn. Mater. 177-181 (1998) 411 98T3 Taniguchi, T., Tabata, Y., Tanabe, H., Miyako, Y.: J. Magn. Magn. Mater. 177-181 (1998) 419

Page 320: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 1

Eu Pd Si2 2

Magnetic field [T]0 Hµ

T = 6 K

90

110130

140

0 20 40 60 80 100

pH

m/

Susc

eptib

ility

(re

lativ

e)

1000

750

500

250

Fig. 343. EuPd2Si2. Magnetic field dependence of ∂pm/∂H at various tem-peratures [96W1].

For Fig. 344 see previous page.

Temperature [K]T

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Eu( Pd Pt1-x x ) Si2 2

50

40

30

20

10

0 100 200 300

x = 0.05 x = 0

H = 8.28 kOe

Fig. 345. Eu(Pd1–xPtx)2Si2. Temperature dependence of χm

–1 at 8.28 kOe, for x = 0 and 0.05. Solid lines show the Curie-Weiss law [96W1].

x = 0.05

x = 0

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p EuBµ

T = 6 K

Eu( Pd Pt1-x x ) Si2 2

8

6

4

2

0 50 100 150

Fig. 346. Eu(Pd1–xPtx)2Si2. Magnetic field dependence of pEu for x = 0 and 0.05 at 6 K [96W1].

Page 321: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Inv.

susc

eptib

ility

[T

kg A

m]

−−

12

−1

0 100 200 300

2.00

1.60

1.20

0.80

0.40

Gd Ru Si2 2Gd Rh Si2 2Gd Pd Si2 2Gd Ag Si2 2

Fig. 347. GdRu2Si2, GdRh2Si2, GdPd2Si2, Temperature dependence of χ–1 [97T1].

Gd Ru Si2 2Gd Rh Si2 2Gd Pd Si2 2Gd Ag Si2 2

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p GdBµ

8

6

4

2

0 4 8 12 16 20

Fig. 348. GdRu2Si2, GdRh2Si2, GdPd2Si2. Magnetic field dependence of pGd at 4.2 K [97T1].

Temperature [K]T

Susc

eptib

ility

[/ f

.u.k

Oe]

mBµ

Gd Ru Si2 2

[100]

[110]

[001]

H = 0.96 kOe

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.20 10 20 30 40 50 60 70

Fig. 349. GdRu2Si2. Temperature dependence of χm for the three main crystallographic axes at 0.96 kOe. Note that the three curves along the main crystallo-graphic axes are superimposed [95G3].

Temperature [K]T

Inv.

susc

eptib

ility

[ kOe

f.u.

/ µ]

mB

Gd Ru Si2 2

[100][001] and

200

150

100

50

0 100 200 300

Fig. 350. GdRu2Si2. Temperature dependence of χm

–1 along the [001] and [100] axes [95G3].

Page 322: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 3

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

Gd Ru Si2 2[001]

T = 1.5 K

30

39

50

0 20 40 60 80

2

4

6

7

5

3

1

Fig. 351. GdRu2Si2. Magnetic field dependence of pm for the H || [001] axis at different temperatures [95G3].

Gd Ru Si2 2

[001]

Magnetic field [kOe]HM

agne

tic m

omen

t[

]p m

Bµ/f

.u.

T = 1.5 K

8

6

4

2

0 50 100 150

Fig. 352. GdRu2Si2. Magnetic field dependence of pm at 1.5 K for H || [001] up to 140 kOe [95G3].

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

T = 1.5 K

30

39

50

0 20 40 60 80

2

4

6

7

5

3

1

Gd Ru Si2 2[100]

Fig. 353. GdRu2Si2. Magnetic field dependence of pm for H || [100] at different temperatures [95G3].

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

T = 1.5 K

0

2

4

6

7

5

3

1

Gd Ru Ge2 2

[100]

[001]

Magnetic field [ T ]µ0 H1 2 3 4 5 6

Fig. 355. GdRu2Ge2. Magnetic field dependence of pm at 1.5 K along and perpendicular to the c axis [96G1].

For Fig. 354 see next page.

Page 323: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.5 Rare earth elements and 4d or 5d elements M

agne

tic fi

eld

[kOe

]H

Mag

netic

fiel

d[k

Oe]

H

Gd Ru Si2 2[100]

[001]

Temperature [K]T Temperature [K]T

80

60

60

40

40

20

20

0 010 1020 2030 3040 4050 50

Fig. 354. GdRu2Si2. H - T phase diagrams for the H || [100] and [001] axes [95G3]. For Fig. 355 see previous page.

Gd Ru Ge2 2

Temperature [K]T

Heat

capa

city

[Jm

olK

]C m

11

−−

16

12

8

4

0 10 20 30 40

Fig. 356. GdRu2Ge2. Temperature dependence of the magnetic heat capacity Cm [96G1].

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

T = 4.2 K

Magnetic field [ T ]µ0 H

Gd Rh Si2 2

5

4

3

2

1

0 10 20 30 40

Fig. 357. GdRh2Si2. Magnetic field dependence of pm at 4.2 K of powder particles free to rotate in the ap-plied field [92S4].

Page 324: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 5 M

agne

tic m

omen

t[

]p m

Bµ/f

.u.

T = 4.2 K

Magnetic field [ T ]µ0 H

Tb Rh Si2 2

5

4

3

2

1

0 10 20 30 40

6

7

Fig. 358. TbRh2Si2. Magnetic field dependence at 4.2 K of powder particles, free to rotate in the applied field. The data above 7 T have been taken by means of a 35 T pulse in a decreasing magnetic field [92S4].

Temperature [K]T

Inv.

susc

eptib

ility

[ T kg

Am

]−

−1

2

Gd Os Si2 2Gd Ir Si2 2

Gd Pt Si2 2

Gd Au Si2 2

0 100 200 300

3.0

2.5

2.0

1.5

1.0

0.5

−1

Fig. 359. GdOs2Si2, GdIr2Si2, GdPt2Si2. Temperature dependence of χ–1 [97T1].

Gd Os Si2 2Gd Ir Si2 2

Gd Pt Si2 2

Gd Au Si2 2

8

6

4

2

0 4 8 12 16 20Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p GdBµ

Fig. 360. GdOs2Si2, GdIr2Si2, GdPt2Si2. Magnetic field dependence of pGd at 4.2 K [97T1].

Gd Ir Si3

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

40

30

20

10

00 100 200 300

[cm

mol

]m

31−

χ0.19

0.17

0.15

0.135 15 25

[K]T

Fig. 361. GdIrSi3. Temperature dependence of χm

–1. Inset: χ in the magnetic-order region [91S1].

Page 325: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.5 Rare earth elements and 4d or 5d elements

Gd Pt Si2 2

Temperature [K]T

[K]T

0 10 20 30

10 20 30

20

15

10

5Heat

capa

city

[Jm

olK

]C m

11

−− S[J

mol

K]

−−

11

20

10

0

15

5

Fig. 362. GdPt2Si2. Magnetic contribution to the magnetic heat capacity. Inset: magnetic entropy; the hatched line indicates the R ln(8) limit [91G1].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

40

30

20

10

0 0 100 200 300

Gd Rh Si2 3 5Tb Rh Si2 3 5Dy Rh Si2 3 5

Er Rh Si2 3 5

Ho Rh Si2 3 5

Tm Rh Si2 3 5 Fig. 363. Gd2Rh3Si5, Tb2Rh3Si5, Dy2Rh3Si5, Ho2Rh3Si5, Er2Rh3Si5, Tm2Rh3Si5. Temperature de-pendence of χm

–1 [97P1].

Temperature [K]T

Gd Rh Si2 3 5Tb Rh Si2 3 5Er Rh Si2 3 5

Heat

capa

city

[Jm

olK

]C p

−−

11

50

40

30

20

10

0 5 10 15 20 25

Fig. 364. Gd2Rh3Si5, Tb2Rh3Si5, Er2Rh3Si5. Tempera-ture dependence of Cp [97P1].

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

H cII

Ho Ru Si2 2

Tb Ru Si2 2

Dy Ru Si2 2

3

2

1

0 100 200 300

Fig. 366. TbRu2Si2, DyRu2Si2, HoRu2Si2. Tempera-ture dependence of χm with the magnetic field H || c [95T3].

For Fig. 365 see next page.

Page 326: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 7

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

Tb Ru Si2 2T = 7 K

10

6

2

−2

−6

−100 10 20 30 40 50

101520253035

40455055

Fig. 365. TbRu2Si2. Isothermal mag-netization at several temperatures [94S1].

For Fig. 366 see previous page.

H cII

H aII

Ho Ru Si2 2

Tb Ru Si2 2Dy Ru Si2 2

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p RB

3+µ

10

8

6

4

2

0 2 4 6

Fig. 367. TbRu2Si2, DyRu2Si2, HoRu2Si2. Magnetiza-tion vs. H. Open symbols: H || c, solid symbols: H || a [95T3].

H cII

Tb Ru Si2 2

Magnetic field [T]0 Hµ0 2 4

Mag

neto

stric

tion

[10

]∆

c−

2 Å

−4

−3

−2

−1

−5

Fig. 368. TbRu2Si2. Parallel magnetostriction vs. H with H || c. Solid circles: squared magnetization M(H)2 in arbitrary units [95T3].

Page 327: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.5 Rare earth elements and 4d or 5d elements

Tb Ru Si2 2

Temperature [K]T

Susc

eptib

ility

0 10 20 30

Fig. 369. TbRu2Si2. Temperature dependence of the ac susceptibility χ in zero field [98K1].

Tb Ru Si2 2

Magnetic field [kOe]H

Susc

eptib

ility

‘ (rel

ativ

e)

0 10 20 30

Fig. 370. TbRu2Si2. Magnetic field dependence of χ' at 3.5 K [98K1].

Tb Ru Si2 2

H = 02 kOe4 kOe

1.5

1.0

0.5

0 2 4 6 8 10Temperature [K]T

Heat

capa

city

[Jm

olK

]C p

−−

11

Fig. 371. TbRu2Si2. Temperature dependence of Cp [98K1].

Temperature [K]T

Susc

eptib

ility

[µ/ f

.u.O

e]

mB

II c

c

T

Tb Ru Si2 2H = 962 Oe

0.8

0.6

0.4

0.2

0 10 20 30 40 50 60

Fig. 372. TbRu2Si2. Temperature dependence of χm along the c axis and in the c plane at 962 Oe [95S5].

Page 328: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 9

II c

c

T

Tb Ru Si2 2T = 1.5 K

Magnetic field [kOe]H

[kOe]H

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

[]

p mBµ

/f.u

.

10

8

6

4

2

00 10 20 30 40 50 60 70

2.0

1.5

1.0

0.5

00 5 10 15 20 25

Fig. 373. TbRu2Si2. Magnetic field de-pendence of pm along the c axis and in the c plane at 1.5 K [95S5].

Temperature [K]T

Susc

eptib

ility

[µ/ f

.u.T

]m

B

Tb Ru Ge2 2

0 10 20 30 40 50

[001]TN

[100]µ = 0.1 T0 H

1.6

1.2

0.8

0.4

Fig. 374. TbRu2Ge2. Temperature dependence of χm at 0.1 T along [001] and [100] [96G1].

Temperature [K]T

Tb Ru Ge2 2

10 20 30 40

[001]

Mag

netic

fiel

d µ

[T]

0H3

2

1

0

TN

increasing H

Fig. 375. TbRu2Ge2. Temperature dependence of the H - T diagram for [001] direction [96G1].

Page 329: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.5 Rare earth elements and 4d or 5d elements

Magnetic field [T]H

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

Tb Ru Ge2 2[001]

T = 1.5 K

10

8

6

2

4

0 1 2 3 4 5µ0

Fig. 376. TbRu2Ge2. Magnetic field dependence of pm at 1.5 K along [001] [96G1].

Mag

netic

mom

ent

[]

p mBµ

/f.u

.

Tb Ru Ge2 2[001]

T = 6 K

10

8

6

2

4

0 1 2 3Magnetic field [T]0 Hµ

Fig. 377. TbRu2Ge2. Magnetic field dependence of pm at 6 K [96G1].

Mag

netic

mom

ent

[]

p TbBµ

[]

p TbBµ

Tb Ru Ge2 2T = 2 K

Magnetic field [T]0 Hµ

[T]0 Hµ

2.0

1.5

1.0

0.5

00 0.5 1.0 1.5

10

8

6

4

2

0 1 2 3

Fig. 378. TbRu2Ge2. Metamagnetic process. Low-field dependence of pTb at 2 K [97B3].

Tb Ru Ge2 2

Fig. 379. TbRu2Ge2. Magnetic structure at 2 K in ZF and the three first phases. Magnetizations of 17 succes-sive Tb planes ⊥ to Q are represented. Black dots corre-spond to nonmagnetic planes [97B3].

Page 330: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 11 M

agne

tic m

omen

t[

]p m

Bµ/ T

b

Tb Rh Ru2-x x Si 2

0.020

0.015

0.010

0.005

0.015

0.010

0.005

0 10 20 30 40 50 60 70Temperature [K]T

x = 1.75

x = 0.6

1.51.25

Tb Rh Si2

0.7

0.25

Fig. 380. TbRh2–x RuxSi2. Temperature dependence of pm for different x [93I1].

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/ Tb

T = 4.2 K

0

2

4

6

7

5

3

1

Tb Rh Ru1.2 0.8 Si 21127.740.55062

20 40 60 80 100 120 140 160

Fig. 383. TbRh1.2 Ru0.8Si2. High-field magnetization at various temperatures [93I1].

Tb Rh Ru2-x x Si 2

Tem

pera

ture

[K]

T

100

80

60

40

20

0 1.0 2.00.5 1.5Ru content x

LSW

P

AF

I

I

AF + SG

Fig. 381. TbRh2–xRuxSi2. Magnetic phase diagram in zero or low magnetic fields, determined from neutron diffraction. Solid triangles and circles: dc susceptibil-ity; open triangles: ac susceptibility; open circles: magnetization in low magnetic fields [93I1]. Tb Rh Ru2-x x Si 2

[K ]T

Hc [kOe]

120

100

60

40

202040

100

0.5 1.0 1.5 2.0

Fig. 382. TbRh2–xRuxSi2. (H,T,x) magnetic phase diagram [93I1].

Page 331: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.5 Rare earth elements and 4d or 5d elements

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/ Tb

T = 4.2 K

0

2

4

6

Tb Rh Ru0.25 1.75 Si 2

8

20 40 60 80

8

16.3

26

38

Fig. 384. TbRh0.25Ru1.75Si2. High-field magnetization at various temperatures [93I1].

Magnetic field [kOe]H

T = 12 K

0

Tb Rh Ru0.25 1.75 Si 2

20 40 60

4.2 K

/

pH

m

/

pH

m

Fig. 385. TbRh0.25Ru1.75Si2. Magnetic field depend-ence of differential magnetization at 4.2 and 12 K [93I1].

Criti

cal f

ield

[kOe

]H c

Tb Rh Si2 2

200

150

100

50

0 25 50 75Temperature [ K ]T

Fig. 386. TbRh2Si2. Temperature dependence of transition (critical) fields determined from ∂pm/∂H vs. H [93I1].

Magnetic field [kOe]H0

Tb Rh Si2 2

40

T = 4.2 K

/

pH

m

55 K

59 K

80 120

Fig. 387. TbRh2Si2. Magnetic field dependence of ∂pm/∂H at different temperatures [93I1].

Page 332: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 13

Tb Rh Si2 2

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/ Tb

0

2

4

6

7

5

3

1

20 40 60 80 100 120 140

69748187.7

T = 59 K

Fig. 388. TbRh2Si2. Magnetic field dependence of pm at different temperatures [93I1].

Tb Ru Pd2-x x Si 2Tb Rh Pd2-x x Si 2

Pd content x

Neel

tem

pera

ture

[K]

T N´

100

80

60

40

20

0 1 2 3

Fig. 389. TbRu2–xPdxSi2, TbRh2–xPdxSi2. Magnetic phase diagram [96I3].

Tb Ru Pd2-x x Si 2

Temperature [K]T

Susc

eptib

ility

(rela

tive)

ac

TN = 43 K9 K

x = 1.5

x = 1.0

x = 0.5

1.7

1.5

1.3

1.1

0.9

0.70 20 40 60

Fig. 390. TbRu2–xPdxSi2. Temperature dependence of χac for different concentrations [96I3].

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/Tb

T = 4.2 K

0

2

4

6

8

20 40 60 80

Tb Ru Pd2-x x Si 2x = 0.5

1

2

1.5

Fig. 391. TbRu2–xPdxSi2. Magnetic field dependence of pm for various concentrations at 4.2 K [96I3].

Page 333: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.5 Rare earth elements and 4d or 5d elements

Tb Ru Pd2-x x Si 2Tb Rh Pd2-x x Si 2

Pd content x0 1 2 3

165

1602.52.3

10.0

9.5

4.2

4.1a

c /a

Latti

ce p

aram

eter

s,

[Å],

/a

cc

aUn

it ce

ll vo

lum

e[Å

]V

3

Fig. 392. TbRu2–xPdxSi2, TbRh2–xPdxSi2. Concentra-tion dependence of the lattice constants a and c and of the ratio a/c of the unit cell [96I3].

Tb Rh Pd2-x x Si 2

Temperature [K]TSu

scep

tibili

ty(re

lativ

e)ac

TN = 15 K

x = 1.5

x = 1.0

x = 0.524

16.5

15.5

29

1.2

1.0

0.8

0.6

0.4

0.20 20 40 60 80 100

Fig. 393. TbRh2–xPdxSi2. Temperature dependence of χac for different temperatures [96I3].

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/ Tb

Tb Rh Pd2-x x Si 2 x = 2

6

5

4

3

2

1

0 20 40 60 80 100 120 140

0

1

1.5

0.75

0.5

Fig. 394. TbRh2–xPdxSi2. Magnetic field dependence of pm for various concentrations at 4.2 K [96I3].

Page 334: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 15

Tb Rh Si3

Temperature [K]T

[K]T

[10

cmg

]g

43

1−

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

30

20

10

00 100 200 300

9

10

8

7

60 4 8 12 16 20

50 150 250

Fig. 395. TbRhSi3. Temperature depend-ence of χm

–1 and χg at low temperatures [96J2].

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

T = 4.2 K

Tb Rh Si 3

Temperature[K ]

T

1014

2025

30

50

100 150

0 50 100 150 200

5.0

2.5

0

1020

3050

Fig. 396. TbRhSi3. Magnetic field dependence of pm at different temperatures [96J2].

Page 335: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.5 Rare earth elements and 4d or 5d elements

Tb Rh Si 3

a b Fig. 397. TbRhSi3. Magnetic structure: (a) helicoidal and (b) sine-modulated [96J2].

Tb Pd2 Si 2

a

b

c

Fig. 398. TbPd2Si2. Schematic representation of the magnetic structure at 1.5 K [97B5].

Tb Pd2 Si 2

Temperature [K]T

Wav

evec

tork

y

Wav

evec

tor k

z

0.18

0.17

0.16

0.19 0.41

0.40

0.39

0 5 10 15 20

Fig. 399. TbPd2Si2. Temperature dependence of wavevector components kz and ky [97B5].

Temperature [K]T

Mag

netic

mom

ent

[]

p TbBµ

Tb Pd2 Si 2

10.0

7.5

5.0

2.5

0 5 10 15 20

Fig. 400. TbPd2Si2. Temperature dependence of pTb [97B5].

Page 336: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 17

T = 4.2 K

Mag

netic

mom

ent

[]

p TbBµ

Magnetic field [kOe]H

Tb Ir Si2 2 12

2640

55

8

6

4

2

0 40 80 120 160

/f.u.

Fig. 401. TbIr2Si2. Magnetic field dependence of pTb at different temperatures [94S2].

Magnetic field [kOe]H

Tb Ir Si2 2

120

100

80

60

40

20

0 40 80 120 160

/(re

lativ

e)∂

∂ pTb

H

Fig. 402. TbIr2Si2. Magnetic field dependence of the differential magnetization at T = 4.2 K [94S2].

Temperature [K]T

Tb Ir Si2 2

Mag

netic

fiel

d[k

Oe]

H

150

100

50

0 25 50 75 100

Fig. 403. TbIr2Si2. Magnetic phase diagram [94S2].

Temperature [K]T

Tb Ir Si3

T = 10 Kt

T = 15.4 KN

H = 10 kOe

0 5 10 15 20 25 30

0.40

0.36

0.32

0.28

0.24

0.20

Susc

eptib

ility

[10

cmm

ol]

m5

31

−−

Fig. 404. TbIrSi3. Temperature dependence of χm at 10 kOe [98B3].

Page 337: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Tb Ir Si3H = 10 kOe

25

20

15

10

5

0 50 100 150 200 250 300

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

Fig. 405. TbIrSi3. Temperature dependence of χm

–1 at 10 kOe. TN = 15.4 K, Θ = 17 K, peff = 9.75 µB/f.u. [98B3].

Temperature [K]TM

agne

tizat

ion

(r

elat

ive)

Tb Ir Si3

T = 16 KN

T = 10 Kt

H = 100 Oe

50 Oe

30

25

20

15

10

5

0 5 10 15 20 25 30 35

Fig. 406. TbIrSi3. Temperature dependence of σ at low magnetic field [98B3].

Magnetic field [kOe]H

Tb Ir Si3T = 4.2 K

Mag

netic

mom

ent

[]

p mBµ

/f.u.

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 10 20 30 40 50

Hc1 = 18 kOe

Hc2 = 36 kOe

Fig. 407. TbIrSi3. Magnetic field dependence of pm at 4.2K. Hc1 and Hc2 denote critical fields [98B3].

a b

Tb Ir Si3

Fig. 408. TbIrSi3. Magnetic structures at different tem-peratures (a) a collinear AFI-type (16 K ≤ T≤ 7.4 K), and (b) sine modulated (11 < T < TN = 16 K ). Only Tb atoms are presented [98B3].

Page 338: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 19

Temperature [K]T

Mag

netic

mom

ent

[]

p TbBµ

Wav

evec

tor k

z

a

b

0.862

0.860

0.858

0.856

Tb Ir Si3

8

6

4

2

00 5 10 15

totalcollinearhelicoidal

Fig. 409. TbIrSi3. Temperature dependence of (a) total magnetic moment and collinear and helicoidal components and (b) propagation-vector component kz of the magnetic moment [98B3].

a b c

R T X 3R T X2 2R T X2 2 P−−I

R T X

R R R

X X X

T T T

X X X

R R R

X T X

T X X

X T T

R R R

Fig. 410. The tetragonal cells of (a) the ThCr2Si2 -type (space group I4/mmm), (b) the CaBe2Ge2 -type

(space group P4/nmm), and (c) BaNiSn3 -type (space group I4/mm) [98B3].

Page 339: 2 Magnetic properties of rare earth elements, alloys and ...

References

91G1 Gignoux, D., Morin, M., Schmitt, D.: J. Magn. Magn. Mater. 102 (1991) 33 91S1 Sanchez, J.P., Tomala, K., Łątka, K.: J. Magn. Magn. Mater. 99 (1991) 95 92S4 Szytula, A., Radwanski, R.J., de Boer, F.R.: J. Magn. Magn. Mater. 104-107 (1992) 1237 93I1 Ivanov. V., Vinokurowa, L., Szytula, A.: J. Alloys Comp. 201 (1993)109 94S1 Salgueiro da Silva, M., Sousa, J.B., Chevalier, B., Etourneau, J.: J. Appl. Phys. 76 (1994) 634494S2 Szytula, A., Ivanov, V., Vinokurova, L.: Acta Phys. Pol. 85 (1994) 95G3 Garnier, A., Gignoux, D., Iwata, N., Schmitt, D., Shigeoka, T., Zhang, F.Y.: J. Magn. Magn.

Mater. 140-144 (1995) 899 95S5 Shigeoka, T., Iwata, N., Garnier, A., Gignoux, D., Schmitt, D., Zhang, F.Y.: J. Magn. Magn.

Mater. 140-144 (1995) 901 95T3 Takeuchi, T., Taniguchi, T., Kudoh, D., Miyako, Y.: Physica B 206-207 (1995) 398 96G1 Garnier, A., Gignoux, D., Schmitt., D., Shigeoka, T.: J. Magn. Magn. Mater. 157-158 (1996)

389 96I3 Ivanov, V., Vinokurova, L., Mydlarz, T., Szytula, A.: J. Alloys Comp. 230 (1996) L5 96J2 Jaworska-Golab, T., Guillot, M., Kolenda, M., Ressouche, E., Szytula, A.: J. Magn. Magn.

Mater. 164 (1996) 371 96W1 Wada, H., Mitsuda, A., Shiga, M.: J. Phys. Soc. Jpn. 65 (1996) 3471 97B3 Blanco, J.A., Garnier, A., Gignoux, D., Schmitt, D.: J. Alloys Comp. 275-277 (1997) 565 97B5 Bazela, W., Baran, S., Leciejewicz, J., Szytula, A., Ding, Y.: J. Cond. Matter 9 (1997) 2267 97P1 Patil, N.G., Ramakrishnan, S.: Physica B 237-238 (1997) 597 97T1 Tung, L.D., Franse, J.J.M., Buschow, K.H.J., Brommer, P.E., Thuy, N.P.: J. Alloys Comp. 260

(1997) 35 98B3 Bazela, W., Stusser, N., Szytula, A., Zygmunt, A.: J. Alloys Comp. 275-277 (1998) 578 98K1 Kawae, T., Sakita, H., Hitaka, M., Takeda, K., Sigeoka, T., Iwata, N.: J. Magn. Magn. Mater.

177-181 (1998) 795

Page 340: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 1

-

-

- -

+

+ + + +

+

+ +

+

+ +

+

+

+

J2

J2

J2

J2

J1

J1

J1

J1

kz = 0kz = 1

kz = 1/2= 1/4

= 1/2

AF

AF AF

I

II I

IILSW LSW

F

1 > > 0.5kz 1< < 0.5k

R ( T,X ) 4 Fig. 411. R(T,X)4. Stability conditions of the ternary compounds for the exchange integrals J1 and J2 [97W1, 97B3].

Tb Rh Ir2 x x− Si2

150

0

1.0

2.0

100

x

T [K]

H [kOe]

100

Fig. 412. TbRh2–xIrxSi2. Magnetic phase diagram (H,T,x) [95I2].

Tb Rh Ir2 x x− Si 2

Néel

tem

pera

ture

[K]

T N

75

85

95

650 1.0 2.01.50.5

Ir content x Fig. 413. TbRh2–xIrxSi2. Concentration dependence of TN [95I2].

Page 341: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.5 Rare earth elements and 4d or 5d elements

Tb Rh Ir1.5 0.5 Si 2

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p mBµ

/f.u.

T = 4.2 K

14

35.3 53

64.7

64.7

35.353

4.2

14

0 40 80 120 160

5

4

3

2

1

Fig. 414. TbRh1.5Ir0.5Si2. Magnetic field dependence of high field pm at various temperatures [95I2].

Dy Ru Si2 2

c

a

4.5 a

Fig. 415. DyRu2Si2. Squared magnetic structure (pro-jection along [010]) The Dy moments are along the c axis [94B4].

Temperature [K]T

Dy Ru Si2 2

Mag

netic

mom

ents

[]

p DyBµ

15

10

5

0 5 10 15 20 25 30 35

p qDy ( )

p qDy (3 )

Fig. 416. DyRu2Si2. Temperature dependence of the magnetic moments associated with the first and third harmonics [94B4].

Temperature [K]T

Dy Ru Si2 2

Mag

netiz

atio

n

[10

G cm

mol

]3

31−

m

1.6

1.4

1.2

1.0

0.8

0.60 10 20 30 40 50

Fig. 417. DyRu2Si2. Temperature dependence of σm at 0.1 T [94B4].

Page 342: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 3

Magnetic field [T]0 Hµ

Dy Ru Si2 2

10

8

6

4

2

0 1 2 3 4 5

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

T = 10 K

18

30

50

100

Fig. 418. DyRu2Si2. Magnetic field dependence of pm at different temperatures [94B4].

Magnetic field [T]0 Hµ

H cII

Dy Ru Si2 2

Mag

neto

stric

tion

[10

]∆

c−

2 Å

− 1.4

− 1.6

− 1.2

− 0.8

− 0.6

− 0.4

− 0.2

− 1.0

0 2 431

Fig. 420. DyRu2Si2. Parallel magnetostriction vs. mag-netic field with H || c. Open circles: squared magnetiza-tion M(H)2 in arbitrary units [95T3].

H = 10 kOe

Dy Pd

Si2

2

Er Pd

Si2

2

3

2

1

0

0 10 20 30 40 50 60 70 80

3

2

1

0

Temperature [K]T

Inv.

mol

ar su

scep

tibili

ty[1

0g

cm]

g3

3−−1

Inv.

mol

ar su

scep

tibili

ty[1

0g

cm]

g3

3−−1

Fig. 421. DyPd2Si2, ErPd2Si2. Temperature depend-ence of χg

–1 at 10 kOe [91B1].

Mag

netiz

atio

n

[G cm

g]

31−

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [kOe]H

T = 4.2 K

Dy Pd

Si2

2Er

PdSi

22

70

60

50

40

30

20

10

0 10 20 30 40 50

60

50

40

30

20

10

0

Fig. 422. DyPd2Si2. Magnetic field dependence of σ at 4.2 K [91B1].

Page 343: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.5 Rare earth elements and 4d or 5d elements

Dy Pd2Si 2 spiral axis

Fig. 423. DyPd2Si2. Magnetic structure [91B1].

Temperature [K]T

Dy Ir Si3

[K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

20

0

4

8

12

16

100 200 300

1.0

0.8

0.6

0.45 10 15 20

[cm

mol

]m

31−

Fig. 424. DyIrSi3. Temperature dependence of χm

–1. Inset: magnetic order region [91S1].

Temperature [K]T0 10 20 30 40 50

Dy Ir Si2 5Er Ir Si2 5

Mag

netic

mom

ent

[]

p RBµ

12

10

8

6

4

2

Fig. 425. DyIr2Si2, ErIr2Si2. Temperature dependence of the rare earth ordered moment [93S1].

Temperature [K]T

Heat

capa

city

[Jm

olK

]C p

11

−−

Dy Rh Si2 3 5

Ho Rh Si2 3 5

0 5 10 15 20 25

30

20

10

Fig. 426. Dy2Rh3Si5, Ho2Rh3Si5. Temperature de-pendence of Cp [97P1].

Page 344: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 5

Magnetic field [T]0 Hµ

Mag

neto

stric

tion

[10

]∆

c−

3 Å

− 4

−3

−2

−1

0 2.0

Ho Ru Si2 2

H cII

1.0

Fig. 427. HoRu2Si2. Parallel magnetostriction vs. magnetic field with H || c. Open circles: squared mag-netization M(H)2 in arbitrary units [95T3].

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p HoBµ

T = 4.2 K

x=0.5

x = 1

Ho Rh Si2 2Ho Pd Si2 2

8

6

4

2

0 40 80 120 160

Fig. 428. HoRh2Si2, HoPd2Si2. Magnetic field de-pendence of pHo/at 4.2 K..

Temperature [K]T

Susc

eptib

ility

(rela

tive)

ac

Ho Rh Ru Si2-x x 2TN = 10 K

0 10 20 30 40

x = 0.5

x = 1.5

x = 1

x = 0

7.7

6.1

18.7

11.9

28

20

15

10

5

Fig. 429. HoRh2–xRuxSi2. Temperature dependence of χac for different x [96I2].

Néel

tem

pera

ture

[K]

T N

Ho Rh Ru Si2-x x 2 Ho Rh Pd Si2-x x 2

30

20

10

02 1 0 1 2

x x Fig. 430. HoRh2–xPdxSi2, HoRh2–xRuxSi2. Magnetic phase diagrams [96I2].

Page 345: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.5 Rare earth elements and 4d or 5d elements M

agne

tizat

ion

[G

cmg

]3

1−

Magnetic field [Oe]H

Ho Rh Si2 2 T = 7.3 K

0 100 200 300

10

16.7

24

1.2

0.8

0.4

Fig. 431. HoRh2Si2. Magnetic field dependence of σ at different temperatures [96I2].

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [Oe]H

Ho Rh Ru Si1.5 0.5 2

T = 7 K

0 200 400

4.2

1115.7

23

2.5

2.0

1.5

1.0

0.5

100 300

Fig. 432. HoRh1.5Ru0.5Si2. Magnetic field dependence of σ at different temperatures [96I2].

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [Oe]H

Ho Rh Si 2

T = 7 K

11

15.7

23

2.5

2.0

1.5

1.0

0.5

0 100 200 300

Fig. 433. HoRhSi2. Magnetic field dependence of σ at different temperatures [96I2].

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [Oe]H

Ho Rh Ru Si0.5 1.5 2

T = 4.2 K

10

14

12

10

8

6

4

2

0 100 200 300

Fig. 434. HoRh0.5Ru1.5Si2. Magnetic field dependence of σ at different temperatures [96I2].

Page 346: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 7

Magnetic field [kOe]H

Mag

netic

mom

ent

[]

p HoBµ

T = 4.2 K

Ho Rh Ru Si2-x x 2

8

6

4

2

00 50 100 15025 75 125

0

1

1.5

x = 0.5 Fig. 435. HoRh2–xRuxSi2. Magnetic field dependence of pHo at 4.2 K at different concentrations [96I2].

Temperature [K]T

Susc

eptib

ility

(rela

tive)

ac

Ho Rh Pd Si2-x x 2TN = 6.6 K

7

6

5

4

3

2

10 10 20 30 40

x = 0.5

6.9

5.5 x = 1.5

x = 1

6.4

x = 2

Fig. 436. HoRh2–xPdxSi2. Temperature dependence of χac for different x [96I2].

M

agne

tizat

ion

[G

cmg

]3

1−

Magnetic field [Oe]H

Ho Rh Pd Si1.5 0.5 2T = 4.2 K

0 200 400 600 800 1000

7

6

5

4

3

2

1

7

10

Fig. 437. HoRh1.5Pd0.5Si2. Magnetic field dependence of σ at different temperatures [96I2].

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [Oe]H

Ho Rh Pd Si0.5 1.5 2T = 4.2 K

0 200 400 600 800 1000

10 K

7

6

5

4

3

2

1

Fig. 438. HoRh0.5Pd1.5Si2. Magnetic field dependence of σ at different temperatures [96I2].

Page 347: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.5 Rare earth elements and 4d or 5d elements M

agne

tizat

ion

[G

cmg

]3

1−

Magnetic field [Oe]H

7

12

19

23.7

Ho Pd Si2 2 T = 4.2 K3.0

2.5

2.0

1.5

1.0

0.5

0 200 400 600 800 1000

Fig. 439. HoPd2Si2. Magnetic field dependence of σ at different temperatures [96I2].

T = 2 K

Mag

netic

mom

ent

[]

p mBµ

/f.u.

Er Ru Si2 2

10

8

6

4

2

0[ T ]0 HµMagnetic field

2 4 6

= 45°

30°20°

10° 0°

H cII

Fig. 440. ErRu2Si2. Magnetic field de-pendence of pm at 2.0 K. θ: tilting angle between the [100] axis and the magnetic field direction [98T1].

T = 2 K

Mag

netic

mom

ent

[]

p mBµ

/f.u.

Er Ru Si2 2

10

8

6

4

2

0[ T ]0 HµMagnetic field

2 4 6

= 45°

60°70°

80°

90°

H cII

Fig. 441. ErRu2Si2. Magnetic field de-pendence of pm at 2.0 K at θ between 45° and 90° [98T1].

Page 348: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 9

T = 2 K= 6.0T0 Hµ

Mag

netic

mom

ent

[]

p mBµ

/f.u.

Er Ru Si2 2

10

8

6

4

2

0− 90° −45° 0 45° 90°

Angle

1.0

0.7

0.6

0.5

0.4

0.3

0.1

Fig. 442. ErRu2Si2. Angular dependence of pm at several magnetic fields at 2 K [98T1].

Er Ru Si2 2

a

b

5 a

Fig. 443. ErRu2Si2. Sine modulated magnetic structure (projection along [001]); the atoms at the centre of the squares Er (1/2,1/2,1/2). Er moments are along the b axis [94B4].

Page 349: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.5 Rare earth elements and 4d or 5d elements

Er Ru Si2 2

Temperature [K]T

3.2

2.8

2.4

2.0

02 4 6 8 10

Mag

netiz

atio

n

[1

0G

cmm

ol]

33

1−m

Fig. 444. ErRu2Si2. Temperature dependence of σm at 0.1 T [94B4].

T = 2 K

Magnetic field [T]0 HµM

agne

tic m

omen

t[

]p m

Bµ/f.

u.

ErRu Si2 24.4 8

14

50

200

10

8

6

4

2

0 1 2 3 4 5

Fig. 445. ErRu2Si2. Magnetic field dependence of pm at different temperatures [94B4].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

Er Pd Si2 21 T0 H =µ25

20

15

10

5

0

30

50 100 150 200 250 300 350

Fig. 446. ErPd2Si2. Temperature dependence of χm

–1 at 1 T [94T1].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

−−3

1m

Er Pd Si2 20.1 T0 H =µ

2.0

1.8

1.6

1.4

1.22 3 4 5 6 7 8 9

Fig. 447. ErPd2Si2. Temperature dependence of χm

–1 at 0.1 T [94T1].

Page 350: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 11

T = 10 K

Magnetic field [T]0 Hµ

Er Pd Si2 2

5

2

20

40

8

6

4

2

0 1 2 3 4 5

Mag

netic

mom

ent

[]

p mBµ

/f.u.

Fig. 448. ErPd2Si2. Magnetic field dependence of pm at different temperatures [94T1].

c

b a

T = 1.5 KEr Pd Si2 2

Fig. 449. ErPd2Si2. Squared magnetic structure at 1.5 K [94T1].

For Fig. 450 see next page.

b

a

17a

Er Os Si2 2 Fig. 451. ErOs2Si2. Magnetic structure (projection along [001]; the atoms at the centre of the squares are Er (1/2,1/2,1/2)). The Er moments are along the b axis [94B4].

Page 351: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.5 Rare earth elements and 4d or 5d elements

c

b a

T = 3.2 K

Er Pd Si2 2 Fig. 450. ErPd2Si2. Magnetic superstructure at 3.2 K [94T1].

For Fig. 451 see previous page.

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p mBµ

/ f.u

.

T = 2 KEr Os Si2 2 5

10

50

250

5

4

3

2

1

0 1 2 3 4 5

Fig. 452. ErOs2Si2. Magnetic field dependence of pm at different temperatures [94B4].

Temperature [K]T

Mag

netiz

atio

n[1

0G

cmm

ol]

m3

31−

Er Os Si2 2

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.62 4 6 8 10

Fig. 453. ErOs2Si2. Temperature dependence of σm at 0.1 T [94B4].

Page 352: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 13

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

0.55

0.51

0.47

0.43

0.39

0.354 6 8 10 12 14

Er Ir Si2 2

Fig. 454. ErIr2Si2. Temperature dependence of χm at 0.1 T [93S1].

Temperature [K]TIn

v.su

scep

tibili

ty[m

ol cm

]m

3−−1

Ce Pd Al2 3

450

400

350

300

250

200

150

100

50

0 50 100 150 200 250 300

Fig. 455. CePd2Al3. Temperature dependence of χm

–1 [93G1].

Temperature [K]T

Inv.

susc

eptib

ility

[mol

cm]

m3−

−1

Ce Pd Al2 3

50

40

30

20

10

0 5 10 15 20

Fig. 456. CePd2Al3. Low-temperature dependence of χm

–1 [93G1].

Temperature [K]T

Ce Pd Al2 3

Resis

tivity

[cm

]µΩ

500

400

300

200

100

0 50 100 150 200 250 300

Fig. 457. CePd2Al3. Temperature dependence of ρ [93G1].

Page 353: 2 Magnetic properties of rare earth elements, alloys and ...

14 2.5 Rare earth elements and 4d or 5d elements

Temperature [K]T

Ce Pd Al2 3

Resis

tivity

[cm

]µΩ

150

120

90

60

30

00 50 100 150 200 250 300

0 5 10 15 20p [kbar]

3

2

1

0

T C[K

]

p = 1 bar7 kbar

15273543536470

Fig. 458. CePd2Al3. Temperature and pressure dependence of resistivity. Inset: TC vs. p [95H1].

Ce Pd Ga2 3

Pressure [GPa]p

Curie

tem

pera

ture

[K]

T C

0 1 2 3 4 5

7

6

5

4

3

2

1

0

T m

FAF

P

p

Fig. 459. CePd2Ga3. Pressure dependence of the mag-netic ordering temperature [97B2].

Ce Pd Ga2 3

Temperature [K]T

Resis

tivity

[cm

]µΩ

00

50 100 150 200 250 300

0 10 20 30 40 50p [kbar]

6

4

2

0

T C[K

]

p = 1 bar7 kbar

1527354353

70

60

50

40

30

20

10

Fig. 460. CePd2Ga3. Temperature and pressure dependence of resistivity. Inset: TC vs. p [95H1].

Page 354: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 15 Né

el te

mpe

ratu

re[K

]T N

3

2

1

00 0.1 0.2 0.3 0.4

Ga content x

Ce Pd (Al2 1-x Ga )x 3

AF

Fig. 461. CePd2(Al1–x Gax)3. Phase diagram of TN vs. Ga concentration. Full triangle denotes TC. The shaded area covers the composition region where no homogeneous samples could be obtained [96L1].

Temperature [K]T

Susc

eptib

ility

[cm

mol

]m

31−

Ce Pt Al2 3

Ce Pt Al3 2

0.04

0.03

0.02

0.01

00 100 200 300

Fig. 462. CePt3Al2, CePt2Al3. Temperature dependence of χm [93B2].

For Fig. 463 see next page.

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Temperature [K]T

Eu In Pt4

40

30

20

10

0 50 100 150 200 250 300

Fig. 464. EuInPt4. Tenperature dependence of χm

–1.

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Temperature [K]T

Gd In Pt4

40

30

20

10

0 50 100 150 200 250 300

Fig. 465. GdInPt4. Temperature dependence of χm

–1.

Page 355: 2 Magnetic properties of rare earth elements, alloys and ...

16 2.5 Rare earth elements and 4d or 5d elements In

v.su

scep

tibili

ty[ m

olcm

]m

3−−1

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1In

v.su

scep

tibili

ty[ m

olcm

]m

3−−1

Temperature [K]T Temperature [K]T

800

600

400

200

0

0

250

500

750

1000

0 050 50100 100150 150200 200250 250300 300

200

200

150

150

100

100

50

50

0

0

Ce In Pt4 Pr In Pt4

Nd In Pt4Sm In Pt4

Fig. 463. CeInPt4, PrInPt4, NdInPt4, SmInPt4. Temperature dependence of χm–1 [90M5].

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Temperature [K]T

40

30

20

10

0 50 100 150 200 250 300

Tm In Pt4

Tb In Pt4

Dy In Pt4

For Figs. 464 and 465 see previous page. Fig. 466. TmInPt4, TbInPt4, DyInPt4. Temperature dependence of χm

–1 [90M5].

Page 356: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 17

Magnetic field [T]0 Hµ

T = 2 K

H

H

Mag

netiz

atio

n

[10

G cm

mol

]4

31−

m

Gd Si Ir4 9 13

12

10

8

6

4

2

0 1 2 3 4 5 6

Fig. 467. Gd4Si9Ir13. Magnetic field dependence of σm at 2 K [95V1].

Gd Si Ir4 9 13

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1Temperature [K]T

= 0.2 T0 Hµ

2.0

1.5

1.0

0.5

0 20 40 60

Fig. 468. Gd4Si9Ir13. Temperature dependence of χm

–1 at 0.2 T [95V1].

Magnetic field [T]0 Hµ

T = 2 K

HH

Mag

netiz

atio

n

[10

G cm

mol

]4

31−

m

Tb Si Ir4 9 13

4

2

0 1.0 2.00.5 1.5 2.5

1

3

5

Fig. 469. Tb4Si9Ir13. Magnetic field dependence of σm at 2 K [95V1].

Tb Si Ir4 9 13

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Temperature [K]T

= 5000eH

0.8

0.4

0.2

0 10 20 30

0.6

Fig. 470. Tb4Si9Ir13. Low temperature dependence of χm

–1 (the sample has been cooled down under 500 Oe [95V1]).

Page 357: 2 Magnetic properties of rare earth elements, alloys and ...

18 2.5 Rare earth elements and 4d or 5d elements In

v.su

scep

tibili

ty[ m

olcm

]m

3−−1

Temperature [K]T

Tb Si Ir4 9 13

= 5000eH

7

6

5

4

3

2

1

0 50 100 150 200 250 300

Fig. 471. Tb4Si9Ir13. Temperature dependence of χm

–1 at 500 Oe [95V1].

Magnetic field [kOe]H

Mag

netiz

atio

n

[G cm

g]

31−

4

3

2

1

0 10 20 30 40 50

T = 1.7 K2.5 K5.0 K

Ce Pt Ge3 23 11

Fig. 472. Ce3Pt23Ge11. Magnetic field dependence of σ at 5 K for several temperatures. Open and solid symbols denote increasing and decreasing field, re-spectively [98T2].

Temperature [K]T

Ce Ir Sn3 4 13

Heat

capa

city

[J(m

olCe

)K

]C m

11

−− T1

T2

T3

5

4

3

2

1

0 1 2 3 4

Fig. 473. Ce3Ir4Sn13. Temperature dependence of the specific heat [94T2].

Temperature [K]T

Ce Ir Sn3 4 13

Entro

py[J

(mol

Ce)

K]

S−

−1

1

5

4

3

2

1

0 1 2 3 4

µ = 00 H

2 T

3.5 T

Fig. 474. Ce3Ir4Sn13. Temperature dependence of the entropy. At low temperature lattice contribution to the specific heat is very small and the magnetic contribu-tion is dominating [94T2].

Page 358: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 19

Temperature [K]T

Ce Ir Sn3 4 13

0 1 2 3

Mag

netic

fiel

d[T

]0

5

4

3

2

1

Fig. 475. Ce3Ir4Sn13. Magnetic phase diagram [94T2].

Magnetic field [kOe]H

Resis

tivity

[

cm]

µΩ⋅

T = 4.2 K

Yb Rh Sn3 4 13

HF

HP

Hz

0

14

0 5 10 15 20 25 30

Fig. 476. Yb3Rh4Sn13. Magnetic field dependence of the electrical resistivity at 4.2 K [97S4].

Magnetic field [kOe]H

T = 4 K

Yb Rh Sn3 4 13

0 5 10 15 20 25 30

Mag

netiz

atio

n

[G cm

g]

31−

0

− 0.4

− 0.2

− 0.3

− 0.1

Fig. 477. Yb3Rh4Sn13. Magnetic field dependence of σ at 4 K [97S4].

Temperature [K]T

Ther

moe

lect

ric p

ower

[µV

K]

S−1

Resis

tivity

[

cm]

µΩ⋅

Ce Rh Al2 3 9

La Rh Al2 3 9

70

90

50

30

100 50 100 150 200 250 300

600

500

400

300

200

100

0

Fig. 478. La2Rh3Al9, Ce2Rh3Al9. Temperature depend-ence of S and ρ [97B4].

Page 359: 2 Magnetic properties of rare earth elements, alloys and ...

References

90M5 Malik, S.K., Vijayaraghan, R., Adroja, D.T., Padalia, B.D., Edelstein, A.S.: J. Magn. Magn. Mater. 92 (1990) 80

91B1 Bazela, W., Leciejewicz, J., Szytula, A., Zygmunt, A.: J. Magn. Magn. Mater. 96 (1991) 114 91S1 Sanchez, J.P., Tomala, K., Łątka, K.: J. Magn. Magn. Mater. 99 (1991) 95 93B2 Blazina, Z., Westwood, S.M.: J. Alloys Comp. 201 (1993) 151 93G1 Ghosh, K., Ramakrishnan, S., Malik, S.K., Chandra, G.: J. Alloys Comp. 202 (1993) 211 93S1 Sanchez, J.P., Blaise, A., Ressouche. E., Malamann, B., Venturini, G., Tomala, K., Kmiec, R.:

J. Magn. Magn. Mater. 128 (1993) 295 94B4 Blaise, A., Kmiec, R., Malaman, B., Ressouche, E., Sanchez, J., P., Tomala, K., Venturini, G.:

J. Magn. Magn. Mater. 135 (1994) 171 94T1 Tomala, K., Sanchez, J.P., Malaman, B., Venturini, G., Blaise, A., Kmiec, R.: J. Magn. Magn.

Mater. 131 (1994) 345 94T2 Takayanagi, S., Sato, H., Fakuhara, T., Wada, N.: Physica B 199-200 (1994) 49 95H1 Hauser, R., Bauer, E., Galatanu, A., Indinger, A., Maikus, M., Kirchmayr, H., Gignoux, D.,

Schmitt, D.: Physica B 206-207 (1995) 231 95I2 Ivanov, V., Vinokurova, L., Szytula, A.: J. Alloys Comp.218 (1995) L19 95T3 Takeuchi, T., Taniguchi, T., Kudoh, D., Miyako, Y.: Physica B 206-207 (1995) 398 95V1 Vernier, A., Lejay, P., Bordet, P., Chenavas, J., Tholence, J.L., Boucherle, J.X., Keller, N.: J.

Alloys Comp. 218 (1995) 197 96I2 Ivanov, V., Jaworska, T., Vinokurova, L., Mydlarz, T., Szytula, A.: J. Alloys Comp. 234

(1996) 235 96L1 Ludoph, B., Süllow, S., Becker, B., Neuwenhuys, G.J., Menovsky, A.A., Mydosh, J.A.:

Physica B 223-224 (1996) 351 97B2 Burghardt, T., Hallmann, E., Eichler, A.: Physica B 230-232 (1997) 214 97B3 Blanco, J.A., Garnier, A., Gignoux, D., Schmitt, D.: J. Alloys Comp. 275-277 (1997) 565 97B4 Buschinger, B., Geibel, C., Weiden, M., Dietrich, C., Cordier, G., Olesch, G., Kohler, J.: J.

Alloys Comp. 260 (1997) 44 97P1 Patil, N.G., Ramakrishnan, S.: Physica B 237-238 (1997) 597 97S4 Sato, H., Aoki, Y., Kobayashi, Y., Sato, H.R., Nishigaki, T., Sugswara, H., Hedo, M., Inada,

Y., Onuki, Y.: Physica B 230-232 (1997) 402 97W1 Wang, Yin-gang, Yang, Fuming, Chen, Changpin, Wang, Qidong: J. Alloys Comp.257 (1997)

19 98T1 Takeuchi, T., Kohyama, J.M., Kawarazaki, S., Sato, M., Miyako, Y.: 177-181 (1998) 1081 98T2 Troc, R., Kaczorowski, D., Cichorek, T., Andraka, B., Pietri, R., Seropegin, Yu.D., Gribanov,

A.V.: J. Alloys Comp. 262-263 (1998) 211

Page 360: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 1

Landolt-Börnstein New Series III/32D

Temperature [K]T

Inv.

susc

eptib

ility

[10

mol

m]

m9

3−−1

0.05

0.04

0.03

0.02

0.01

0 50 100 150 200 250 300 350

Ce Rh Al2 3 9Ce Rh Ga2 3 9

Ce Ir Ga2 3 9

Ce Ir Al2 3 9

Fig. 479. Ce2Ir3Al9, Ce2Ir3Ga9, Ce2Rh3Al9, Ce2Rh3Ga9. Temperature dependence of χm

–1 [97B4].

Temperature [K]T

Ce Rh Al2 3 9

Ce Ir Ga2 3 9

Ce Rh Ga2 3 9Ce Ir Al2 3 9

Ce Ir Ga2 3 9

1.50

1.00

0.50

00 50

0.75

0.25

1.25

1.75

100 150 200 250 300

Norm

alize

d re

sista

nce

/(3

00 K

)R

R

0 100 200 300T [K]

6

4

2

0

−2

d/ d

(rela

tive)

RT

Fig. 480. Ce2Rh3Al9, Ce2Rh3Ga9, Ce2Ir3Al9, Ce2Ir3Ga9. Temperature dependence of R/R(300 K) [97B4].

Temperature [K]T

050 100 150 200 250 300 350

Susc

eptib

ility

[10

mm

93

−m

ol]

−1

Susc

eptib

ility

[10

mm

93

−m

ol]

−1

300

350

250

200

150

100

50

Ce Rh Al2 3 9Ce Rh Ga2 3 9

Ce Ir Ga2 3 9Ce Ir Al2 3 9

100

80

60

40

200

Fig. 481. Ce2Rh3Al9, Ce2Rh3Ga9, Ce2Ir3Ga9, Ce2Ir3Al9. Temperature dependence of χm. Note two scales [98B2].

Page 361: 2 Magnetic properties of rare earth elements, alloys and ...

2 2.5 Rare earth elements and 4d or 5d elements

Landolt-Börnstein New Series III/32D

Temperature [K]T

Ce Rh Al2 3 9

Ce Rh Ga2 3 9

Ce Ir Ga2 3 9Ce Ir Al2 3 9

Resis

tivity

[

cm]

µΩ⋅

Resis

tivity

[

cm]

µΩ⋅

800

600

400

200

00 50 100 200150 250 300 350

200

150

100

50

0

Fig. 482. Ce2Rh3Al9, Ce2Ir3Ga9, Ce2Ir3Al9. Temperature dependence of ρ [98B2].

Temperature [K]T

Ce Rh Al2 3 9

Ce Rh Ga2 3 9

Ce Ir Ga2 3 9

Ce Ir Al2 3 9

Ther

moe

lect

ric p

ower

[µV

K]

S−1

0 50 100 150 200 250 300 350

100

80

60

40

20

0

−20

Fig. 483. CeRh3Al9, Ce2Ir3Ga9, Ce2Rh3, Ce2Ir3Al9. Temperature dependence of thermoelectric power S [98B2].

Magnetic field [T]0 Hµ

Mag

netic

mom

ent

[]

p CeBµ

T = 2 K3 K

45 K

Ce Ir Ga2 3 9

0.06

0.04

0.02

0 1 2 3 4 5 6

Fig. 484. Ce2Ir3Ga9. Magnetic field dependence of pCe at 2, 3 and 45 K [98B2].

Page 362: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 3

Landolt-Börnstein New Series III/32D

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Temperature [K]T

[K]T

0 50 100 150 200 250 300

R Pd Si3 20 6

140

120

100

80

60

40

20

0

100

80

60

40

20

0

R = Nd

PrCe

R = Eu

Sm

[10

cmm

ol]

m2

31

−−

8

6

4

2

0 50 100 150 200 250 300

Fig. 485. R3Pd20Si6, R = Ce, Pr, Nd. Temperature dependence of χm

–1. Inset: χm for R = La, Sm and Eu [97K1].

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Inv.

susc

eptib

ility

[ mol

cm]

m3−

−1

Temperature [K]T0 50 100 150 200 250 300

R Pd Si3 20 6

12

8

4

0

40

20

0

R = Yb

16

10

30Gd

Tb

Dy

TmEr

Ho

Fig. 486. R3Pd20Si6, R = Gd, Tb, Dy, Ho, Er, Tm, Tb. Temperature depend-ence of χm

–1 [97K1].

Temperature [K]T

Heat

capa

city

[J(m

olCe

)K

]C m

11

−− x =0

1

2

2.7

0 1 2 3 4 5 6

3

2

1

La Ce Pd Six 3-x 20 6

Fig. 487. LaxCe3–xPd20Si6. Temperature dependence of Cm for different x [97T2].

Page 363: 2 Magnetic properties of rare earth elements, alloys and ...

4 2.5 Rare earth elements and 4d or 5d elements

Landolt-Börnstein New Series III/32D

Temperature [K]T

Heat

capa

city

/[J

(mol

Ce)

K]

CT

m1

1−

x = 0

1

2

2.7

0 1 2 3

La Ce Pd Six 3-x 20 6

10

8

6

4

2

Fig. 488. LaxCe3–xPd20Si6. Temperature dependence of Cm/T for different x [97T2].

Temperature [K]T

Heat

capa

city

[J(m

olCe

)K

]C m

11

−−

0 1 2 3 4 5 6

Ce Pd Si3 20 6

µ = 00 H

1 T2 T

4 T

5

4

3

2

1

Fig. 489. Ce3Pd20Si6. Temperature de-pendence of Cm for different H [97T2].

Ce Pd Si3 20 6µ = 00 H

1 T

2 T

4 T

Temperature [K]T

Heat

capa

city

/[J

(mol

Ce)

K]

CT

m1

2−

0 1 2 3

10

8

6

4

2

Fig. 490. Ce3Pd20Si6. Temperature de-pendence of Cm/T for different H [97T2].

Page 364: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 5

Landolt-Börnstein New Series III/32D

Temperature [K]T

Entro

py[J

(mol

Ce)

K]

S m1

1−

x =0

1

2

2.7

0 1 2 3 4 5 6

La Ce Pd Six 3-x 20 6

10

8

6

4

2

Fig. 491. LaxCe3–xPd20Si6. Temperature dependence of magnetic entropy Sm for different x [97T2].

Temperature [K]TM

agne

tizat

ion

[

G cm

mol

]3

1−m

55

45

35

25

15

0 50 100 150 200 250

AF (?)

H = 500 Oe

Ce Pd Si3 20 6

Ce Pd Ge3 20 6

Fig. 492. Ce3Pd20Si6, Ce3Pd20Ge6. Temperature depend-ence of σm at 500 Oe [96N1].

Temperature [K]T

Mag

netiz

atio

n

[G

cmm

ol]

31−

m

Ce Pd Si3 20 6

Ce Pd Ge3 20 6

500

400

300

200

100

0 20 40 60 80

H = 4 kOe

Fig. 493. Ce3Pd20Si6, Ce3Pd20Ge6. Temperature de-pendence of σm at 4 kOe [96N1].

Temperature [K]T

Pr Pd Si3 20 6

0 0.1 0.2 0.3

10

2

4

6

8

ac(re

lativ

e)Su

scep

tibili

ty

Fig. 494. Pr3Pd20Si6. Low-temperature dependence of χac [97K1].

Page 365: 2 Magnetic properties of rare earth elements, alloys and ...

6 2.5 Rare earth elements and 4d or 5d elements

Landolt-Börnstein New Series III/32D

Temperature [K]T

ac(re

lativ

e)Su

scep

tibili

ty

Nd Pd Si3 20 6

7

6

5

4

3

2

10 1 2 3 4

Fig. 495. Nd3Pd20Si6. Low-temperature dependence of χac [97K1].

Temperature [K]T

ac(re

lativ

e)Su

scep

tibili

ty

Sm Pd Si3 20 6

10

8

6

4

2

0

−20 2 4 6 8

Fig. 496. Sm3Pd20Si6. Low-temperature dependence of χac [97K1].

Temperature [K]T

Gd Pd Si3 20 6

0 5 10 15 20

Susc

eptib

ility

[cm

mol

]m

31−

3.0

2.5

2.0

1.5

1.0

0.5

Fig. 497. Gd3Pd20Si6. Low-temperature dependence of χm [97K1].

Temperature [K]T

Tb Pd Si3 20 6

0 5 10 15

Susc

eptib

ility

[cm

mol

]m

31−

4

3

2

1

0

− 1

Fig. 498. Tb3Pd20Si6. Low-temperature dependence of χm [97K1].

Page 366: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 7

Landolt-Börnstein New Series III/32D

Temperature [K]T

Susc

eptib

ility

[rela

tive

]ac

4

3

2

1

0

− 1

− 2

Ho Pd Si3 20 6

0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 499. Ho3Pd20Si6. Low-temperature dependence of χac [97K1].

Temperature [K]T

Dy Pd Si3 20 6

Susc

eptib

ility

(rela

tive)

ac

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8

ac

Fig. 500. Dy3Pd20Si6. Low-temperature dependence of χac [97K1].

R Pd Si3 20 6

20

15

10

5

0

4

3

2

1

0

Orde

ring

tem

pera

ture

low

[K]

T mOr

derin

g te

mpe

ratu

rehi

gh[K

]T m

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

Fig. 501. R3Pd20Si6. Magnetic ordering temperatures of R = Nd, Sm, Gd, Tb, Dy, Ho. This compounds have two magnetic phase transitions Tm

high and Tm

low at relatively low temperatures (see Figs. 495 - 500). The solid curves represent the predictions of de Gennes scaling normalized at Gd [97K1].

Page 367: 2 Magnetic properties of rare earth elements, alloys and ...

8 2.5 Rare earth elements and 4d or 5d elements

Landolt-Börnstein New Series III/32D

Temperature [K]T

Susc

eptib

ility

(rela

tive)

ac

Er Pd Si3 20 6

0 0.5 1.0 1.5 2.0

1.05

0.95

0.85

0.75

Fig. 502. Er3Pd20Si6. Low-temperature dependence of χac [97K1].

Temperature [K]T

Susc

eptib

ility

(rela

tive)

ac

Tm Pd Si3 20 6

0 0.5 1.0 1.5 2.0 2.5 3.0

10

6

2

− 2

Fig. 503. Tm3Pd20Si6. Low-temperature dependence of χac [97K1].

Temperature [K]T

Susc

eptib

ility

(rela

tive)

ac

Yb Pd Si3 20 6

0 0.5 1.0 1.52

4

6

8

Fig. 504. Yb3Pd20Si6. Low-temperature dependence of χac [97K1].

Mag

netic

fiel

d[T

]0

TN TQ

Temperature [K]T

Ce Pd Ge3 20 6

5

4

3

2

1

0 0.5 1.0 1.5 2.0 2.5

Fig. 506. Ce3Pd20Ge6. Magnetic phase diagram. TQ: supposed quadrupolar ordering temperature [97K3].

For Fig. 505 see next page.

Page 368: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 9

Landolt-Börnstein New Series III/32D

For Fig. 504 see previous page.

Magnetic field [kOe]H

Ce Pd Ge3 20 6

10

43

Mag

netiz

atio

n

[G

cmm

ol]

31−

m

T = 4.2 K

1000

800

600

400

200

0

−200

− 400

− 600

−800

−1000− 6000 −3000 0 3000 6000

Magnetic field [kOe]H

T = 10 K

Ce Pd Si3 20 6 50617787

Mag

netiz

atio

n

[G

cmm

ol]

31−

m

− 6000 −3000 0 3000 6000

200

150

100

50

0

−50

−100

−150

−200

a b

Fig. 505. (a) Ce3Pd20Ge6, (b) Ce3Pd20Si6. Magnetic field dependence of σm at various temperatures [96N1].

Temperature [K]T

Ce Pd Ge3 20 6

Resis

tivity

[

cm]

µΩ⋅

50

40

30

20

10

01 10 10 2 10 310− 110 − 2

Fig. 507. Ce3Pd20Ge6. Temperature dependence of ρ for polycrystalline (circles) and single crystalline sample (crosses) [97K3].

Temperature [K]T

Ce Pd Ge3 20 6

0 0.5 1.0 1.5 2.0

40

30

20

10Heat

capa

city

[Jm

olK

]C p

−−

11

Fig. 508. Ce3Pd20Ge6. Temperature dependence of Cp for polycrystalline (circles) and two single crystalline samples (crosses and triangles) [97K3].

Page 369: 2 Magnetic properties of rare earth elements, alloys and ...

10 2.5 Rare earth elements and 4d or 5d elements

Landolt-Börnstein New Series III/32D

For Fig. 509 see next page.

Ho Re Al7.32 12 61.48

Tb Re Al7+x 12 61+y

Y Re Al7.28 12 61.38

Susc

eptib

ility

[10

mm

ol]

m8

31

−−

Inv.

susc

eptib

ility

[10

mol

m]

m6

3−−1

0.4

0.3

0.2

0.1

0

Inv.

susc

eptib

ility

[10

mol

m]

m6

3−−1

0.4

0.3

0.2

0.1

0

Temperature [K]T0 50 100 150 200 250 300

[K]T

[10

mol

m]

m6

3−−1

10 20 30

0.03

0.02

0.01

3T

0.1T

[K]T

[10

mol

m]

m6

3−−1

10 20 30

0.02

0.01

3T

0.1T

40

20

0

60

80

100

120

µ0 H = 3T

0.1T

Gd Re Al7.23 12 61.70

Dy Re Al7.50 12 61.17

Er Re Al7+x 12 61+y

Inv.

susc

eptib

ility

[10

mol

m]

m6

3−−1

0.4

0.3

0.2

0.1

0

Inv.

susc

eptib

ility

[10

mol

m]

m6

3−−1

0.4

0.3

0.2

0.1

0

Inv.

susc

eptib

ility

[10

mol

m]

m6

3−−1

0.4

0.3

0.2

0.1

0

Temperature [K]T0 50 100 150 200 250 300

[K]T

[10

mol

m]

m6

3−−1

10 20 30

0.03

0.02

0.013T

0.1T

[K]T

[10

mol

m]

m6

3−−1

10 20 30

0.03

0.06

0.1T

[K]T

[10

mol

m]

m6

3−−1

10 20 30

0.03

0.02

0.01

3T

0.1T

0.5

0.1T

3T

0.1T3T

Fig. 510. R7+xRe12Al61+y. R = Y, Gd, Tb, Dy, Ho, Er. Temperature dependence of χm

–1. The idealized for mula R8Re12Al60 has the highest R content, the highest

Al content occurs in the formula R7Re12Al62, [97T3].

Page 370: 2 Magnetic properties of rare earth elements, alloys and ...

2.5 Rare earth elements and 4d or 5d elements 11

Landolt-Börnstein New Series III/32D

Temperature [K]T

Ce Pd Ge3 20 6

0

40

30

20

10Heat

capa

city

[Jm

olK

]C p

−−

11

10 −1 12 24 46 8 6

µ = 00 H

1.424

1.2 T

Fig. 509. Ce3Pd20Ge6. Temperature dependence of Cp at different magnetic fields [97K3].

For Fig. 510 see previous page.

Temperature [K]T

Mag

netiz

atio

n

(rel

ativ

e)

T = 460 KCYFe Re10.8 1.2

α Fe

300 500 700 900 1100

10

8

6

4

2

0

Fig. 511. YFe10.8Re1.2. Temperature dependence of magnetization in 2 kOe [90J1].

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [kOe]H

T = 77 K

150

100

50

0 5 10 15 20 25

YFe Re10.8 1.2

TbFe Re10.8 1.2

HoFe Re10.8 1.2

Fig. 512. RFe10.8Re1.2. R = Y, Tb, Ho. Magnetic field dependence of σ at 77 K [90J1].

Page 371: 2 Magnetic properties of rare earth elements, alloys and ...

12 2.5 Rare earth elements and 4d or 5d elements

Landolt-Börnstein New Series III/32D

Mag

netiz

atio

n

[G cm

g]

31−

Magnetic field [kOe]H

120

80

40

0 5 10 15 20 25

YFe Re10.8 1.2

T = 295 K

30

easy axis

hard axis

Fig. 513. YFe10.8Re1.2. Magnetic field dependence of σ for aligned powder samples with H along the easy axis at 295 K [90J1].

Page 372: 2 Magnetic properties of rare earth elements, alloys and ...

References

90J1 Jurczyk, M.: J. Magn. Magn. Mater. 89 (1990) L5 96N1 Nikiforov, V.N., Koksharov, Yu.A., Mirkovic, J., Kochetkov, Yu.V.: J. Magn. Magn. Mater.

163 (1996) 184 97B4 Buschinger, B., Geibel, C., Weiden, M., Dietrich, C., Cordier, G., Olesch, G., Kohler, J.: J.

Alloys Comp. 260 (1997) 44 97K1 Kitagawa, J., Takeda, N., Ishikawa, W.: J. Alloys Comp. 256 (1997) 48 97K3 Kitakawa, J., Takeda, N., Ishikawa, M., Ishiguro, A., Komatsubara, T.: Physica B 230-232

(1997) 139 97T2 Takeda, N., Kitagawa, J., Ishikawa, M.: Physica B 230-232 (1997) 145 97T3 Thiede, V.M.T., Gerdes, M.H., Rodewald, U.Ch., Jeitschko, W.: J. Alloys Comp. 261 (1997)

54 98B2 Buschinger, B., Trovarrelli, O., Weiden, M., Geibel, C., Steglich, F.: J. Alloys Comp. 275-277

(1998) 633

Page 373: 2 Magnetic properties of rare earth elements, alloys and ...

354 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg

2.7.1 Introduction

The present work is a continuation of the previous review of Morin in the same series [89M1]. General considerations about crystallography, metallurgy and basic magnetic couplings have then been omitted to avoid redundancy. As far as the ternary compounds are concerned, only non magnetic alloyed atoms have been considered. This allowed us to focus ourselves to the fundamental aspects of the only 4f magnetism, as for the binary systems. The importance of studies on monocrystalline materials has been still growing (see subsects. 2.7.2 and 2.7.3). Besides, new series have been elaborated and magnetically characterized on polycrystalline samples. Some particular series or compounds such as the RX and RX2 series have been detailed elsewhere (Table 1). In the present review, the same organization as the previous one has been followed, i.e. compounds are successively presented according to their stoichiometry. Subsects. 2.7.2 to 2.7.5 are then devoted to the RX, RX2, R2X17 and RBe13 series, respectively. Other X-rich compounds are gathered in subsect. 2.7.6 while the ternary systems are considered in subsect. 2.7.7. Table 1. General reviews.

Subject Reference

Compounds of RE and Be, Mg, Zn, Cd, Hg 89M1 Quadrupolar interactions 90M1 Metamagnetism in intermetallic systems 95G2 Magnetic properties of rare earth compounds 97G1 Thermodynamic data of rare earth alloys 94C1 High pressure studies of anomalous Ce and Yb compounds 94T1

2.7.2 RX compounds

The main studies performed on these cubic CsCl-type compounds are devoted to the Mg and Zn series, and more particularly to measurements carried out on single crystals or under hydrostatic pressure (Figs. 1 - 28). Using single crystals allows one to obtain very specific information on the magnetic couplings, the effects of which may strongly depend on the direction under investigation because of the presence of magnetocrystalline anisotropy. On the other hand, many previous studies have shown the importance of magnetoelastic and two-ion quadrupolar interactions in these series [90M1]. Applying a pressure then leads to influence the magnetic properties through the magnetoelasticity. This effect is especially important in cerium compounds, owing to the weakly localized character of the 4f electron which may give rise to Kondo or heavy fermion behaviour [92C1]. The role of the 5d conduction electrons in the pressure dependence of the exchange interactions has been also investigated in GdMg and GdZn compounds through band structure calculations [96B2]. As far as the two-ion quadrupolar interactions are concerned, the main previous studies were limited to ferroquadrupolar-type couplings, in the RZn series and the Tm-based compounds [89M1]. Later, they have been extended to CeMg and CeZn compounds (Table 2). In more recent works, antiferroquadrupolar interactions have been thoroughly investigated, through their effects on the antiferromagnetic moment arrangements. In particular, it has been shown that multiaxial (non collinear) structures can be stabilized by this type of coupling, even under an external field [95A1, 96A1]. Finally, some progress has been realized about the structural transformations in the RCd series (Figs. 29 - 32) [87K1].

Page 374: 2 Magnetic properties of rare earth elements, alloys and ...

References

89M1 Morin, P., in: Magnetic Properties of Metals (Wijn, H.P.J., ed.), Landolt-Börnstein, New Series, Berlin, Heidelberg, New York: Springer, Vol. 19e2 1989, p. 1

90M1 Morin, P., Schmitt, D., in: Ferromagnetic Materials (Buschow, K.H.J., Wohlfarth, E.P., eds.), Amsterdam: North-Holland, Vol. 5 1990, Chap. 1, p. 1

94C1 Colinet, C., Pasturel, A., in: Handbook on the Physics and Chemistry of Rare Earths (Gschneidner Jr., K.A., Eyring, L., Lander, G.H., Choppin, G.R., eds.), Amsterdam: Elsevier, Vol. 19 1994, Chap. 134, p. 479

94T1 Thompson, J.D., Lawrence, J.M., in: Handbook on the Physics and Chemistry of Rare Earths (Gschneidner Jr., K.A., Eyring, L., Lander, G.H., Choppin, G.R., eds.), Amsterdam: Elsevier, Vol. 19 1994, Chap. 133, p. 383

95G2 Gignoux, D., Schmitt, D., in: Handbook on the Physics and Chemistry of Rare Earths (Gschneidner Jr., K.A., Eyring, L., eds.), Amsterdam: Elsevier, Vol. 20 1995, Chap. 138, p. 293

97G1 Gignoux, D., Schmitt, D., in: Handbook of Magnetic Materials (Buschow, K.H.J., ed.), Amsterdam: Elsevier, Vol. 10 1997, Chap. 2, p. 239

Page 375: 2 Magnetic properties of rare earth elements, alloys and ...

354 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg

2.7.1 Introduction

The present work is a continuation of the previous review of Morin in the same series [89M1]. General considerations about crystallography, metallurgy and basic magnetic couplings have then been omitted to avoid redundancy. As far as the ternary compounds are concerned, only non magnetic alloyed atoms have been considered. This allowed us to focus ourselves to the fundamental aspects of the only 4f magnetism, as for the binary systems. The importance of studies on monocrystalline materials has been still growing (see subsects. 2.7.2 and 2.7.3). Besides, new series have been elaborated and magnetically characterized on polycrystalline samples. Some particular series or compounds such as the RX and RX2 series have been detailed elsewhere (Table 1). In the present review, the same organization as the previous one has been followed, i.e. compounds are successively presented according to their stoichiometry. Subsects. 2.7.2 to 2.7.5 are then devoted to the RX, RX2, R2X17 and RBe13 series, respectively. Other X-rich compounds are gathered in subsect. 2.7.6 while the ternary systems are considered in subsect. 2.7.7. Table 1. General reviews.

Subject Reference

Compounds of RE and Be, Mg, Zn, Cd, Hg 89M1 Quadrupolar interactions 90M1 Metamagnetism in intermetallic systems 95G2 Magnetic properties of rare earth compounds 97G1 Thermodynamic data of rare earth alloys 94C1 High pressure studies of anomalous Ce and Yb compounds 94T1

2.7.2 RX compounds

The main studies performed on these cubic CsCl-type compounds are devoted to the Mg and Zn series, and more particularly to measurements carried out on single crystals or under hydrostatic pressure (Figs. 1 - 28). Using single crystals allows one to obtain very specific information on the magnetic couplings, the effects of which may strongly depend on the direction under investigation because of the presence of magnetocrystalline anisotropy. On the other hand, many previous studies have shown the importance of magnetoelastic and two-ion quadrupolar interactions in these series [90M1]. Applying a pressure then leads to influence the magnetic properties through the magnetoelasticity. This effect is especially important in cerium compounds, owing to the weakly localized character of the 4f electron which may give rise to Kondo or heavy fermion behaviour [92C1]. The role of the 5d conduction electrons in the pressure dependence of the exchange interactions has been also investigated in GdMg and GdZn compounds through band structure calculations [96B2]. As far as the two-ion quadrupolar interactions are concerned, the main previous studies were limited to ferroquadrupolar-type couplings, in the RZn series and the Tm-based compounds [89M1]. Later, they have been extended to CeMg and CeZn compounds (Table 2). In more recent works, antiferroquadrupolar interactions have been thoroughly investigated, through their effects on the antiferromagnetic moment arrangements. In particular, it has been shown that multiaxial (non collinear) structures can be stabilized by this type of coupling, even under an external field [95A1, 96A1]. Finally, some progress has been realized about the structural transformations in the RCd series (Figs. 29 - 32) [87K1].

Page 376: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 355

Landolt-Börnstein New Series III/32D

Table 2. CeMg, CeZn compounds. Elastic constant ½(c11-c12) at room temperature, magnetoelastic coefficient B1, two-ion quadrupolar coefficient K1 and total quadrupolar coefficient G1 for the tetragonal symmetry.

Compound ½(c11-c12) [GPa]

B1 [K/atom]

K1 [mK/atom]

G1 [mK/atom]

Figures Ref.

CeMg 8.4 108 30 ± 40 80 3, 4 88M1, 90A1

CeZn 13.5 218 20 ± 60 400 3, 4 88M1, 90A1

2.5 7.5 12.5 17.5 22.5 27.5 32.515

20

25

50

30

35

45

40

Resis

tivity

[cm

µΩ

Temperature [K]T

T N[K

]

1.0 1.50.5p [GPa]

0 2.0 3.0

21

19

2.5

20

18

17

CeMgp = 2.7 GPa

2.4

2.021.38

0.81

0.4

0

Elas

tic m

ode

½(

–) [

10K

atom

]c

c11

124

–1

3

4

5

6

7

Temperature [K]T0 50 100 150 200 250 300

2

CeZn

CeMg

Fig. 1. CeMg. Electrical resistivity vs. temperature at various pressures. The arrows show the Néel temperatures TN. The inset shows the pressure depen-dence of TN [87K3].

Fig. 3. CeMg, CeZn. Shear elastic mode vs. temperature obtained by ultrasonic velocity measurements. Dashed lines are the lattice background deduced from LaMg and LaZn. Full lines are calculated within the quadrupolar model. 104 K/atom = 2.325 and 2.696 GPa for CeMg and CeZn, respectively [88M1].

Page 377: 2 Magnetic properties of rare earth elements, alloys and ...

356 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

0 1 2 3 4 65 7Magnetic field [T]µ0 H

Mag

netic

mom

ent

[10

/f.u.

]p m

B–3

µ

25

50

75

100

125

150

175

200

CeMgp = 1.05 GPa

0.7

0

Fig. 2. CeMg. Isothermal magnetization curves vs.magnetic field at T = 4.2 K for various pressures[87K3].

Susc

eptib

ility

[10

]χ m(3

)–5

–1µ B

T

0

2

4

6

8

Temperature [K]T20 25 30 35 40 45 50

– 2

CeZn

(× 1/5)

CeMg

Fig. 4. CeMg, CeZn. Third-order paramagnetic suscepti-bility (3)

mχ vs. temperature for a magnetic field applied along the [001] axis (tetragonal symmetry).

(3)mχ represents the initial curvature of the magnetiza-

tion curves. Full lines are calculated for the quadrupolar coefficients G1 = 80 and 400 mK/atom for CeMg and CeZn, respectively [90A1].

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[/f.

u.]

p mBµ

0.5

1.0

4.5

3.5

1.5

4.0

2.0

2.5

0

3.0

0 0.25 0.50 1.000.75 1.25 1.50 1.75

GdMg T = 4.2 K

20

40

60

70

80

90

100

110

120 K

Fig. 5. GdMg. Isothermal magnetization curves vs.magnetic field at p = 1.3 GPa for various temperatures[86L2].

0 0.5 1.0 1.5 2.0

Tem

pera

ture

[K]

T

25

50

75

100

125

Pressure [GPa]p

GdMgP

A

C

F

Fig. 6. GdMg. Pressure - temperature magnetic phase diagram. P: paramagnetic; F: ferromagnetic; C: canted; A: antiferromagnetic [86L2].

Page 378: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 357

Landolt-Börnstein New Series III/32D

H/

–[1

0T]

λλ

II⊥

3

0 50 100 150 200Temperature [K]T

0.5

1.0

1.5

2.0

TmMg

Fig. 7. TmMg. Reciprocal parastriction susceptibility,

⊥− λλ||/H vs. temperature for a magnetic field applied

along the [001] axis. The changes of length, λ|| and λ⊥, are measured parallel and perpendicular to H [86G1].

Cros

s sec

tion

(,

)S

Energy transfer [meV]∆E– 8 – 6 – 4 – 2 0 2 4

Cros

s sec

tion

(,

)S

Energy transfer [meV]∆E– 8 – 6 – 4 – 2 0 2 4

Cros

s sec

tion

(,

)S

Energy transfer [meV]∆E– 8 – 6 – 4 – 2 0 2 4

Ce Y Zn0.2 0.8 T = 100 K T = 30 K

T = 7 K

Fig. 8. Ce0.2Y0.8Zn. Neutron scattering cross section vs. energy transfer at 7 K, 30 K and 100 K. The substitution of Y for Ce results in lowering the ordering temperature below 4 K. The arrow at 100 K indicates the crystal field inelastic excitation. The dashed lines are fits of the quasielastic contribution. The mean scattering angle θ is 14° [86L1].

Page 379: 2 Magnetic properties of rare earth elements, alloys and ...

358 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

Line

wid

th[m

eV]

γ qe

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 20 50 75 100 125 175Temperature [K]T

150

Ce Y Zn0.2 0.8

Ce La Zn0.2 0.8

Fig. 9. Ce0.2Y0.8Zn, Ce0.2La0.8Zn. Linewidth of the quasielastic contribution to the neutron scattering cross section vs. temperature [86L1].

0 10 20 30 40La

ttice

cons

tant

s[Å

]a,

c

3.66

3.68

3.70

3.72

3.74

3.76

Temperature [K]T

c CeZn

a

Fig. 11. CeZn. Lattice constants a, c vs. temperature, deduced from the position of the (200) and (002) nuclear reflections measured by powder neutron diffraction. The arrow indicates the Néel temperature TN (first order transition). The symmetry is cubic above TN and tetragonal below TN [89U1].

0 1 2 3 4 5 8

1.0

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p CeBµ

0.2

0.4

0.8

0.6

6 7

Ce Y Zn0.05 0.95T = 1.5 K

10 K

Fig. 10. Ce0.05Y0.95Zn. Magnetization curves vs. magnetic field at 1.5 and 10 K for a single crystal. The field is applied along ∆ [111], o [110] or + [001] direction. The Néel temperature is below 1.5 K [86L1].

Page 380: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 359

Landolt-Börnstein New Series III/32D

Mag

netic

mom

ent

[]

p CeBµ

0 10 20 30 40Temperature [K]T

0.5

1.0

1.5

2.0

CeZn

Scattering vector sin [Å ]θ/λ –10

0.5

0.2 0.4 0.6 0.8

1.0

1.5

2.0

2.5

0

0.5

0.2 0.4 0.6 0.8

1.0

1.5

2.0

2.5

Form

fact

or(

)[

]pf

qµ B

CeZn

Form

fact

or(

)[

]pf

qµ B

Scattering vector sin [Å ]θ/λ –1

NdZn

(10

½)

(20

½)

(20

½)

3

(30

½)

(½0

2)5

(½0

1)7

(40

½)

5(½

03)

7(40

½)

3

(½0

2)7

(40

½)

(30

½)

3

(½0

2)9

(30

½)

5

(10

½)

(50

½)

(30

½)

(½0

1)5

(30

½)

5

(½0

1)7

(40

½)

5(½

02)

7(4

)

(20

½)

3

(30

½)

5

(½0

1)3

(20

½)

2

Fig. 13. CeZn, NdZn. Effective magnetic amplitude pf(q) vs. scattering vector q/(4π) = sin(θ)/λ measured by neutron diffraction at 8 K for CeZn and 4.2 K for NdZn.

p is the ordered moment and f(q) the magnetic form factor. The reflections (h,k,l) measured are indicated [87F1].

Fig. 12. CeZn. Ordered magnetic moment vs. temper-ature, deduced from the (10½) magnetic reflection measured by powder neutron diffraction. The arrow indicates the Néel temperature. The moment direction is [001] [88U1].

Page 381: 2 Magnetic properties of rare earth elements, alloys and ...

360 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

Mag

netic

mom

ent

[]

p CeBµ

0 1 2 3 4 65 7Magnetic field [T]µ0 H

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.4 GPa

0.8

1.05

1.4

p = 1.25 GPaCeZn

Fig. 14. CeZn. Magnetization curves vs. magnetic field at 4.2 K for the pressures indicated. Note the hysteresis above 0.8 GPa [86K1].

0 0.5 1.0 1.5 2.0

10

20

30

40

50

60

70

Pressure [GPa]pTe

mpe

ratu

re[K

]T

0 0.5 1.0 1.5−∆a a/ [%]

P P

KRKC

T1 T2

AF AFAF + F F

TN

TC

Tt

CeZn

Fig. 16. CeZn. Pressure - temperature magnetic and structural phase diagram. P: paramagnetic; F: ferromag-netic; AF: antiferromagnetic; T1: tetragonal symmetry, c/a > 1; T2: tetragonal symmetry, c/a < 1; KC: cubic Kondo state; KR: rhomboedral Kondo state. TC, TN, Ttas in Fig. 15 [90S1].

0 10 20 30 40 50 60

Resis

tivity

[cm

µΩ

Temperature [K]T

10

40

20

60

50

30

70

90

80

100

110

TN

TC

TC

TC

TC1.000.75

0.520

1.25

Tt

1.53

1.93

p = 2.72 GPa

CeZn

Fig. 15. CeZn. Electrical resistivity vs. temperature at various pressures, as indicated. TC: Curie temperature, TN: Néel temperature, Tt: structural transition temperature [86K1].

Page 382: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 361

Landolt-Börnstein New Series III/32D

0.5

1.0

1.5

2.0

2.5

3.0

0 15 30 45 60 75Temperature [K]T

Mag

netic

mom

ent

[]

p NdBµ

NdZn

Fig. 17. NdZn. Ordered magnetic moment vs.temperature, deduced from the (10½) magnetic reflection measured by neutron diffraction. The arrowindicates the spin reorientation transition at Tsr = 18 K. The moment direction is [110] and [111] below andabove Tsr, respectively [87F1].

0.6

1.2

0.2

0.8

1.4

0.4

1.0

1.6

0 2 4 6 8 12 1410 16

Mag

netic

mom

ent

[/f.

u.]

p mBµ

Magnetic field [T]µ0 H

T = 1.5 K

40 K

55 K

NdZn

Fig. 18. NdZn. Magnetization curves vs. magnetic field applied along the [110] direction at T = 1.5 K, 40 K and 55 K. The field-induced metamagnetic transitions cor-respond to changes of antiferromagnetic moment confi-guration [95A2].

0.3

0.6

0.9

1.2

1.5

1.8

2.1

0 2 4 8 10 12 166 14Magnetic field [T]µ0 H

NdZn

Mag

netic

mom

ent

[/f.

u.]

p mBµ

T = 1.5 K

35 K60 K

Fig. 19. NdZn. Magnetization curves vs. magnetic fieldapplied along the [111] direction at T = 1.5 K, 35 K and60 K [95A2].

Hall

coef

ficie

nt[1

0cm

Oe

]R H

–12

–1Ω

0 50 100 150 200Temperature [K]T

– 5

– 4

– 3

– 2

– 1

TN

Tsr

NdZn

LaZn

Fig. 21. NdZn, LaZn. Hall coefficient vs. temperature. Arrows indicate the Néel temperature TN and the spin reorientation temperature Tsr [86H1].

Page 383: 2 Magnetic properties of rare earth elements, alloys and ...

362 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

0 15 30 45 60 75

Mag

netic

fiel

d[T

]µ 0

H

Temperature [K]T

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0 15 30 45 60 75M

agne

tic fi

eld

[T]

µ 0H

Temperature [K]T

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0 15 30 45 60 75

Mag

netic

fiel

d[T

]µ 0

H

Temperature [K]T

2.5

5.0

7.5

10.0

12.5

15.0

17.5a b

c

NdZn

IIIb

VIb

IVb

II I

IIIt

VIt

IVt

II I

VIIt

IIIq

Vq

IVq

II I

Fig. 20. NdZn. H-T magnetic phase diagram for a magnetic field applied along (a) the [110], (b) the [111] and (c) the [001] directions. I: triple-Q multiaxial structure, magnetic moments M along the 111 direc-tions; II: double-Q multiaxial structure, M || 110; all the other structures are complex multiaxial structures distorted by the magnetic field [95A2].

Page 384: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 363

Landolt-Börnstein New Series III/32D

56 60 64 68 72 76 80 8422.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Temperature [K]T

Resis

tivity

[cm

µΩ

0 0.25 0.50 0.75 1.00 1.25 1.50 1.7566.5

67.0

67.5

68.0

68.5

69.0

69.5

70.0

Pressure [GPa]pNé

elte

mpe

ratu

re[K

]T N

TN

NdZn

p = 00.46 GPa0.991.58

Fig. 22. NdZn. Electrical resistivity vs. temperature at various pressures around the Néel temperature TN. Right figure: TN vs. pressure [95K2].

15 27

3

2

8

4

5

6

7

17 19 21 23 25Temperature [K]T

Resis

tivity

[cm

µΩ

Pressure [GPa]p

[K]

T sr

19

21

23

25

20

22

24

0 0.25 0.50 1.000.75 1.25 1.50 1.75

Tsr

NdZn

p = 00.46 GPa0.991.58

Fig. 23. NdZn. Electrical resistivity vs. temperature at various pressures around the spin reorientation temperature Tsr. Right figure: Tsr vs. pressure [95K2].

Page 385: 2 Magnetic properties of rare earth elements, alloys and ...

364 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

Ther

moe

lect

ricpo

wer

[V

K]

–1

–15.0

–12.5

–10.0

–7.5

–5.0

–2.5

2.5

0 50 100 150 200 250 300Temperature [K]T

0TC

GdZn

Fig. 24. GdZn. Thermoelectric power referred to copper vs. temperature. TC is the Curie temperature [88P1].

0 50 100 150 200 250Temperature [K]T

TC

TbZn

Tsr

Ther

moe

lect

ricpo

wer

[V

K]

–1

–20.0

–10.0

–5.0

0

5

–15.0

Fig. 26. TbZn. Thermoelectric power referred to copper vs. temperature. TC is the Curie temperature, Tsr the spin reorientation temperature. The moment direction is [110] and [001] below and above Tsr, respectively [88P1].

150.0

187.5

225.0

262.5

300.0–0.20

–0.15

–0.10

–0.05

–405

0

–400

–410

–395

Distance [Å]dGd-Gd

∂∂

H/

pi

[kOe

kba

r]

–1

3.60 3.63 3.66 3.69 3.72 3.75

–390

GdZn GdHg GdCd

3.70

157Gd

H i[k

Oe]

T C[K

]

157Gd

Fig. 25. GdZn, GdHg, GdCd. Effective magnetic field Hi(Gd), its pressure derivative and Curie temperature TCvs. next-nearest Gd-Gd distance, obtained by high pressure NMR measurements [87K2].

Page 386: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 365

Landolt-Börnstein New Series III/32D

–150

–100

–50

050

100

150

–2.5

–2.0

–1.5

–0.5

–1.00

0.5

Appl

ied

field

[kA

m]

H–1

Magnetization[T] M

1.0

1.5

2.0

2.5

–150

–100

–50

050

100

150

0

0.5

1.0

2.0

1.5

2.5

3.0

Appl

ied

field

[kA

m]

H–1

Magnetostriction[10] lII–3

3.5

4.0

4.5

5.0

5.5

6.0

ab

TbZn

Fig

.27.

ab

TbZ

n.

()

Mag

net

izat

ion

and

()

mag

net

ost

rict

ion

vs.

mag

net

icfi

eld

appli

edal

ong

the

[100]

easy

axis

at77

Kan

dfo

rvar

ious

com

pre

ssiv

est

ress

es:

–––

5.3

,––

–13.3

,·–·–

24.6

,---

31.1

,··-

··-37.5

,····4

4,a

nd

·-·-

50.5

MP

a[9

5C

1].

Page 387: 2 Magnetic properties of rare earth elements, alloys and ...

366 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

X Γ M R–4

–3

–2

0

–1

1

3

2

4

Qzz

() [

10]

q2

K

X Γ M R

DyZn

M

M'

X

X'

3.75

Latti

ce p

aram

eter

s[Å

]

0 50 100 150 200 250Temperature [K]T

3.91

3.87

3.83

3.79

3.95c

a

a'/2 2√

c'/2

b'/3 2√

a0

CeCd

Tt2

Tt1

Fig. 28. DyZn. Ab-initio calculated Fourier transform θzz*(q) = 1/3J(J+1) Jzz(q) of the two-ion anisotropic bilinear exchange coupling constants Jzz(Rij) for the main symmetry directions of the cubic Brillouin zone [86S1].

Fig. 29. CeCd. Lattice parameters vs. temperature, de-termined by X-ray diffraction measurements on single crystal. The structure is cubic above Tt1 = 220 K, tetragonal between Tt1 and Tt2 = 100 K and ortho-rhombic below Tt2. Full circles and squares: increasing temperature; open circles and triangles: decreasing temperature [88N1].

Page 388: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 367

Landolt-Börnstein New Series III/32D

0 25 50 100 125 150 250

10

20

40

30

50

70

60

80

Temperature [K]T

Heat

capa

city

[J m

olK

]C p

–1–1

75 175 200 225

NdCd

TC

Tsr

2.5

5.0

17.5

7.5

10.0

15.0

12.5

Temperature [K]T0 50 100 150 200 250 300

NdCd

TC

Tsr

Tt

Ther

moe

lect

ricpo

wer

[V

K]

–1

Fig. 30. NdCd. Heat capacity vs. temperature. TC = 121 K is the Curie temperature, Tsr = 62.5 K the spin reorientation temperature. The mo-ment direction is [110] and [111] below and above Tsr, respectively [90A1].

Fig. 31. NdCd. Thermoelectric power referred to Cu vs. temperature. TC is the Curie temperature, Tsr the spin reorientation temperature and Tt a structural transition temperature [88P1].

Page 389: 2 Magnetic properties of rare earth elements, alloys and ...

368 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

2.5

5.0

17.5

7.5

10.0

15.0

12.5

Temperature [K]T0 50 100 150 200 250 300

Ther

moe

lect

ricpo

wer

[V

K]

–1

TbCd

TC

Tsr

2.7.3 RX2 compounds

The interest for the RX2 compounds has been renewed owing to the availability of single crystals, in particular in the RZn2 orthorhombic series (Figs. 33 - 53) [97G1]. In these recent studies, anisotropic metamagnetic processes have been shown to occur [95G2], due to the existence of long-range competing interactions and frustration in the presence of magnetocrystalline anisotropy leading to the existence of collinear incommensurate or long-period commensurate magnetic structures (Table 3). The case of DyZn2 is worth being emphasized, this compound exhibiting a conversion axis phenomenon similar to DyCu2 [94H1]: under certain conditions of field and temperature, a hard magnetization direction acquires the characteristics of another axis (metamagnetic behaviour), and conversely. These effects seem to be strongly related to quadrupolar interactions and magnetostriction.

Fig. 32. TbCd. Thermoelectric power referred to copper vs. temperature. TC is the Curie temperature, Tsr the spin reorientation temperature. The moment direction is [110] and [001] below and above Tsr, respectively [88P1].

Page 390: 2 Magnetic properties of rare earth elements, alloys and ...

References

86G1 Giraud, M., Morin, P., Rouchy, J., Schmitt, D.: J. Magn. Magn. Mater. 59 (1986) 255 86H1 Hiraoka, T.: J. Phys. Soc. Jpn. 55 (1986) 4417 86K1 Kadomatsu, H., Tanaka, H., Kurisu, M., Fujiwara, H.: Phys. Rev. B 33 (1986) 4799 86L1 Lahiouel, R., Galera, R.M., Murani, A.P., Pierre, J., Siaud, E.: Z. Phys. B 62 (1986) 457 86L2 Liu, W.L., Kurisu, M., Kadomatsu, H., Fujiwara, H.: J. Phys. Soc. Jpn. 55 (1986) 33 86S1 Schmitt, D.: J. Magn. Magn. Mater. 54-57 (1986) 461 87F1 Fujii, H., Uwatoko, Y., Motoya, K., Ito, Y., Okamoto, T.: J. Magn. Magn. Mater. 63-64

(1987) 114 87K1 Kadomatsu, H., Kurisu, M., Fujiwara, H.: J. Phys. F 17 (1987) L305 87K2 Kasamatsu, Y., Tohyama, T., Kojima, K., Hihara, T.: J. Magn. Magn. Mater. 70 (1987) 294 87K3 Kurisu, M., Tanaka, H., Kadomatsu, H., Fujiwara, H.: J. Phys. Soc. Jpn. 56 (1987) 1127 88M1 Morin, P., Rouchy, J., Miyako, Y., Nishioka, T.: J. Magn. Magn. Mater. 76-77 (1988) 319 88N1 Nakazato, M., Wakabayashi, N., Kitai, T.: J. Phys. Soc. Jpn. 57 (1988) 953 88P1 Pinto, R.P., Amado, M.M., Braga, M.E., Sousa, J.B., Morin, P., Aléonard, A.: J. Magn.

Magn. Mater. 72 (1988) 152 88U1 Uwatoko, Y., Fujii, H., Nishi, M., Motoya, K., Ito, Y.: J. Magn. Magn. Mater. 76-77 (1988)

411 89M1 Morin, P., in: Magnetic Properties of Metals (Wijn, H.P.J., ed.), Landolt-Börnstein, New

Series, Berlin, Heidelberg, New York: Springer, Vol. 19 e2 1989, p. 1 89U1 Uwatoko, Y., Fujii, H., Nishi, M., Motoya, K., Ito, Y.: Solid State Commun. 72 (1989) 941 90A1 Aléonard, R., Morin, P.: J. Magn. Magn. Mater. 84 (1990) 255 90M1 Morin, P., Schmitt, D., in: Ferromagnetic Materials (Buschow, K.H.J., Wohlfarth, E.P., eds.),

Amsterdam: North-Holland, Vol. 5 1990, Chap. 1, p. 1 90S1 Shigeoka, T., Uwatoko, Y., Fujii, H., Reberlsky, L., Shapiro, S.M., Asai, K.: Phys. Rev. B 42

(1990) 8394 92C1 Continenza, A., Monachesi, P.: Phys. Rev. B 46 (1992) 6217 95A1 Amara, M., Morin, P.: Physica B 205 (1995) 379 95A2 Amara, M., Morin, P., Burlet, P.: Physica B 210 (1995) 157 95K2 Kurisu, M., Kadomatsu, H., Fujiwara, H., Hiraoka, T.: J. Magn. Magn. Mater. 140-144

(1995) 1146 96A1 Amara, M., Morin, P.: Physica B 222 (1996) 61 96B2 Buschow, K.H.J., Grechnev, G.E., Hjelm, A., Kasamatsu, Y., Panfilov, A.S., Svechkarev,

I.V.: J. Alloys Compounds 244 (1996) 113

Page 391: 2 Magnetic properties of rare earth elements, alloys and ...

368 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

2.5

5.0

17.5

7.5

10.0

15.0

12.5

Temperature [K]T0 50 100 150 200 250 300

Ther

moe

lect

ricpo

wer

[V

K]

–1

TbCd

TC

Tsr

2.7.3 RX2 compounds

The interest for the RX2 compounds has been renewed owing to the availability of single crystals, in particular in the RZn2 orthorhombic series (Figs. 33 - 53) [97G1]. In these recent studies, anisotropic metamagnetic processes have been shown to occur [95G2], due to the existence of long-range competing interactions and frustration in the presence of magnetocrystalline anisotropy leading to the existence of collinear incommensurate or long-period commensurate magnetic structures (Table 3). The case of DyZn2 is worth being emphasized, this compound exhibiting a conversion axis phenomenon similar to DyCu2 [94H1]: under certain conditions of field and temperature, a hard magnetization direction acquires the characteristics of another axis (metamagnetic behaviour), and conversely. These effects seem to be strongly related to quadrupolar interactions and magnetostriction.

Fig. 32. TbCd. Thermoelectric power referred to copper vs. temperature. TC is the Curie temperature, Tsr the spin reorientation temperature. The moment direction is [110] and [001] below and above Tsr, respectively [88P1].

Page 392: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 369

Landolt-Börnstein New Series III/32D

Table 3. RZn2 compounds. TN, Tt: Néel, transition temperature; Q: propagation vector; M: magnetization; ps: magnetic moment.

Compound TN, Tt [K]

Q (reduced unit)

Comments Figures Ref.

CeZn2 7.5 (0,0,τ) (T > Tt) ps = 1.6 µB (4.2 K) M || b

33 - 39 88K1, 92G1

Tt = 7.2 τ = 0.6… 0.5 (7.5…5 Κ) (0,0,1) (T < Tt)

phase mixing (< Tt, sample dependent)

PrZn2 23 (0,0,0.449) (T > Tt) M || a at 8.3 K 40 - 42 92K1, Tt= 10 (0,0,1/2) (T < Tt) ps = 2.3 µB and M ⊥ c

at 33° of a 95O1

NdZn2 23 complex antiferromagnetic M || b 43, 44 90K2 SmZn2 45 antiferromagnetic no Curie-Weiss behaviour 70D1 EuZn2 30 antiferromagnetic Eu2+ state 75D1 GdZn2 68 antiferromagnetic 70D1 TbZn2 75 (0,0,τ) (T > Tt) M || b 45, 46 72D1 Tt = 60 τ = 0.394 …

0.439 (75…60 K) (0,0,0.5) (T < Tt)

ps = 8.15 µB (4.2 K)

DyZn2 38 (0,0,0.45) (T > Tt) ps = 9.7 µB (4.2 K) 45, 47 - 50 90O1 Tt = 32 (0,0,0.5) (T < Tt) M at 16° of b

Conversion axis phenomenon

HoZn2 14

Tt = 6 (0,0,0.441) ps = 9.4 µB (4.2 K)

M || b 45, 51 95K1

ErZn2 13 complex antiferromagnetic 45, 52 75D1

TmZn2 5.2 antiferromagnetic 53 75D1

Page 393: 2 Magnetic properties of rare earth elements, alloys and ...

370 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

Inv.

susc

eptib

ility

[mol

cm]

χ m–1–3

100

200

300

400

500

600

0 50 100 150 200 250 300Temperature [K]T

c

a

b

CeZn2

Fig. 33. CeZn2. Reciprocal magnetic molar susceptibilityvs. temperature along the a, b and c axes of the ortho-rhombic unit cell. Lines are calculated in a crystal fieldmodel [88V1].

Mag

netic

mom

ent

[]

p mBµ

/f.u.

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 1 2 4 5 6 8Magnetic field [T]µ0 H

3 7

a, c

b

CeZn2

Fig. 34. CeZn2. Magnetization vs. applied magnetic field at T = 1.5 K. Note the three-step metamagnetic process along the b easy axis. The curves are super-imposed along a and c directions [92G1].

Mag

netic

fiel

d[T

]µ 0

H

0 2 4 6 8Temperature [K]T

2

4

6

8

CeZn2

Fig. 35. CeZn2. Magnetic field-temperature phase diagram for the b direction. The two field-induced phases correspond to structures where a part of the moments antiparallel to the field have flipped [92G1].

Cros

s sec

tion

(,

)(re

lativ

e)S

2

4

6

8

10

Energy transfer [meV]∆E–30 –15 0 15 30 45 600

CeZn2

Fig. 36. CeZn2. Neutron scattering cross section vs. energy transfer at 10 K for an incident neutron energy Ei = 68 meV. Two crystal field excitations can be observed at ∆E = 15.7 and 37.5 meV [92M2].

Page 394: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 371

Landolt-Börnstein New Series III/32D

– 4 – 2 0 2 40

2

4

6

8

Cros

s sec

tion

(,

) (re

lativ

e)S

Energy transfer [meV]∆E

CeZn2

0

15

5

25

20

10

30

40

35

45

Resis

tivity

[cm

µΩ

42 6 84 10 102

CeZn2

Temperature [K]T25 6 7 8 9 3 10⋅ 2

p = 3.18 GPa

2.88

2.26

1.2

0

T N[K

]

2 31p [GPa]

0

9

10

7

3 5 7 9

8

Fig. 37. CeZn2. Quasielastic scattering cross section vs. energy transfer at 30 K for an incident neutron energy Ei = 4.6 meV. The mean scattering angle is 35°. Dashed line: elastic incoherent contribution; continuous line: quasielastic contribution [93O2].

Fig. 38. CeZn2. Magnetic contri-bution to the electrical resistivity vs. temperature at various pressures. LaZn2 has been taken as the non-magnetic reference. Inset: Néel temperature vs. pressure [88K1].

Page 395: 2 Magnetic properties of rare earth elements, alloys and ...

372 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

3

2

4

5

6

7

8

Pressure [GPa]p0 0.25 0.50 0.75 1.00 1.25 1.50

Mag

netic

fiel

d[T

]µ 0

H

CeZn2

IF

AF IV

AF III

AF II

AF I

a

c

0 20 8010 504030 60 70

2

12

4

6

8

10

Susc

eptib

ility

[10

cmg

]χ g

–43

–1

Temperature [K]T

Tm TN

H bII

PrZn2

1

2

3

4

5

6

50 100 150 200 250 300Temperature [K]T

Inv.

susc

eptib

ility

[10

gcm

]χ g–1

4–3

a

b

H cII

0

Fig. 40. PrZn2. Magnetic mass susceptibility vs. temper-ature along the a, b and c axes of the orthorhombic unit cell. TN is the Néel temperature; a change of magnetic

structure occurs at Tm. Right figure: reciprocal mass susceptibility vs. temperature for the three symmetry directions [92K1].

Fig. 39. CeZn2. Field-pressure magnetic phase diagram at 4.2 K for the b axis. IF: induced ferromagnetic; AF: antiferromagnetic; the net resultant moments are (I) M = 0, (II) M = Ms/3, (III) M = 7Ms/18 and (IV) M = Ms/2, Ms being the saturated magnetization [88K1].

Page 396: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 373

Landolt-Börnstein New Series III/32D

a b0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

10

20

30

40

50

60

70

Magnetic field [T]µ0 H

Mag

netiz

atio

n[G

cmg

]σ s

3–1

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

10

20

30

40

50

60

70

Magnetic field [T]µ0 HM

agne

tizat

ion

[G cm

g]

σ s3

–1

c0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

10

20

30

40

50

60

70

Magnetic field [T]µ0 H

Mag

netiz

atio

n[G

cmg

]σ s

3–1

T = 6 K

15

20 K

T = 6 K

15

20 K

T = 6 K

814 K

PrZn2

Fig. 41. PrZn2. Magnetization per unit mass vs. magnetic field applied along the (a) a, (b) b and (c) c axes of the orthorhombic unit cell at the temperatures indicated [92K1].

Page 397: 2 Magnetic properties of rare earth elements, alloys and ...

374 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

0

0.4

0.8

2.8

1.2

1.6

2.4

2.0

Inte

nsity

[rel.u

nits

]

Scattering angle0° 5° 10° 15° 20° 25° 35° 40°30° 45°

c

0

0.4

0.8

2.8

1.2

1.6

2.4

2.0

Inte

nsity

[rel.u

nits

]

Scattering angle0° 5° 10° 15° 20° 25° 35° 40°30° 45°

b

0

0.4

0.8

2.8

1.2

1.6

2.4

2.0

Inte

nsity

[rel.u

nits

]

Scattering angle0° 5° 10° 15° 20° 25° 35° 40°30° 45°

a

(01

½)

PrZn2(0

00)

±

(01

1)–

(00

2)–

(10

1)–

(01

1)+

(02

0)±

(10

1)+

(00

2)+

(11

2)–

(01

3)–

(10

3)–

(03

1)–

(01

1)

(10

1)(0

02)

(02

0)

(12

1)(1

12)

(02

2)

(01

3)(0

31)

(10

3)

(21

1)

(00

½)

(00

½)

3

(10

½)

(01

½)

3

(11

½)

(02

½)

(10

½)

3 (11

½)

3

(02

½)

3

(12

½)

3

(00

½)

5

(12

½)

(01

½)

5

(10

½)

5

(11

½)

5

(02

2)–

(20

0)

Fig. 42. PrZn2. Neutron diffraction patterns vs. scattering angle at (a) T = 8.3 K, (b) 15.3 K and (c) 78 K. Labels are the indexation of the nuclear or magnetic reflections [95O1].

Page 398: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 375

Landolt-Börnstein New Series III/32D

0 10 20 30 40 50 600

0.1

0.2

0.7

0.3

0.4

0.6

0.5

Susc

eptib

ility

[cm

mol

]χ m

3–1

Temperature [K]T70 80

Inv.

mol

ar su

scep

tibili

ty[m

ol cm

]χ m–1

–30

10

20

70

30

40

60

50c

a

b

NdZn2

c

a

b

a bMagnetic field [T]µ0 H0

20

Mag

netiz

atio

n[G

cmg

]σ s

3–1

3 6 9 12 15

30

40

50

Magnetic field [T]µ0 H0

Mag

netiz

atio

n[G

cmg

]σ s

3–1

3 6 9 12 15

T = 6.6 K

16.020.1

35.0 K

T = 6.4 K

16.2

20.1

34.8 K

NdZn2

10

20

30

40

50

10

Fig. 44. NdZn2. Magnetization per unit mass vs. magnetic field applied along the (a) a and (b) b axes of

the orthorhombic unit cell at the temperatures indicated [90K2].

Fig. 43. NdZn2. Magnetic molar susceptibility (left scale) and recip-rocal susceptibility (right scale) vs. temperature along the a, b and c axes of the orthorhombic unit cell [90K2].

Page 399: 2 Magnetic properties of rare earth elements, alloys and ...

376 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

0300

Temperature [K]T

5

30

10

15

20

25

Inv.

mol

ar su

scep

tibili

ty[m

ol cm

]χ m–1

–3

50 100 150 200 250In

v.m

olar

susc

eptib

ility

[mol

cm]

χ m–1–3

Inv.

mol

ar su

scep

tibili

ty[m

ol cm

]χ m–1

–3

Inv.

mol

ar su

scep

tibili

ty[m

ol cm

]χ m–1

–3

0300

Temperature [K]T

5

30

10

15

20

25

50 100 150 200 250

0300

Temperature [K]T

5

30

10

15

20

25

50 100 150 200 2500

300Temperature [K]T

5

30

10

15

20

25

50 100 150 200 250

TbZn2 ErZn2

HoZn2 DyZn2

a

b

H cIIac

H bII

a

b

H cII

a

b

H cII

Fig. 45. TbZn2, ErZn2, HoZn2, DyZn2. Reciprocal magnetic molar susceptibility vs. temperature along the

a, b and c axes of the orthorhombic unit cell. Lines are calculated in a crystal field model [95K1].

Page 400: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 377

Landolt-Börnstein New Series III/32D

0 20 40 60 80 100Temperature [K]T

Susc

eptib

ility

[cm

mol

]χ m

3–1

0.25

0.50

0.75

1.00

1.25

1.50

1.75TbZn2

TN

Tt

b

a

c

Fig. 46. TbZn2. Magnetic molar susceptibility vs. tem-perature along the a, b and c crystallographic axes. TN is the Néel temperature. A change of magnetic structure occurs at the transition temperature Tt = 60 K [90K2].

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80Temperature [K]T

DyZn2

TN

Tt

b

a

cSusc

eptib

ility

[]

χ m1

cmm

ol3

Fig. 48. DyZn2. Magnetic molar susceptibility vs. tem-perature along the a, b and c crystallographic axes. TN is the Néel temperature. A change of magnetic structure occurs at the transition temperature Tt = 32 K [90O1].

Page 401: 2 Magnetic properties of rare earth elements, alloys and ...

378 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

0.5

2.0

1.0

3.0

2.5

1.5

3.5

4.5

4.0

5.0

Inte

nsity

[rel.u

nits

]

5.5

Scattering angle

6.0

0 5° 10° 20° 25° 35° 40°15° 30°

Scattering angle0 5° 10° 20° 25° 35° 40°15° 30°

0.5

2.0

1.0

3.0

2.5

1.5

Scattering angle0 5° 10° 20° 25° 35° 40°15° 30°

0.5

2.0

1.0

3.0

2.5

1.5

DyZn2

(10

½)

(00

½)

(01

1)

(02

0)

(20

½)

c

b

a

(03

1)(1

03)

(21

1)Al

20

0)(

(20

2)(0

04)

(12

3)(2

20)

(01

1)(0

02)

(10

1)–

(10

1)(0

02)

(02

0)(0

20)

±

(10

1)+

(00

2)+ (1

12)

(02

2)– (0

13)

–(1

12)

(12

1)(0

22)

(10

3)–

(12

1)+

(11

2)+

(03

1)–

(20

0)±

Al1

11)

((2

00)

(10

3)(1

30)

(20

2)(0

04)

(22

0)(1

23)

Al2

00)

(

(01

3)

(00

2)(1

01)

(02

0)

(01

3)

(11

2)

Al1

11)

(

(01

1)

(02

2)(1

21)

(03

1)(2

00)

(10

3)(2

11)

Al2

00)

((2

02)

(00

4)(2

20)

Inte

nsity

[rel.u

nits

]In

tens

ity[re

l.uni

ts]

(12

3)

(00

0)±

(03

1)

(21

1)

(00

½)

3

(10

1)(1

)(0

02)

(01

½)

3

(12

1)

Al1

11)

(

(02

2)

(11

½)

3

(00

½)

5

(02

½)

3

(01

½)

5

(10

½)

5

(12

½)

3

(11

½)

5

(10

½)

3(0

)

(11

2)(1

)

(20

0)

Fig. 47. DyZn2. Neutron diffraction patterns vs. scattering angle at (a) T= 4.2 K, (b) 30 K and (c) 78 K. Labels are the indexation of the nu-clear or magnetic reflections [90O1].

Page 402: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 379

Landolt-Börnstein New Series III/32D

0 2.5 5.0 7.5 10.0 15.012.5 17.5

25

50

75

100

125

150

175

Magnetic field [T]µ0 H

Mag

netiz

atio

n[G

cmg

]σ s

3–1

T = 5 K

30 K

DyZn2

0 2.5 5.0 7.5 10.0 15.012.5 17.5

25

50

75

100

125

150

175

Magnetic field [T]µ0 H

Mag

netiz

atio

n[G

cmg

]σ s

3–1

T = 5 K

40 K

0 2.5 5.0 7.5 10.0 15.012.5 17.5

25

50

75

100

125

150

175

Magnetic field [T]µ0 H

Mag

netiz

atio

n[G

cmg

]σ s

3–1

T = 5 K

200 200

30

H aII H bII

H cII(2)

(4)

(3)

(1)

a b

c

Fig. 49. DyZn2. Magnetization per unit mass vs. magnetic field applied along the (a) a, (b) b and (c) c axes of the orthorhombic unit cell at the temperatures indicated. The numbers in (c) correspond to the successive measurements, showing the conversion axis phenomenon: after a transition under µ0Hc = 14.6 T, the c axis behaves as a a axis; the virgin behaviour is recovered after annealing the sample [92A1].

Page 403: 2 Magnetic properties of rare earth elements, alloys and ...

380 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

–250 –200 –150 0 150 300–300

Tran

smiss

ion

[rel.u

nits

]

–100 50–50 100 200 250Velocity [mm s ]v –1

–250 –200 –150 0 150 300–300

Tran

smiss

ion

[rel.u

nits

]

–100 50–50 100 200 250

a

b

DyZn2

Velocity [mm s ]v –1

Fig. 50. DyZn2. Mössbauer spectra measured at (a) T = 5 K and (b) 32.9 K [93O1].

Page 404: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 381

Landolt-Börnstein New Series III/32D

0 10 20 30 40 50Temperature [K]T

2.0

1.5

1.0

0.5

2.5

HoZn2

TNTt

b

a

c

Susc

eptib

ility

[cm

mol

]χ m

3–1

Fig. 51. HoZn2. Magnetic molar susceptibility vs. tem-perature along the a, b and c crystallographic axes. TN is the Néel temperature. A change of magnetic structureoccurs at the transition temperature Tt = 6 K [95K1].

1

2

3

4

5

6

0 10 20 30 40 50Temperature [K]T

ErZn2

TN

b

a

c

Susc

eptib

ility

[cm

mol

]χ m

3–1

Fig. 52. ErZn2. Magnetic molar susceptibility vs. tem-perature along the a, b and c crystallographic axes. TN is the Néel temperature [90K2].

Quad

rupo

le sp

littin

g[m

m s

]∆

E Q–1

20

40

60

80

100

120

140

0 100 200 300 400 500 600Temperature [K]T

TmZn2

Fig. 53. TmZn2. Quadrupole splitting vs. temperature. The line is calculated in a crystal field model [88S3].

Page 405: 2 Magnetic properties of rare earth elements, alloys and ...

References

70D1 Debray, D.K., Wallace, W.E., Ryba, E.: J. Less-Common Met. 22 (1970) 19 72D1 Debray, D., Sougi, M., Meriel, P.: J. Chem. Phys. 56 (1972) 4325 75D1 Debray, D., Wortmann, B.F., Methfessel, S.: Phys. Status Solidi (a) 30 (1975) 713 88K1 Kurisu, M., Yamashita, M., Kadomatsu, H., Fujiwara, H.: Physica B 149 (1988) 78 88S3 Stewart, G.A., Kaindl, G.: Hyperfine Interactions 40 (1988) 429 88V1 Voiron, J., Morin, P., Gignoux, D., Aléonard, R.: J. Phys. (Paris) Colloq. 49 (1988) C8-419 90K2 Kitai, T., Kaneko, T., Abe, S., Tomiyoshi, S., Nakagawa, Y.: J. Magn. Magn. Mater. 90-91

(1990) 55 90O1 Ohashi, M., Kitai, T., Kaneko, T., Yoshida, H., Yamaguchi, Y., Abe, S.: J. Magn. Magn.

Mater. 90-91 (1990) 585 92A1 Abe, S., Kaneko, T., Ohashi, M., Nakagawa, Y., Kitai, T.: J. Magn. Magn. Mater. 104-107

(1992) 1403 92G1 Gignoux, D., Morin, P., Voiron, J., Burlet, P.: Phys. Rev. B 46 (1992) 8877 92K1 Kaneko, T., Kitai, T., Abe, S., Ohashi, M., Nakagawa, Y.: Physica B 177 (1992) 295 92M2 Morin, P., Gignoux, D., Voiron, J., Murani, A.P.: Physica B 180-181 (1992) 173 93O1 Onodera, H., Kitai, T., Ohashi, M., Yamaguchi, Y., Kaneko, T.: Hyperfine Interactions 78

(1993) 451 93O2 Osakabe, T., Kohgi, M., Ohoyama, K., Kitai, T.: Physica B 186-188 (1993) 574 94H1 Hashimoto, Y., Kindo, K., Takeuchi, T., Senda, K., Date, M., Yamagishi, A.: Phys. Rev.

Lett. 72 (1994) 1922 95G2 Gignoux, D., Schmitt, D., in: Handbook on the Physics and Chemistry of Rare Earths

(Gschneidner Jr., K.A., Eyring, L., eds.), Amsterdam: Elsevier, Vol. 20 1995, Chap. 138, p. 293

95K1 Kitai, T.: J. Phys. Soc. Jpn. 64 (1995) 3403 95O1 Ohashi, M., Kitai, T., Kaneko, T., Abe, S., Funahashi, S., Yamaguchi, Y.: J. Magn. Magn.

Mater. 140-144 (1995) 1119 97G1 Gignoux, D., Schmitt, D., in: Handbook of Magnetic Materials (Buschow, K.H.J., ed.),

Amsterdam: Elsevier, Vol. 10 1997, Chap. 2, p. 239

Page 406: 2 Magnetic properties of rare earth elements, alloys and ...

382 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

2.7.4 R2X17 compounds

The only new magnetic results have been obtained with zinc. The magnetic behaviour has been investigated in the whole series and its antiferromagnetic nature confirmed (Figs. 54 - 64 and Table 4). The de Gennes law is far to be followed for some particular compounds (see the values of Θ for Ce2Zn17 and of TN for Gd2Zn17 and Tb2Zn17). Only Ce2Zn17 has been studied on a single crystal (Figs. 61, 62). Five compounds in the series exhibit a transition in the ordered range, probably related to a change of the magnetic structure which remains to be confirmed by neutron diffraction experiments. A close similarity can be observed between the heat capacity anomalies and the temperature derivatives of the electrical resistivity (see e.g. Figs. 55 and 56). Table 4. R2Zn17 compounds. Θ: paramagnetic Curie temperature; peff: effective paramagnetic moment; TN: Néel temperature, Tt: transition temperature in ordered range.

Compound Θ [K]

peff [µB]

TN [K]

Tt [K]

Figures Ref.

Ce2Zn17 – 24.0 2.31 1.7 61, 62 87O1 Pr2Zn17 – 5.5 3.76 2.2 1.7 55, 56, 59, 63 93M1, 94G1 Nd2Zn17 – 16.7 3.66 1.1 57 93M1, 94G1 Sm2Zn17 – 41.5 1.11 4.1 3.3 55 87O1 Gd2Zn17 – 58.4 8.27 9.0 54, 58 94G1, 96M1 Tb2Zn17 – 60.7 9.45 22.7 7.2 54, 60 87O1, 93M1 Dy2Zn17 – 21.0 10.96 8.8 54 93M1, 94G1 Ho2Zn17 – 12.5 10.82 3.0 2.5 55, 64 87O1, 94G1 Er2Zn17 – 5.8 9.66 1.6 1.4 93M1, 94G1 Tm2Zn17 – 6.3 7.87 0.8 87O1 Yb2Zn17 0 94G1 For Figs. 54 and 55 see next page.

Heat

capa

city

/[J

mol

K]

CT

–1–2

0 1 2 3 4Temperature [K]T

20

40

60

80

Pr Zn2 17Tt

TN

Fig. 56. Pr2Zn17. Heat capacity divided by temperature vs. temperature. The arrows show the Néel temperature TN and the transition temperature Tt in the ordered range [93M1].

Page 407: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 383

Landolt-Börnstein New Series III/32D

Resis

tivity

[cm

µΩ

1.9

1.0

2.8

3.7

4.6

5.5

6.4

Temperature [K]T0 5 10 15 20 25 30

Resis

tivity

[cm

µΩ

3.5

3.2

3.8

4.1

4.4

4.7

5.0

Temperature [K]T0 5 10 15 20 25 30

Resis

tivity

[cm

µΩ

2.5

2.0

3.0

3.5

4.0

4.5

5.0

Temperature [K]T0 5 10 15 20 25 30

Tt

TN

Gd Zn2 17

TN

Dy Zn2 17

TN

Tb Zn2 17

Fig. 54. Gd2Zn17, Dy2Zn17, Tb2Zn17. Resistivity vs. tem-perature in the low temperature region. The arrows show the Néel temperatures TN or the transition temperature Tt in the ordered range [87O1].

Page 408: 2 Magnetic properties of rare earth elements, alloys and ...

384 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

0 3.0Temperature [K]T

0.15

0.90

0.65

0.5 1.0 1.5 2.0 2.5

Tt

TN

Pr Zn2 17

Resis

tivity

[cm

]r

mW

– 0.10

0.40

0 3.0Temperature [K]T

6.0

6.5

6.4

0.5 1.0 1.5 2.0 2.5

d/d

[cm

K]

rT

mW–1

5.9

6.2

6.1

6.3

Tt TN

0 6Temperature [K]T

0.45

1.80

1.35

1 2 3 4 5

Tt

TN

Sm Zn2 17

Resis

tivity

[cm

]r

mW

0

0.90

0 6Temperature [K]T

1.3

2.8

2.5

1 2 3 4 5

d/d

[cm

K]

rT

mW–1

1.0

1.9

1.6

2.2

Tt

TN

0Temperature [K]T

0.15

0.60

0.45

1 2 3 4

Tt

TN

Ho Zn2 17

Resis

tivity

[cm

]r

mW

0

0.30

0Temperature [K]T

2.3

2.8

2.7

1 2 3 4

d/d

[cm

K]

rT

mW–1

2.1

2.5

2.4

2.6

Tt

TN

Fig. 55. Pr2Zn17, Sm2Zn17, Ho2Zn17. Temperature derivative of the resistivity (left part) and resistivity at low temperature (right part). The arrows show the Néel

temperatures TN or the transition temperatures Tt in the ordered range [87O1].

Page 409: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 385

Landolt-Börnstein New Series III/32D

0 0.5 1.5 2.0 2.5 4.00

40

5

0

20

10

60

1580

100

3.5

20

Temperature [K]T

Entro

py[J

mol

K]

S M–1

–1

1.0 3.0

Heat

capa

city

/[J

mol

K]

CT

–1–2

Nd Zn2 17 TN

0 5 10 15 20 25 30Temperature [K]T

35 40

5

20

25

30

35

0

2

0

1

3

4

6

5En

tropy

[J m

olK

]S M

–1–1

Heat

capa

city

/[J

mol

K]

CT

M–1

–2

Gd Zn2 17

TN

2 ln(2 + 1)R J

15

10

40

Fig. 57. Nd2Zn17. Heat capacity divided by temperature vs. temper-ature (left scale); magnetic entropy vs. temperature (right scale). The Néel temperature TN is indicated. The horizontal line corresponds to an entropy of 2Rln(2) [93M1].

Fig. 58. Gd2Zn17. Magnetic heat capacity divided by temperature vs. temperature (left scale); magnetic entropy vs. temperature (right scale). The Néel temperature TN is indicat-ed. The horizontal line corresponds to an entropy of 2Rln(2J+1) [96M1].

Page 410: 2 Magnetic properties of rare earth elements, alloys and ...

386 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

4.03.51.51.0 2.0 2.5 3.00.05

0.10

0.15

0.20

0.25

Susc

eptib

ility

[cm

mol

]χ m

3–1

Temperature [K]T

Pr Zn2 17

Tt

TN

0 0.5 1.0 1.5 2.0Magnetic field [T]µ0 H

0.2

0.4

0.6

0.8

Mag

netic

mom

ent

[/ f

.u.]

p mBµ

T = 2.25 K

4

1.8

1.5 K

Fig. 59. Pr2Zn17. Magnetization vs. magnetic field at various temperatures. Left figure: magnetic suscepti-

bility vs. temperature. TN is the Néel temperature and Tt the transition temperature in the ordered range [94G1].

5 10 15 20 25 30Temperature [K]T

0

0.12

0.14

0.16

0.18

0.20

0.10

Susc

eptib

ility

[cm

mol

]χ m

3–1

Tb Zn2 17

Tt

TN

1.5 3.0 4.5 6.0 7.5 9.00

0.5

1.0

1.5

2.0

2.5

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[/ f

.u.]

p mBµ

T = 24 K

18

81.5 K

Fig. 60. Tb2Zn17. Magnetization vs. magnetic field at various temperatures. Left figure: magnetic suscepti-

bility vs. temperature. TN is the Néel temperature and Tt the transition temperature in the ordered range [94G1].

Page 411: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 387

Landolt-Börnstein New Series III/32D

0.75

1.50

0.25

1.00

1.75

0.50

1.25

2.00

0 2.5 5.0 7.5 10.0 12.5 15.0

Ce Zn2 17

Magnetic field [T]µ0 H

Mag

netic

mom

ent

[]

p CeBµ

c axis

⊥ c axis

10

20

70

30

40

60

50

Resis

tivity

[cm

µΩ

Temperature [K]T0 50 100 150 200 250 300

Ce Zn2 17

La Zn2 17

TN

Fig. 61. Ce2Zn17. Magnetization vs. magnetic field at 1.3 K (crosses) and 4.2 K (full circles) parallel and perpendicular to the c axis of a single crystal [87S1].

Fig. 62. Ce2Zn17, La2Zn17. Electrical resistivity vs. temperature for a current flow J parallel (full circles) and perpendicular (open circles) to the c axis of a single crystal. The magnetic part is shown by a solid line (J || c) and a broken line (J ⊥ c). TN is the Néel temperature [88S2].

Page 412: 2 Magnetic properties of rare earth elements, alloys and ...

388 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

–15 –10 – 5 0 5 10 150

10

Energy transfer [meV]∆E

Cros

s sec

tion

(,

)[rel

ativ

e un

its]

SQ

ω

2

4

8

6

d

0

10

Cros

s sec

tion

(,

)[rel

ativ

e un

its]

SQ

ω

2

4

8

6

c

0

10

Cros

s sec

tion

(,

)[rel

ativ

e un

its]

SQ

ω

2

4

8

6

b

0

10

Cros

s sec

tion

(,

)[rel

ativ

e un

its]

SQ

ω

2

4

8

6

Pr Zn2 17

a

Fig. 63. Pr2Zn17. Neutron scattering cross section vs. energy transfer at (a) T = 4 K, (b) 20 K, (c) 50 K and (d) 75 K. Dashed line is experi-mental, continuous line is calculated in a crystal field model [95G1].

Page 413: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 389

Landolt-Börnstein New Series III/32D

0

7.5

0

0

7.5

0

Energy transfer [meV]ω

7.5

0

7.5

– 8 8– 7 – 6 – 5 – 4 – 3 – 2 – 1 0 1 2 3 4 5 6 7

22.5

15.0

30.0

37.5

45.0

7.5

0

7.5

52.5

60.0

67.5

75.0

d

c

Cros

s sec

tion

(,

)[rel

ativ

e un

its]

SQ

ω

b

Ho Zn2 17

f

e

a

(× 5)

Fig. 64. Ho2Zn17. Neutron scattering cross section vs. energy transfer at (a) T = 4 K, (b) 20 K, (c) 40 K, (d) 60 K, (e) 80 K and (f) 100 K. The scattering angle is

16°. The dashed line corresponds to the elastic peak alone [95G1].

Page 414: 2 Magnetic properties of rare earth elements, alloys and ...

References

87O1 Olivier, M., Siegrist, T., McAlister, S.P.: J. Magn. Magn. Mater. 63-64 (1987) 281 87S1 Sato, N., Kontani, M., Abe, H., Adachi, K.: J. Magn. Magn. Mater. 70 (1987) 372 88S2 Sato, N., Kontani, M., Abe, H., Adachi, K.: J. Phys. Soc. Jpn. 57 (1988) 1069 93M1 Marquina, C., Kim-Ngan, N.H., Bakker, K., Radwanski, R.J., Jacobs, T.H., Buschow, K.H.J.,

Franse, J.J.M., Ibarra, M.R.: J. Phys.: Condens. Matter 5 (1993) 2009 94G1 Gignoux, D., Schmitt, D., Garcia-Landa, B., Ibarra, M.R., Marquina, C.: J. Alloys

Compounds 210 (1994) 91 95G1 Garcia-Landa, B., Ibarra, M.R., Algarabel, P.A., Moze, O.: Phys. Rev. B 51 (1995) 15132 96M1 Marquina, C., Kim-Ngan, N.H., Buschow, K.H.J., Franse, J.J.M., Ibarra, M.R.: J. Magn.

Magn. Mater. 157-158 (1996) 403

Page 415: 2 Magnetic properties of rare earth elements, alloys and ...

390 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

2.7.5 RBe13 compounds

Most of the recent studies in this series have been devoted to the unstable cerium ion. In particular, the substitution of La for Ce allows one to change the degree of valence instability of this ion which becomes trivalent for a concentration lower than 5% [89T2]. The magnetic behaviour of CeBe13 has been investigated through various experiments: heat capacity [85B1, 90K1], point-contact spectroscopy [87N1] and photoemission [93L1]. Note that a single crystal was grown for this latter experiment. In the heavy rare earth series, few new studies have been performed (Figs. 65 - 70). Besides, a model including three exchange parameters, i.e. one within the ferromagnetic (001) planes and two between nearest and next-nearest (001) planes, has been developed to explain the occurrence of commensurate or incommensurate helicoidal structures as well as the evolution of the periodicity as a function of the temperature according to the change of crystal field anisotropy [91B1]. Table 5. RBe13 compounds. TN, Tt: Néel, transition temperature; Q: propagation vector; M: magnetic moment; Θ: paramagnetic Curie temperature.

Compound TN, Tt [K]

Q (reduced unit)

Comments Figures Ref.

CeBe13 non magnetic mixed valence 90K1, 93L1

PrBe13 no ordering singlet ground state Θ = – 8 K

90K1

NdBe13 2.6 ? Θ = 2.5 K, no ordering at 1.2 K [86V1]

75B1

SmBe13 8.8 75B1

EuBe13 non magnetic Eu3+ state (J = 0) 75B1

GdBe13 26 (0,0,0.284) helical (M ⊥ c) ps = 6.6 µB (1.4 K) Θ = 25 K

65 - 67 91B1, 91R1

TbBe13 16.5 Tt = 8.5

(0,0,τ) ( > Tt) (0,0,1/3) ( < Tt)

helical (M ⊥ c) ps = 8.8 µB (4.2 K) τ(T)= 0.312…0.333 Θ = 14 K

65 91B1

DyBe13 10 (0,0,1/3) helical (M ⊥ c) ps = 8.75 µB (1.5 K) Θ = 13 K

65 91B1

HoBe13 6 Tt = 4.5

(0,0,τ) ( > Tt) (0,0,1/3) ( < Tt)

helical (M ⊥ c) ps = 8.4 µB (1.4 K) τ(T)= 0.328 (4.9 K) Θ = 6 K

85V1, 91B1

ErBe13 3 (0,0,1/3) Θ = 6 K 65 91B1

TmBe13 no ordering singlet ground state 81C1

YbBe13 1.28 antiferromagnetic Γ7 ground state Kondo behaviour

68 - 70 86B1

Page 416: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 391

Landolt-Börnstein New Series III/32D

τ/c*

0 0.2 0.4 0.6 0.8 1.0Temperature /T TN

1/3

0.30

0.28

DyBe ErBe13 13,

TbBe13

GdBe13

T = 9 K10 K

12 K 14 K

3 K 12 K 20 K

Fig. 65. RBe13. z-component τ (in unit of c*) of the magnetic propagation vector vs. temperature. τ is incommensurate for Gd, locks onto the commensuratevalue 1/3 below TN/2 for Tb, and is 1/3 in the wholetemperature range for Dy and Er [91B1].

Heat

capa

city

[J m

olK

]C M

–1–1

Entro

py[J

mol

K]

S M–1

–1

5

0

10

15

20

25

Temperature [K]T10 15 25 4020 35

30

5

0

10

15

20

25

30

50 30

GdBe13

Fig. 66. GdBe13. Magnetic contribution to the heat capacity (left scale) and corresponding entropy (right scale) vs. temperature [96B1].

Mag

netic

mom

ent

[/ f

.u.]

p mBµ

Magnetic field [T]µ0 H

4

3

5

6

0 1 2 3 4 5

Mag

netic

mom

ent

[/ f

.u.]

p mBµ

Magnetic field [T]µ0 H

2

4

6

8

0 2 4 6 8 10

GdBe13

H ↑H ↓

T = 1.5 K

16

26

35

50 K

1

2

Fig. 67. GdBe13. Magnetization curves vs. magnetic field at various temperatures.

Right figure: detail of the 1.5 K curve in low field (the process is reversible) [96B1].

Page 417: 2 Magnetic properties of rare earth elements, alloys and ...

392 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

–2.5 –2.0 –1.5 0 1.5 3.0–3.0

Tran

smiss

ion

–1.0 0.5– 0.5 1.0Velocity [cm s ]v –1

2.0 2.5

YbBe13170Yb

Fig. 68. YbBe13. 170Yb Mössbauer absorption spectrum at 0.05 K [86B1].

0 0.5 1.0 1.5 2.0 2.5

SR[

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Heat

capa

city

[J m

olK

]C p

–1–1

0 0.5 1.0 1.5 2.0 2.5Temperature [K]T

8

6

4

2

10

Temperature [K]T

YbBe13

Fig. 69. YbBe13. Heat capacity vs. temperature. Right figure: entropy (in unit of R) vs. temperature [86R1].

Page 418: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 393

Landolt-Börnstein New Series III/32D

– 1.00

– 0.25

0.50

– 0.75

0

0.75

– 0.50

0.25

1.00

Energy [meV]E

d/d

[rela

tive

units

]2

2V

T

–30 –20 –10 0 10 20 30

YbBe13

2.7.6 Other X-rich compounds

Apart from the rare earth series quoted above, the other X-rich compounds have been little investigated in the past decade (Figs. 71 - 78). The main studies involve cerium ion in relation with its possible Kondo or heavy fermion behaviour. Several binary compounds with magnesium as well as the corresponding pseudo-ternary (diluted) compounds Ce-Y-Mg have been investigated, showing magnetic results consistent with a normal Ce3+state [96F1]. Some anomalous effects nevertheless are present, as shown in CeMg3 through the temperature dependence of the thermoelectric power (Fig. 71) [88S1] and of the quasielastic linewidth in neutron scattering spectra [87L1]. Compounds with cadmium at different stoichiometries have also been studied and do not exhibit heavy fermion behaviour (Table 6). Finally, a study of the pseudo-ternary compounds EuxSr1–xMg5.2, (EuxSr1–x)3Mg13 and Eu(Mg1–-xAlx)5.2 has been performed in relation with the magnetism of europium clusters [88L1, 92L1], while the magnetic behaviour of the pseudo-ternary compounds YbMxGa4–x (M = Zn, Cd) is characterized by a non-magnetic Yb2+ groundstate [95G3]. Table 6. X-rich compounds. TN: Néel temperature; Θ: paramagnetic Curie temperature; peff: effective paramagnetic moment.

Compound TN [K]

Θ [K]

peff [µB]

Comments Figures Ref.

CeCd2 ≈ 20 – 56 2.65 two peaks at 18.5 and 22 K in the heat capacity curve

89T1

CeCd3 2 – 52 2.60 89T1 Ce13Cd58 < 1.3 – 12 2.60 89T1 CeCd6 < 1.3 – 9.5 2.53 89T1 CeCd11 < 1.3 – 7.8 2.57 77 89T1 PrCd11 < 1.2 ≈ 0 ≈ 3.58 78 92M1 CeZn11 2.0 – 1.83 2.34 76 93N1

Fig. 70. YbBe13. d2V/dT2 spectrum of point contact vs. energy (corresponding to the applied voltage) at 1.6 K [87N1].

Page 419: 2 Magnetic properties of rare earth elements, alloys and ...

References

75B1 Bucher, E., Maita, J.P., Hull, G.W., Fulton, R.C., Cooper, A.C.: Phys. Rev. B 11 (1975) 440 81C1 Clad, R., Bouton, J.M., Herr, A.: C.R. Acad. Sci. (Paris) 292 (1981) 999 85B1 Besnus, M.J., Kappler, J.P., Meyer, A.: Physica B 130 (1985) 127 85V1 Vigneron, F., Bonnet, M., Becker, P.: Physica B 130 (1985) 366 86B1 Bonville, P., Imbert, P., Jéhanno, G.: J. Phys. F 16 (1986) 1873 86R1 Ramirez, A.P., Batlogg, B., Fisk, Z.: Phys. Rev. B 34 (1986) 1795 86V1 Vigneron, F.: Chem. Scr. (Sweden) 26A (1986) 93 87N1 Nowack, A., Wohlleben, D., Fisk, Z.: J. Magn. Magn. Mater. 63-64 (1987) 680 89T2 Tchoffo, F., Lemius, B., Domngang, S.: J. Phys. Soc. Jpn. 58 (1989) 2264 90K1 Kim, J.S., Andraka, B., Jee, C.S., Roy, S.B., Stewart, G.R.: Phys. Rev. B 41 (1990) 11073 91B1 Bourée-Vigneron, F.: Phys. Scr. (Sweden) 44 (1991) 27 91R1 Roy, S.B., Stewart, G.R.: J. Magn. Magn. Mater. 99 (1991) 235 93L1 Lawrence, J.M., Arko, A.J., Joyce, J.J., Blyth, R.I.R., Bartlett, R.J., Canfield, P.C., Fisk, Z.,

Riseborough, P.S.: Phys. Rev. B 47 (1993) 15460 96B1 Besnus, M.J., Fraga, G.L.F., Schmitt, D.: J. Alloys Compounds 235 (1996) 59

Page 420: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 393

Landolt-Börnstein New Series III/32D

– 1.00

– 0.25

0.50

– 0.75

0

0.75

– 0.50

0.25

1.00

Energy [meV]E

d/d

[rela

tive

units

]2

2V

T

–30 –20 –10 0 10 20 30

YbBe13

2.7.6 Other X-rich compounds

Apart from the rare earth series quoted above, the other X-rich compounds have been little investigated in the past decade (Figs. 71 - 78). The main studies involve cerium ion in relation with its possible Kondo or heavy fermion behaviour. Several binary compounds with magnesium as well as the corresponding pseudo-ternary (diluted) compounds Ce-Y-Mg have been investigated, showing magnetic results consistent with a normal Ce3+state [96F1]. Some anomalous effects nevertheless are present, as shown in CeMg3 through the temperature dependence of the thermoelectric power (Fig. 71) [88S1] and of the quasielastic linewidth in neutron scattering spectra [87L1]. Compounds with cadmium at different stoichiometries have also been studied and do not exhibit heavy fermion behaviour (Table 6). Finally, a study of the pseudo-ternary compounds EuxSr1–xMg5.2, (EuxSr1–x)3Mg13 and Eu(Mg1–-xAlx)5.2 has been performed in relation with the magnetism of europium clusters [88L1, 92L1], while the magnetic behaviour of the pseudo-ternary compounds YbMxGa4–x (M = Zn, Cd) is characterized by a non-magnetic Yb2+ groundstate [95G3]. Table 6. X-rich compounds. TN: Néel temperature; Θ: paramagnetic Curie temperature; peff: effective paramagnetic moment.

Compound TN [K]

Θ [K]

peff [µB]

Comments Figures Ref.

CeCd2 ≈ 20 – 56 2.65 two peaks at 18.5 and 22 K in the heat capacity curve

89T1

CeCd3 2 – 52 2.60 89T1 Ce13Cd58 < 1.3 – 12 2.60 89T1 CeCd6 < 1.3 – 9.5 2.53 89T1 CeCd11 < 1.3 – 7.8 2.57 77 89T1 PrCd11 < 1.2 ≈ 0 ≈ 3.58 78 92M1 CeZn11 2.0 – 1.83 2.34 76 93N1

Fig. 70. YbBe13. d2V/dT2 spectrum of point contact vs. energy (corresponding to the applied voltage) at 1.6 K [87N1].

Page 421: 2 Magnetic properties of rare earth elements, alloys and ...

394 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

0 50 100 150 200 250 300

–2.0

–1.5

–1.0

0

– 0.5

0.5

Ther

moe

lect

ricpo

wer

[V

K]

–1

Temperature [K]T

CeMg3

–2.0

–1.5

–1.0

0

– 0.5

0.5

1.0

Ther

moe

lect

ricpo

wer

[V

K]

–1

Temperature [K]T

LaMg3

–2.0

–1.5

–1.0

0

– 0.5

0.5

1.0

Ther

moe

lect

ricpo

wer

[V

K]

–1

Temperature [K]T

PrMg3

0 50 100 150 200 250 300

0 50 100 150 200 250 300

–2.5

Fig. 71. LaMg3, CeMg3, PrMg3. Thermoelectric power vs. temperature. The straight lines are fits of the linear portions between 150 K and 300 K. The arrow indicates the Néel temperature TN = 3.4 K for CeMg3 [88S1].

Page 422: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 395

Landolt-Börnstein New Series III/32D

For Fig. 72 see p. 397.

– 40 – 30 – 20 0 10 30 400

0.5

1.0

2.0

1.5

2.5

3.0

Cros

s sec

tion

(,

)S

Qm

ω

Energy transfer [meV]∆E– 10 20

a

– 40 – 30 – 20 0 10 30 400

0.5

1.0

2.0

1.5

Energy transfer [meV]∆E– 10 20

b

– 40 – 30 – 20 0 10 30 400

0.5

1.0

2.0

1.5

Energy transfer [meV]∆E– 10 20

c

CeZn5

Cros

s sec

tion

(,

)S

Qm

ωCr

oss s

ectio

n(

,)

SQ

Fig. 73. CeZn5. Magnetic neutron scattering cross section vs. energy transfer at (a) T = 8 K, (b) 120 K and (c) 250 K. The incident neutron energy is E0 = 67 meV. Continuous lines are least square fits [90G1].

Page 423: 2 Magnetic properties of rare earth elements, alloys and ...

396 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

Rela

tive

tran

smiss

ion

[%]

85

90

95

100

EuMg5

T = 5 K

Rela

tive

tran

smiss

ion

[%]

80

85

90

95

100

T = 6 K

Rela

tive

tran

smiss

ion

[%]

80

85

90

95

100

T = 7 K

Rela

tive

tran

smiss

ion

[%]

–25 –20 – 5–15 0–10 5 10Velocity [mm s ]v –1

80

85

90

95

100

T = 9 K

75

Rela

tive

tran

smiss

ion

[%]

–25 –20 – 5–15 0–10 5 10Velocity [mm s ]v –1

80

85

90

95

100

T = 10 K

Rela

tive

tran

smiss

ion

[%]

–25 –20 – 5–15 0–10 5 10Velocity [mm s ]v –1

80

85

90

95

100

T = 13 K

75

75

–25 –20 – 5–15 0–10 5 10Velocity [mm s ]v –1

–25 –20 – 5–15 0–10 5 10Velocity [mm s ]v –1

–25 –20 – 5–15 0–10 5 10Velocity [mm s ]v –1

Rela

tive

tran

smiss

ion

[%]

–25 –20 – 5–15 0–10 5 10Velocity [mm s ]v –1

80

85

90

95

100

T = 29 K

75

70

70

Fig. 74. EuMg5. 151Eu Mössbauer absorption spectra at various temperatures. The lines are calculated [86E1].

Page 424: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 397

Landolt-Börnstein New Series III/32D

0 2.5 5.0 10.0 12.5 17.5 20.0

0.2

0.4

0.8

0.6

1.0

1.2

Mag

netic

mom

ent

[/f.

u.]

p mBµ

Magnetic field [T]µ0 H7.5 15.0

CeZn5

Temperature [K]T2.0 2.5 3.0 3.5 4.0 4.5 5.0

χ

T = 1.3 K2.0 K

4.2 K

10 K

15 K

Fig. 72. CeZn5. Magnetization curves vs. magnetic field at various temperatures, showing the two-step metamagnetic process in the antiferromagnetic phase.

Right figure: detail of the susceptibility around the Néel temperature TN = 3.8 K [87G1].

2

4

68

10–4

10–1

Heat

capa

city

[J g

K]

C p–1

–1

Temperature [K]T1010–1

10–3

10–2

2

4

68

2

4

68

42 6 8 1 20 4042 6 8

EuMg5.2

H = 0

5.5 T

C p[1

0J g

K]

–1–1

–2

97

T [K]

5

3.0

2.5

4.0

3.5

Fig. 75. EuMg5.2. Heat capacity vs. temperature(logarithmic scale) for the magnetic fields indicated.Inset: detail of heat capacity around the Néeltemperature TN = 7.8 K (linear scale) [88L1].

0 4 8 12 16 20

1

2

3

4

5

6

7

CeZn11

LaZn11

Heat

capa

city

/[J

mol

K]

CT

p–1

–2

Temperature [K]T

Fig. 76. LaZn11, CeZn11. Heat capacity divided by temperature vs. temperature. The large peak shows the Néel temperature TN = 2 K for CeZn11 [93N1].

Page 425: 2 Magnetic properties of rare earth elements, alloys and ...

398 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

1

2

3

4

0 15 30 45 60 75

Heat

capa

city

[J m

olK

]C

M–1

–1

Temperature [K]T

CeCd11

2F5/2E2 = 80.2 K

E1 = 17.5 K

Fig. 77. CeCd11. Magnetic contribution to the heatcapacity vs. temperature. Line is calculated in a crystalfield model. Inset: crystal field splitting of the 2F5/2ground multiplet of the Ce3+ ion [88T1].

0 2 4 6 8 10Temperature [K]T

8

6

4

2

10

Heat

capa

city

[J m

olK

]C p

–1–1

LaCd , PrCd11 11

a

b

c

Fig. 78. LaCd11, PrCd11. Heat capacity vs. temperature for (a) PrCd11, (b) LaCd11 and (c) difference between (a) and (b) [92M1].

2.7.7 Ternary compounds

Among the ternary rare earth compounds which include at least one of the five elements Be, Mg, Zn, Cd or Hg, those with magnetic d elements (Fe, Co,...) have not been considered here. Among the other compounds, it turns out that the only series which has received a high interest during the last decade was tabulated with unknown structure in the previous review (Table 24 of [89M1]): indeed, in the R-Mg-Zn system, a new group of quasicrystalline phases has been discovered with a composition close to R8Mg42Zn50 (Figs. 79 - 87) [94T2, 94Z1]. These stable icosahedral phases correspond to the unknown Z-phase [82P1] previously listed and identified before the discovery of quasicrystals in 1984 [84S1]. The main interest for these new systems in the science of quasicrystals was the absence of aluminium and transition metals and the presence of rare earth. Their crystal structure has been investigated with the help of the maximum entropy method in six-dimensional space [96Y1] while their primary solidification area has been determined in the ternary phase diagram [97L1]. Their magnetic properties, despite some aspects reminiscent of those observed in spin glasses (Fig. 79), actually exhibit pecularities specific to their quasicrystalline nature, in particular as far as their quasimagnetic structures are concerned (Figs. 81, 82) [97C1]. The recent discovery of a decagonal quasicrystalline phase in the same ternary system [97S2] leads to conclude that these compounds will be still thoroughly investigated in the future. Except for the above R-Mg-Zn system, no further magnetic studies have been performed on the ternary compounds listed in the previous review [89M1]. Besides, few new other ternary series have been synthesized during the last decade. A first family includes the equiatomic compounds RMX, with R = Eu and Yb, M = Mg, Zn Cd or Hg and X = Si, Ge, Sn or Pb, but no magnetic data are available [91M1, 93M2]. Another series is the RxM1–xSb2 system (M = Zn or Cd), where metal deficiency has been found in some cases [95S1, 96W1]: the only magnetic data have been obtained for R = Ce (Table 7, Fig. 88). The last novel family investigated is the R6ZnSb15 series in which antiferromagnetism has been found for the Gd compound (Table 7, Fig. 89).

Page 426: 2 Magnetic properties of rare earth elements, alloys and ...

References

86E1 El Massalami, M., de Groot, H.J.M., Thiel, R.C., de Jongh, L.J.: Hyperfine Interactions 28 (1986) 667

87L1 Lopes, L.C., Coqblin, B.: J. Magn. Magn. Mater. 63-64 (1987) 213 88L1 Lueken, H., Brauers, T., Erassme, J., Deussen, M., Löhneysen, H.v., Schröder, A., Wosnitza,

J., Sauer, C.: J. Less-Common Met. 142 (1988) 221 88S1 Sakurai, J., Yamaguchi, Y., Galera, R.M., Pierre, J.: J. Phys. (Paris) Colloq. 49 (1988) C8-

787 89T1 Tang, J., Gschneidner Jr., K.A.: J. Less-Common Met. 149 (1989) 341 90G1 Gignoux, D., Schmitt, D., Bauer, E., Murani, A.P.: J. Magn. Magn. Mater. 88 (1990) 63 92L1 Lueken, H., Scheins, W., Handrick, K.: J. Less-Common Met. 183 (1992) 271 92M1 Malik, S.K., Tang, J., Gschneidner Jr., K.A.: J. Magn. Magn. Mater. 109 (1992) 316 93N1 Nakazawa, Y., Ishikawa, M., Noguchi, S., Okuda, K.: J. Phys. Soc. Jpn. 62 (1993) 3003 95G3 Grin, Y., Hiebl, K., Rogl, P.: J. Alloys Compounds 227 (1995) L4 96F1 Flandorfer, H., Kosticas, A., Rogl, P., Godart, C., Giovannini, M., Saccone, A., Ferro, R.: J.

Alloys Compounds 240 (1996) 116

Page 427: 2 Magnetic properties of rare earth elements, alloys and ...

398 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

1

2

3

4

0 15 30 45 60 75

Heat

capa

city

[J m

olK

]C

M–1

–1

Temperature [K]T

CeCd11

2F5/2E2 = 80.2 K

E1 = 17.5 K

Fig. 77. CeCd11. Magnetic contribution to the heatcapacity vs. temperature. Line is calculated in a crystalfield model. Inset: crystal field splitting of the 2F5/2ground multiplet of the Ce3+ ion [88T1].

0 2 4 6 8 10Temperature [K]T

8

6

4

2

10

Heat

capa

city

[J m

olK

]C p

–1–1

LaCd , PrCd11 11

a

b

c

Fig. 78. LaCd11, PrCd11. Heat capacity vs. temperature for (a) PrCd11, (b) LaCd11 and (c) difference between (a) and (b) [92M1].

2.7.7 Ternary compounds

Among the ternary rare earth compounds which include at least one of the five elements Be, Mg, Zn, Cd or Hg, those with magnetic d elements (Fe, Co,...) have not been considered here. Among the other compounds, it turns out that the only series which has received a high interest during the last decade was tabulated with unknown structure in the previous review (Table 24 of [89M1]): indeed, in the R-Mg-Zn system, a new group of quasicrystalline phases has been discovered with a composition close to R8Mg42Zn50 (Figs. 79 - 87) [94T2, 94Z1]. These stable icosahedral phases correspond to the unknown Z-phase [82P1] previously listed and identified before the discovery of quasicrystals in 1984 [84S1]. The main interest for these new systems in the science of quasicrystals was the absence of aluminium and transition metals and the presence of rare earth. Their crystal structure has been investigated with the help of the maximum entropy method in six-dimensional space [96Y1] while their primary solidification area has been determined in the ternary phase diagram [97L1]. Their magnetic properties, despite some aspects reminiscent of those observed in spin glasses (Fig. 79), actually exhibit pecularities specific to their quasicrystalline nature, in particular as far as their quasimagnetic structures are concerned (Figs. 81, 82) [97C1]. The recent discovery of a decagonal quasicrystalline phase in the same ternary system [97S2] leads to conclude that these compounds will be still thoroughly investigated in the future. Except for the above R-Mg-Zn system, no further magnetic studies have been performed on the ternary compounds listed in the previous review [89M1]. Besides, few new other ternary series have been synthesized during the last decade. A first family includes the equiatomic compounds RMX, with R = Eu and Yb, M = Mg, Zn Cd or Hg and X = Si, Ge, Sn or Pb, but no magnetic data are available [91M1, 93M2]. Another series is the RxM1–xSb2 system (M = Zn or Cd), where metal deficiency has been found in some cases [95S1, 96W1]: the only magnetic data have been obtained for R = Ce (Table 7, Fig. 88). The last novel family investigated is the R6ZnSb15 series in which antiferromagnetism has been found for the Gd compound (Table 7, Fig. 89).

Page 428: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 399

Landolt-Börnstein New Series III/32D

Table 7. Ternary compounds. TN: Néel temperature; Θ: paramagnetic Curie temperature; peff: effective paramagnetic moment.

Compound TN [K]

Θ [K]

peff [µB]

Comments Figures Ref.

CeZn0.6Sb2 2.0 – 11.0 2.6 Ce3+ state 88 96F2 CeZnBi2 < 5 0.4 2.15 Ce3+ state 88 96F2 Ce6ZnSb15 < 5 – 10 2.7 96S1 Pr6ZnSb15 < 5 – 13 3.6 89 96S1 Sm6ZnSb15 < 5 No Curie-Weiss behaviour 89 96S1 Gd6ZnSb15 15 – 34 7.7 89 96S1

Mag

netiz

atio

0 4 8 12 16 20Temperature [K]T

Tb Mg Zn8 42 50

Gd Mg Zn8 42 50

FC

ZFC

FC

ZFC

Fig. 79. Gd8Mg42Zn50, Tb8Mg42Zn50. Field-cooled (FC)and zero-field-cooled (ZFC) magnetization vs. tempera-ture in a magnetic field of 30 Oe [95H2].

10

20

30

40

50

60

0 2 4 6 8 10Magnetic field [T]µ0 H

Mag

netic

mom

ent

[/f.

u.]

p mBµ

i-R Mg Zn8 42 50

R = Er

Ho

Tb

Fig. 80. Tb8Mg42Zn50, Ho8Mg42Zn50, Er8Mg42Zn50. Magnetization vs. magnetic field at 1.5 K. Note the small hysteresis for the Tb compound [97C2].

Page 429: 2 Magnetic properties of rare earth elements, alloys and ...

400 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

10.0

12.5

15.0

20.0

17.5

22.5

27.5

25.0

30.0

Inte

nsity

(rel.u

nits

)

0° 10° 20° 30° 40° 50° 70° 80°60° 90°Angle 2q

i-Ho Mg Zn8 42 50

(2,1

)

(3,4

)(4

,4)

(6, 9

)

(14,

21)

(15,

24) (1

9,25

)(1

8,29

)

(20,

32)

(26,

41)

(28,

44)

a

– 0.5

0

0.5

1.5

1.0

2.0

3.0

2.5

Inte

nsity

(rel.u

nits

)

0° 10° 20° 30° 40° 50° 70° 80°60° 90°Angle 2qb

(2.5

, 0)

(3, 0

)(2

, 1.5

)(2

.5, 3

)

(4, 3

)(2

.5, 3

.5)

(6, 3

)(4

, 5)

(5, 5

)

(7, 1

1)

(5.5

, 6)

(7.5

, 9)

(9,1

1.5)

(9.5

, 13.

5)

(11,

15.5

)(1

2.5,

17.5

)

(11,

14.5

)

(14,

21.5

)(1

6.5,

21)

(16,

23.5

)

(18,

29)

(21,

29)

Fig. 81. i-Ho8Mg42Zn50. (a) Neutron diffraction pattern vs. scattering angle at 15 K; labels (N, M) follow the two-index notation for nuclear reflections in icosahedral systems. (b) Difference between spectra obtained at 1.5 and 15 K; the labels correspond to the strongest (Nmag – 0.125, Mmag – 0.0625) magnetic reflections [97C1].

Page 430: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 401

Landolt-Börnstein New Series III/32D

0

3

1

5

4

2

6

8

7

9

0° 30° 40° 50° 60° 70° 90°80°20°10°

i-Dy Mg Zn8 42 50

Inte

nsity

[rel.u

nits

]

Angle 2q

0.99

1.02

1.05

1.00

1.03

1.06

1.01

1.04

1.07

Temperature [K]T

Resis

tivity

(273

K)ρ/

ρ

0 50 100 150 200 250 300

Gd-Mg-Zn

Y-Mg-Zn

Fig. 83. Gd-Mg-Zn, Y-Mg-Zn icosahedral phases. Resistivity normalized to the value at 273 K vs. temperature [97K1].

0 10

20

30

40

70

50

80

60

25

50

75

100

125

150

0 204 8 12 16

Entro

pyS M

[J m

olK

]–1

–1

Heat

capa

city

C M[J

mol

K]

–1–1

Ho Mg Zn8 42 50

Temperature [K]T

Fig. 85. Ho8Mg42Zn5. Magnetic entropy (left scale) and magnetic contribution to the heat capacity (right scale) vs. temperature [99C1].

Fig. 82. i-Dy8Mg42Zn50. Difference between neutron diffraction patterns obtained at 1.5 K and 15 K vs. scattering angle; the narrow reflec-tions and the broad peaks are of magnetic origin [98C1].

Page 431: 2 Magnetic properties of rare earth elements, alloys and ...

402 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg [Ref. p. 404

Landolt-Börnstein New Series III/32D

0 4 8 12 16 20Temperature [K]T

Heat

capa

city

[Jm

olK

]C p

–1–1

16

80

32

96

48

112

64

128

Y Mg Zn8 42 50

Tb Mg Zn8 42 50

Gd Mg Zn8 42 50

Fig. 84. Gd8Mg42Zn50, Tb8Mg42Zn50, Y8Mg42Zn50. Heat capacity vs. temperature; the arrows indicate the spin freezing temperatures Tf determined by ac magnetic susceptibility measurement [95H1].

2 3 4 5 6– 0.2

– 0.1

0

0.4

0.1

0.2

0.3

EXAF

Sos

cilla

tions

() [

rela

tive

units

]k

Wavevector [Å ]k –17 8 9 10 11 12 13 14

Y Mg Zn8 42 50

Dy Mg Zn8 42 50

Fig. 86. Y8Mg42Zn50, Dy8Mg42Zn50. EXAFS oscillations vs. wavevector for the K edge of Y (upper curve) and the L3 edge of Dy (lower curve); the arrow shows the phase shift arising from the different nature of the atoms emitting the photoelectron [99C1].

Page 432: 2 Magnetic properties of rare earth elements, alloys and ...

Ref. p. 404] 2.7 Compounds of rare earth elements and Be, Mg, Zn, Cd, or Hg 403

Landolt-Börnstein New Series III/32D

0 10 20 30 40

Mag

netiz

atio

[G cm

g]

3–1

15

30

45

60

75

Magnetic field [T]µ0 H

T f[K

]

x [at %]6 7 8 9 10 11

Gd Mg Znx 30 70–x x = 109

8

7

6.0

4.0

5.0

6.5

4.5

5.5

Fig. 87. GdxMg30Zn70-x. Magnetization vs. magneticfield at 4.2 K for various Gd concentrations x. Inset:Spin freezing temperature Tf vs. Gd concentration x[97S1].

10

0 0

20

30

40

25 50

0 100 200 300 400 500In

v.su

scep

tibili

ty[1

0g

cm]

χ g–14

–3

Temperature [K]T

5

10

15

20

2 4 6 8 100

1

2

3

4

T [K]

[10

cmg

]χ g

–43

–1

H = 0.1 TTN

CeZn Sb0.6 2

CeZnBi2

calculated

Inv.

susc

eptib

ility

[10

g cm

]χ g–1

4–3

Fig. 88. CeZn0.6Sb2, CeZnBi2. Reciprocal mass susceptibility vs. temperature for the Sb (left scale) and the Bi (right scale) compound. Lines are calculated. Inset: mass susceptibility for the Sb compound measured in a field of 0.1 T; TN is the Néel temperature [96F2].

0 0

10

30

40

70

50

80

60

10

15

20

25

30

35

0 10020 40 60 80

Inv.

susc

eptib

ility

[10

g cm

]χ g–1

3–3

Temperature [K]T

Inv.

susc

eptib

ility

[10

g cm

]χ g–1

3–3

5

20

R ZnSb6 15

R = Sm

Pr

Gd

Fig. 89. Pr6ZnSb15, Sm6ZnSb15, Gd6ZnSb15. Reciprocal mass susceptibility vs. temperature. Lines are calculated [96S1].

Page 433: 2 Magnetic properties of rare earth elements, alloys and ...

References

82P1 Padezhnova, E.M., Mel'Nik, E.V., Miliyevskiy, R.A., Dobatkina, T.V., Kinzhibalo, V.V.: Russ. Metall. (Engl. Trans.) 4 (1982) 185

84S1 Schechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Phys. Rev. Lett. 53 (1984) 1951 89M1 Morin, P., in: Magnetic Properties of Metals (Wijn, H.P.J., ed.), Landolt-Börnstein, New

Series, Berlin, Heidelberg, New York: Springer, Vol. 19 e2 1989, p. 1 91M1 Merlo, F., Pani, M., Fornasini, M.L.: J. Alloys Compounds 171 (1991) 329 93M2 Merlo, F., Pani, M., Fornasini, M.: J. Alloys Compounds 196 (1993) 145 94T2 Tsai, A.P., Niikura, A., Inoue, A., Masumoto, T., Nishida, Y., Tsuda, K., Tanaka, M.: Philos.

Mag. Lett. 70 (1994) 169 94Z1 Zhao, D., Tang, Y., Luo, Z., Wang, R., Shen, N., Zhang, S.: J. Phys.: Condens. Matter 6

(1994) 7329 95H1 Hattori, Y., Fukamichi, K., Suzuki, K., Niikura, A., Tsai, A.P., Inoue, A., Masumoto, T.: J.

Phys.: Condens. Matter 7 (1995) 4183 95H2 Hattori, Y., Niikura, A., Tsai, A.P., Inoue, A., Masumoto, T., Fukamichi, K., Aruga-Katori,

H., Goto, T.: J. Phys.: Condens. Matter 7 (1995) 2313 95S1 Sologub, O., Hiebl, K., Rogl, P., Bodak, O.: J. Alloys Compounds 227 (1995) 40 96F2 Flandorfer, H., Sologub, O., Godart, C., Hiebl, K., Leithe-Jasper, A., Rogl, P., Noël, H.: Solid

State Commun. 97 (1996) 561 96S1 Sologub, O., Vybornov, M., Rogl, P., Hiebl, K., Cordier, G., Woll, P.: J. Solid State Chem.

122 (1996) 266 96W1 Wollesen, P., Jeitschko, W., Brylak, M., Dietrich, L.: J. Alloys Compounds 245 (1996) L5 96Y1 Yamamoto, A., Weber, S., Sato, A., Kato, K., Ohshima, K.I., Tsai, A.P., Niikura, A., Hiraga,

K., Inoue, A., Masumoto, T.: Philos. Mag. Lett. 73 (1996) 247 97C1 Charrier, B., Ouladdiaf, B., Schmitt, D.: Phys. Rev. Lett. 78 (1997) 4637 97C2 Charrier, B., Schmitt, D.: J. Magn. Magn. Mater. 171 (1997) 106 97K1 Kondo, R., Hashimoto, T., Edagawa, K., Takeuchi, S., Takeuchi, T., Mizutani, U.: J. Phys.

Soc. Jpn. 66 (1997) 1097 97L1 Langsdorf, A., Ritter, F., Assmus, W.: Phil. Mag. Lett. 75 (1997) 381 97S1 Saito, H., Fukamichi, K., Goto, T., Tsai, A.P., Inoue, A., Masumoto, T.: J. Alloys

Compounds 252 (1997) 6 97S2 Sato, T.J., Abe, E., Tsai, A.P.: Jpn. J. Appl. Phys. 36 (1997) L1038 98C1 Charrier, B., Ouladdiaf, B., Schmitt, D.: Physica B 241-243 (1998) 733 99C1 Charrier, B., Schmitt, D., in: Aperiodic '97 (de Boissieu, M., Verger-Gaugry, J.L., Currant,

R., eds.), Singapour: World Scientific, 1999, p. 733